Dual Channel OptoHiT™ Series, High-Temperature Phototransistor Optocoupler in Small Outline 8-Pin Package

FOD8802 Series

Description

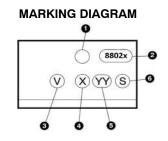
The FOD8802 dual channel optocoupler is a best-in-class phototransistor, optocoupler utilizing ON Semiconductor leading-edge proprietary process technology to achieve high operating temperature performance, up to 125°C. It consists of two aluminum gallium arsenide (AlGaAs) infrared light emitting diode optically coupled to two phototransistors, in a small outline, 8-pin SOIC package. It delivers consistent current transfer ratio at very low input current over temperature. The AlGaAs light ouput degradation performance is significantly better than the commodity optocoupler products that uses the standard GaAs, extending lifetime and reducing the guardband requirements to compensate for temperature drift. The input–output isolation voltage, Viso, is rated at 2500 VAC_{RMS}.

Features

- Excellent CTR Linearity at High Temperature
- CTR at Very Low Input Current, I_F
- High Isolation Voltage Regulated by Safety Agency, UL1577, 2500 VAC_{RMS} for 1 min.
- Applicable to Infrared Ray Reflow, 260°C
- These are Pb-Free Devices

Typical Applications

- Primarily Suited for DC-DC Converters
- For Ground Loop Isolation, Signal to Noise Isolation
- Communications Adapters, Chargers
- Consumer Appliances, Set Top Boxes
- Industrial Power Supplies, Motor Control, Programmable Logic Control

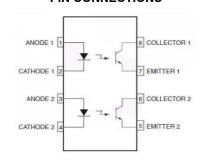


ON Semiconductor®

www.onsemi.com

M SUFFIX CASE 751DZ

1. ON = Corporate Name


2. 8802x = Device Number

3. V = DIN EN/IEC60747-5-5 Option

4. X = One–Digit Year Code

YY = Digit Work Week
S = Assembly Package Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet.

Table 1. SAFETY AND INSULATION RATINGS

As per DIN_EN/IEC60747–5–5. this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter	Characteristics		
Installation Classifications per DIN VDE 0110/1.89 Table 1,	< 150 V _{RMS}	I–IV	
For Rated Mains Voltage	< 300 V _{RMS}	I–III	
Climatic Classification	40/125/21		
Pollution Degree (DIN VDE 0110/1.89)	Pollution Degree (DIN VDE 0110/1.89)		
Comparative Tracking Index	175		

Symbol	Parameter	Value	Unit
VPR	Input–to–Output Test Voltage, Method A, $V_{\rm IORM}$ x 1.6 = V_{PR} , Type and Sample Test with t_m = 10 s, Partial Discharge < 5 pC	904	Vpeak
	Input–to–Output Test Voltage, Method B, $V_{\rm IORM}$ x 1.875 = V_{PR} , 100% Production Test with t_m = 1 s, Partial Discharge < 5 pC	1060	Vpeak
VIORM	Maximum Working Insulation Voltage	565	Vpeak
VIOTM	Highest Allowable Over-Voltage	4,000	Vpeak
	External Creepage	≥ 4	mm
	External Clearance	≥ 4	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
Τs	Case Temperature (Note 1)	150	°C
IS, INPUT	Input Current (Note 1)	200	mA
PS,OUTPUT	Output Power (Note 1)	300	mW
RIO	Insulation Resistance at T_S , V_{IO} = 500 V (Note 1)	> 10 ⁹	Ω

1. Safety limit values - maximum values allowed in the event of a failure.

Table 2. ABSOLUTE MAXIMUM RATINGS (T_A = $25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Value	Units
T _{STG}	Storage Temperature	-40 to +150	°C
T _{OPR}	Operating Temperature	-40 to +125	°C
TJ	Junction Temperature	–50 to +150	°C
T _{SOL}	Lead Solder Temperature (Refer to Reflow Temperature Profile)	260 for 10 sec	°C

EMITTER

I _{F(average)}	Continuous Forward Current	20	mA
V _R	Reverse Input Voltage	6	V
PD _{LED}	Power Dissipation (Note 2)	40	mW

DETECTOR

I _{C(average)}	Continuous Collector Current	30	mA
V _{CEO}	Collector-Emitter Voltage	75	V
V _{ECO}	Emitter-Collector Voltage	7	V
PD _C	Collector Power Dissipation (Note 2)	150	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

Table 3. ELECTRICAL CHARACTERISTICS

Apply over all recommended conditions ($T_A = -40^{\circ}C$ to $+125^{\circ}C$ unless otherwise specified). All typical values are measured at $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _F	Forward Voltage	I _F = 1 mA	1.0	1.35	1.8	V
$\Delta V_{F}^{/} \Delta T_{A}$	Forward Voltage Coefficient	I _F = 1 mA		-1.6		mV/°C
I _R	Reverse Current	V _R = 6 V			10	μΑ
C _T	Terminal Capacitance	V = 0 V, f = 1 MHz		30		pF
BV _{CEO}	Collector-Emitter Breakdown Voltage	l _C = 0.5 mA, l _F = 0 mA	75	130		V
BV _{ECO}	Emitter-Collector Breakdown Voltage	I _E = 100 μA, I _F = 0 mA	7	12		V
I _{CEO}	Collector Dark Current	V_{CE} = 75 V, I_F = 0 mA, T_A = 25°C			100	nA
		$V_{CE} = 50 \text{ V}, I_F = 0 \text{ mA}$			50	μΑ
		$V_{CE} = 5 V$, $I_F = 0 mA$			30	μΑ
C _{CE}	Capacitance	$V_{CE} = 0 V$, f = 1 MHz		8		pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 4. TRANSFER CHARACTERISTICS

Apply over all recommended conditions ($T_A = -40^{\circ}C$ to $+125^{\circ}C$ unless otherwise specified). $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Device	Conditions	Min.	Тур.	Max.	Units
			I_F = 1.0 mA, V_{CE} = 5 V @ T_A = 25°C	80	120	160	
		FOD8802A	I _F = 1.0 mA, V _{CE} = 5 V	35	120	230	
		FUD8802A	I _F = 1.6 mA, V _{CE} = 5 V	40	125		
			I _F = 3.0 mA, V _{CE} = 5 V	45	138		
			$I_F = 1.0 \text{ mA}, V_{CE} = 5 \text{ V} @ T_A = 25^{\circ}\text{C}$	130	195	260	
		FORMAR	I _F = 1.0 mA, V _{CE} = 5 V	65	195	360	
		FOD8802B	I _F = 1.6 mA, V _{CE} = 5 V	70	202		
OTD	Current Transfer Ratio		I _F = 3.0 mA, V _{CE} = 5 V	75	215		0/
CTR _{CE}	(collector-emiiter)		$I_F = 1.0 \text{ mA}, V_{CE} = 5 \text{ V} @ T_A = 25^{\circ}\text{C}$	200	300	400	%
		FOD0000C	I _F = 1.0 mA, V _{CE} = 5 V	100	300	560	
		FOD8802C	I _F = 1.6 mA, V _{CE} = 5 V	110	312		
			I _F = 3.0 mA, V _{CE} = 5 V	115	330		
			$I_F = 1.0 \text{ mA}, V_{CE} = 5 \text{ V} @ T_A = 25^{\circ}\text{C}$	100		400	
		FORMARD	I _F = 1.0 mA, V _{CE} = 5 V	45		560	
		FOD8802D	I _F = 1.6 mA, V _{CE} = 5 V	50			
			I _F = 3.0 mA, V _{CE} = 5 V	55			
			$I_F = 1.0 \text{ mA}, V_{CE} = 0.4 \text{ V} @ T_A = 25^{\circ}\text{C}$	65	108	150	
	Saturated Current	FOD8802A	I _F = 1.0 mA, V _{CE} = 0.4 V	30	108		- %
			I _F = 1.6 mA, V _{CE} = 0.4 V	25	104		
			I _F = 3.0 mA, V _{CE} = 0.4 V	20	92		
		FOD8802B	I _F = 1.0 mA, V _{CE} = 0.4 V @ T _A = 25°C	90	168	245	
			I _F = 1.0 mA, V _{CE} = 0.4 V	45	168		
			I _F = 1.6 mA, V _{CE} = 0.4 V	40	155		
			I _F = 3.0 mA, V _{CE} = 0.4 V	35	132		
CTR _{CE(SAT)}	Transfer Ratio (collector-emiiter)		I _F = 1.0 mA, V _{CE} = 0.4 V @ T _A = 25°C	140	238	380	
			I _F = 1.0 mA, V _{CE} = 0.4 V	75	238		
		FOD8802C	I _F = 1.6 mA, V _{CE} = 0.4 V	65	215		
			I _F = 3.0 mA, V _{CE} = 0.4 V	55	177		
			I _F = 1.0 mA, V _{CE} = 0.4 V @ T _A = 25°C	70		380	
			I _F = 1.0 mA, V _{CE} = 0.4 V	35			
		FOD8802D	I _F = 1.6 mA, V _{CE} = 0.4 V	30			-
			$I_F = 3.0 \text{ mA}, V_{CE} = 0.4 \text{ V}$	25			-
			I _F = 1.0 mA, I _C = 0.3 mA		0.17	0.40	
		FOD8802A	I _F = 1.6 mA, I _C = 0.4 mA		0.16	0.40	-
		I OD8802A	$I_F = 3.0 \text{ mA}, I_C = 0.6 \text{ mA}$		0.15	0.40	-
			$I_{\rm F} = 1.0 \text{ mA}, I_{\rm C} = 0.45 \text{ mA}$		0.17	0.40	
		FOD8802B	$I_{\rm F} = 1.6 \rm{mA}, I_{\rm C} = 0.6 \rm{mA}$	<u> </u>	0.16	0.40	1
			$I_{\rm F} = 3.0 \text{ mA}, I_{\rm C} = 1.0 \text{ mA}$		0.16	0.40	1
V _{CE(SAT)}	Saturation voltage		$I_F = 1.0 \text{ mA}, I_C = 0.75 \text{ mA}$	<u> </u>	0.18	0.40	v
		FOD8802C	$I_F = 1.6 \text{ mA}, I_C = 1.0 \text{ mA}$		0.17	0.40	1
			$I_F = 3.0 \text{ mA}, I_C = 1.6 \text{ mA}$		0.17	0.40	1
			$I_F = 1.0 \text{ mA}, I_C = 0.45 \text{ mA}$			0.40	1
		FOD8802D	$I_F = 1.6 \text{ mA}, I_C = 0.60 \text{ mA}$			0.40	-
			$I_F = 3.0 \text{ mA}, I_C = 1.00 \text{ mA}$			0.40	-

Table 5. SWITCHING CHARACTERISTICS

Apply over all recommended conditions ($T_A = -40^{\circ}C$ to $+125^{\circ}C$ unless otherwise specified). All typical values are measured at $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
÷	Turn On Time	I_F = 1.6 mA, V_{CC} = 5 V, R_L = 0.75 $k\Omega$	1	6	20	μs
t _{ON}		I_F = 1.6 mA, V_{CC} = 5 V, R_L = 4.7 k Ω		6		μs
+	Turn Off Time	I_F = 1.6 mA, V_{CC} = 5 V, R_L = 0.75 $k\Omega$	1	6	20	μs
tOFF		I_F = 1.6 mA, V_{CC} = 5 V, R_L = 4.7 k Ω		40		μs
t _R	Output Rise Time (10% –90%)	I_F = 1.6 mA, V_{CC} = 5 V, R_L = 0.75 $k\Omega$		6		μs
t _F	Output Fall Time (90% -10%)	I_F = 1.6 mA, V_{CC} = 5 V, R_L = 0.75 $k\Omega$		7		μs
CM _H	Common Mode Rejection Voltage (Transient Immunity Output High)	$I_F = 0$ mA, $V_{CC} = 5$ V, $R_L = 4.7$ kΩ VCM = 500 V (Note 3)		10		kV/μs
CML	Common Mode Rejection Voltage (Transient Immunity Output Low)	$I_{F} = 1.6 \text{ mA}, \text{ V}_{CC} = 5 \text{ V}, \text{ R}_{L} = 4.7 \text{ k}\Omega$ VCM = 500 V (Note 3)		10		kV/μs

3. Common mode transient immunity at output high is the maximum tolerable positive dVcm/dt on the leading edge of the common mode impulse signal, Vcm, to assure that the output will remain high.

Table 6. ISOLATION CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{ISO}	Input-Output Isolation Voltage	Freq = 60 Hz, t = 1.0 min, $I_{I-O} \leq$ 10 μA (Notes 4, 5)	2,500			VAC _{RMS}
R _{ISO}	Isolation Resistance	V _{I-O} = 500 V (Note 4)	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance	Frequency = 1 MHz		0.6		pF

Device is considered a two terminal device: Pins 1 and 2 are shorted together and Pins 3 and 4 are shorted together.
2,500 VAC_{RMS} for 1 minute duration is equivalent to 3,000 VAC_{RMS} for 1 second duration.

TEST CIRCUIT



Figure 1. Switching Test Circuit and Waveform

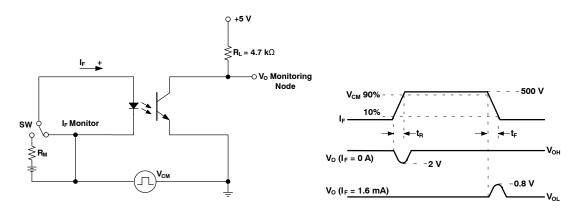


Figure 2. Test Circuit for Instantaneous Common-Mode Rejection Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

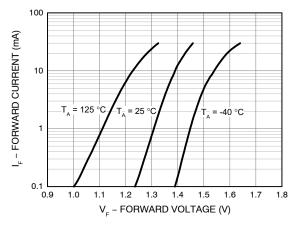


Figure 3. Forward Current vs. Forward Voltage

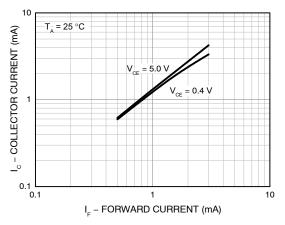


Figure 4. Collector Current vs. Forward Current

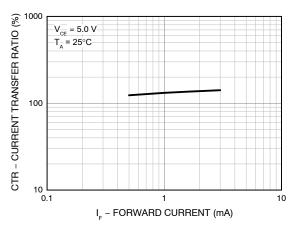


Figure 5. Current Transfer Ratio vs. Forward Current

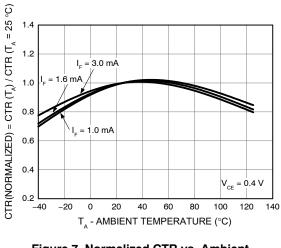


Figure 7. Normalized CTR vs. Ambient Temperature

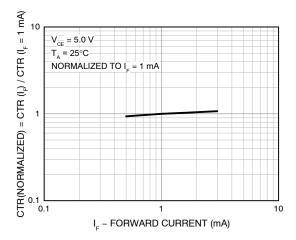
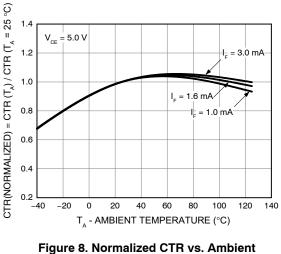
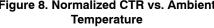
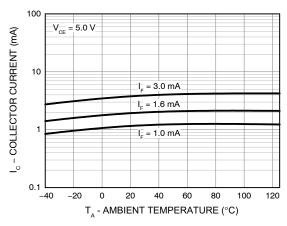





Figure 6. Normalized CTR vs. Forward Current

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

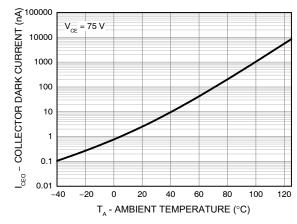
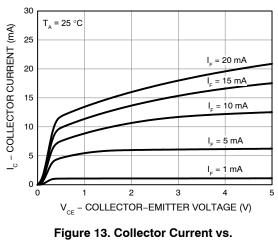



Figure 11. Collector Dark Current vs. Ambient Temperature

Collector-Emitter Voltage

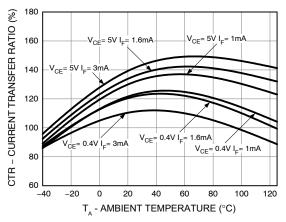


Figure 10. Current Transfer Ratio vs. Ambient Temperature

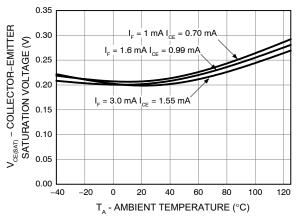


Figure 12. Collector–Emitter Saturation Voltage vs. Ambient Temperature

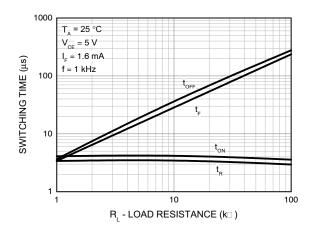


Figure 14. Switching Time vs. Load Resistance

REFLOW PROFILE

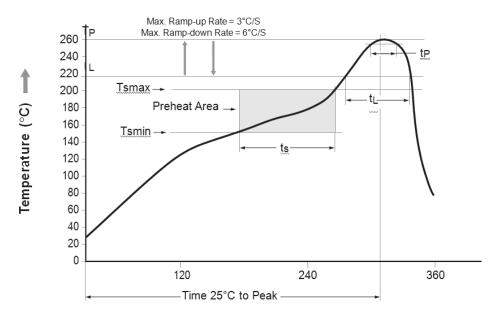
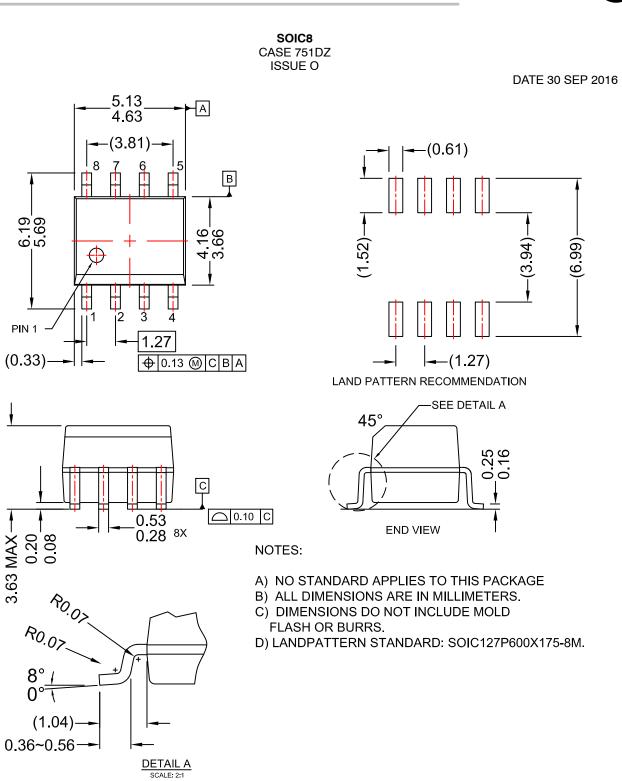


Figure 15. Reflow Profile


Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60–120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60–150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max.
Time 25°C to Peak Temperature	8 minutes max.

ORDERING INFORMATION (Note 6)

Part Number	Package	Packing Method
FOD8802A	Small Outline 8-Pin	Tube (100 units per tube)
FOD8802AR2	Small Outline 8-Pin	Tape and Reel (2,500 units per reel)
FOD8802AV	Small Outline 8-Pin DIN EN/IEC60747-5-5 Option (pending approval)	Tube (100 units per tube)
FOD8802AR2V	Small Outline 8–Pin DIN EN/ IEC60747–5–5 Option (pending approval)	Tape and Reel (2,500 units per reel)

6. The product orderable part number system listed in this table also applies to the FOD8802A, FOD8802B, FOD8802C and FOD8802D products.

OptoHiT is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98AON13733G Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION: SOIC8 PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation or assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales