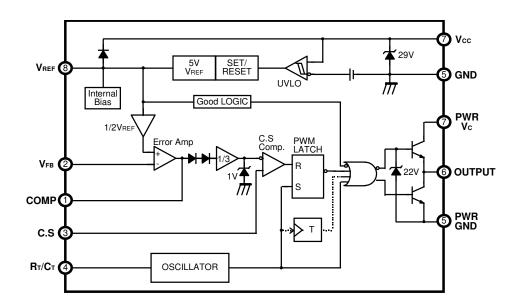

KA3843AC SMPS Controller

Features


- Low start current 0.2mA (typ)
- Operating range up to 500kHz
- Cycle by cycle current limiting
- · Under voltage lock out with hysteresis
- Short shutdown delay time: typ.100ns
- High current totem-pole output
- Output swing limiting: 22V

Description

The KA3843AC are fixed PWM controller for Off-Line and DC to DC converter applications. The internal circuits include UVLO, low start up current circuit, temperature compensated reference, high gain error amplifier, current sensing comparator, and high current totem-pole output for driving a POWER MOSFET. Also KA3843AC provide low start up current below 0.3mA and short shutdown delay time typ. 100ns. The KA3843AC is 8.4V(on) and 7.6V(off). The KA3843AC can operate within 100% duty cycle.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply voltage	Vcc	30	V
Output current	lo	+1	A
Analog inputs (pin2, 3)	VI(ANA)	-0.3 to 6.3	V
Error amp. output sink current	ISINK(EA)	10	mA
Power dissipation	PD	1	W

Electrical Characteristics

(VCC = 15V, RT = 10KW, CT = 3.3nF, TA = 0° C to $+70^{\circ}$ C ,Unless otherwise specified)

Parameter	Symbol	Conditions		Тур.	Max.	Unit
REFERENCE SECTION						
Output voltage	VREF	T _J = 25°C, I _O = 1mA	4.9	5.0	5.1	V
Line regulation	RLine	Vcc = 12V to 25V	-	6	20	mV
Load regulation	RLOAD	IO = 1mA to 20mA	-	6	25	mV
Output short circuit	Isc	T _a = 25°C	-	-100	-180	mA
OSILLATOR SECTION						
Initial accuracy	Fosc	T _J = 25°C	47	52	57	kHz
Voltage stability	STy	Vcc = 12V to 25V	-	0.2	1	%
Amplitude	Vosc	VPIN4, peak to peak	-	1.7	=	V
Discharge current	IDISCHG	T _J = 25°C	7.8	8.3	8.8	mA
CURRENT SENSE SECTION						
Gain	G۷	(Note2, 3)	2.85	3	3.15	V/V
Maximum input signal	VI(MAX)	VPIN1 = 5V(Note2)	0.9	1.0	1.1	V
PSRR	PSRR	VCC = 12V to 25V (Note1, 2)	-	70	-	dB
Input bias current	IBIAS	VSENSE=0V	-	-2	-10	uA
Delay to output	TD	VPIN3 = 0 V to 2V (Note1)	-	100	200	ns

Notes:

- 1. These parameters, although guaranteed, are not 100% tested in production.
- 2. Parameter measured at trip point of latch with V_{FB} = 0V.
- 3. Gain defined as: $G_V = \frac{\Delta V_{COMP}}{\Delta V_{SENSE}}; O \le V_{SENSE} \le 0.8V$

Electrical Characteristics (Continued)

(VCC = 15V, RT = 10KW, CT = 3.3nF, TA = 0° C to $+70^{\circ}$ C, Unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
ERROR AMPLIFIER SECTION	•		•		•	
Input voltage	VI	VPIN1 = 2.5V	2.42	2.50	2.58	V
Input bias current	IBIAS	V _{FB} =0V	-	-0.3	- 2	uA
Open loop gain	Gvo	Vo = 2V to 4V (Note1)	65	90	-	dB
Unity gain bandwidth	GBW	T _J = 25°C (Note1)	0.7	1	-	MHz
PSRR	PSRR	V _{CC} = 12V to 25V (Note1)	60	70	-	dB
Output sink current	ISINK	VPIN2 = 2.7V, VPIN1 = 1.1V	2	6	-	mA
Output source current	ISOURCE	V _{PIN2} = 2.3V, V _{PIN1} = 5.0V	-0.5	-0.8	-	mA
Output high voltage	Voн	VPIN2 = 2.3V R1 = 15KΩ to GND	5	6	-	V
Output low voltage	VoL	V _{PIN2} = 2.7V R1 = 15kΩ to Vref	-	0.7	1.1	V
OUTPUT SECTION				I	I	
Output Love Lovel	Voi	ISINK = 20mA	-	0.1	0.4	V
Output Low Level	VoL	ISINK = 200mA	-	1.5	2.2	V
Output high lovel	Vou	ISOURCE = 20mA	13	13.5	-	V
Output high level	Voн	ISOURCE = 200mA	12	13.5	-	V
Rise time	tR	T _J = 25°C, C1 = 1nF (Note1)	-	40	100	ns
Fall time	tF	T _J = 25°C, C1 = 1nF (Note1)	-	40	100	ns
Output voltage swing limit	Volim	V _C C = 27V, C1 = 1nF	-	22	-	٧
UNDER VOLTAGE LOCKOUT	SECTION					
Start threshold	VTH	KA3882E	15	16	17	٧
Start tilleshold	VIH	KA3883E	7.8	8.4	9.0	V
Min. operating voltage	VTL	KA3882E	9	10	11	V
(after turn on)	VIL	KA3883E	7.0	7.6	8.2	V
PWM SECTION						
Maximum duty cycle	DMAX	KA3882E/KA3883E	94	96	100	%
Minimum duty cycle	DMIN	-	-	-	0	%
TOTAL STANDBY CURRENT						
Start-up current	IST	-	-	0.2	0.4	mA
Operating supply current	Icc	VPIN2 = VPIN3 = 0V	-	11	17	mA
VCC zener voltage	Vz	ICC = 25mA	-	29	-	V

^{*} Adjust Vcc above the start threshold before setting at 15V

Notes:

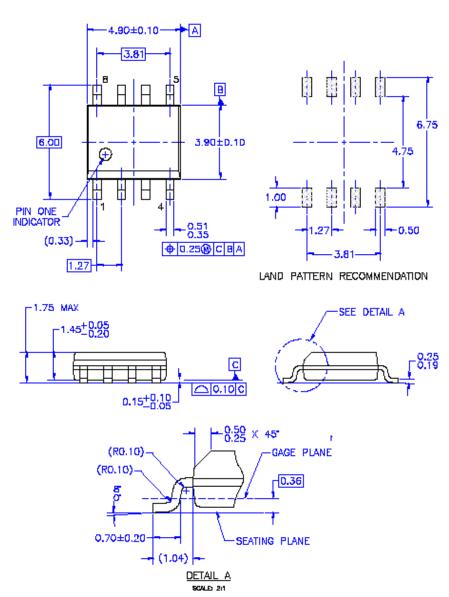
- 1. These parameters, although guaranteed, are not 100% tested in production.
- 2. Parameter measured at trip point of latch with $V_{FB} = 0V$.

3. Gain defined as:
$$G_V = \frac{\Delta V_{COMP}}{\Delta V_{SENSE}}; O \le V_{SENSE} \le 0.8V$$

Mechanical Dimensions

Package

Dimensions in millimeters


8-DIP 0.79 6.40 ±0.20 0.252 ±0.008 1.524 ± 0.10 0.060 ±0.004 0.46 ±0.10 0.018 ± 0.004 #8 9.20 ±0.20 0.362 ±0.008 $\frac{9.60}{0.378}$ MAX #5 2.54 $\frac{5.08}{0.200}$ MAX 3.30 ±0.30 0.130 ±0.012 7.62 0.300 $\frac{0.33}{0.013}\,\text{MIN}$ 3.40 ± 0.20 $\overline{0.134 \pm 0.008}$ $0.25^{\,+0.10}_{\,\,-0.05}\atop -0.010^{\,+0.004}_{\,\,-0.002}$ 0~15°

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

8-SOP

Ordering Information

Product Number	Package	Operating Temperature	
KA3843AC	8-DIP	0 ~ +70°C	
KA3843ACD	8-SOP	0 ·- +/0 C	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Search:

Go

DATASHEETS, SAMPLES, BUY

TECHNICAL INFORMATION APPLICATIONS DESIGN CENTER SUPPORT COMPANY INVESTORS MY F.

Qualification Support

Home >> Find products >>

KA3843A

SMPS Controller

Contents

- General description
- Features
- Product status/pricing/packaging
- Order Samples

General description

The KA3843AC are fixed PWM controller for Off-Line and DC to DC converter applications. The internal circuits include UVLO, low start up current circuit, temperature compensated reference, high gain error amplifier, current sensing comparator, and high current totem-pole output for driving a POWER MOSFET. Also KA3843AC provide low start up current below 0.3mA and short shutdown delay time typ. 100ns. The KA3843AC is 8.4V(on) and 7.6V(off). The KA3843AC can operate within 100% duty cycle.

back to top

Features

- Low Start Current 0.2mA (Typ)
- Operating Range up to 500kHz
- Cycle by Cycle Current Limiting
- Under Voltage Lock Out With Hysteresis
- Short Shutdown Delay Time: Typ.100ns
- High Current Totem-Pole Output
- Output Swing Limiting: 22V

back to top

Product status/pricing/packaging

BUY

BUY

Datasheet Download this datasheet

e-mail this datasheet

This page Print version

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

Support

Sales support

Quality and reliability

Design center

Product	Product status	Pb-free Status	Pricing*	Package type	Leads	Packing method

KA3843ACS Full Production Full Production	\$0.445 <u>DIP</u>	8	RAIL
---	--------------------	---	------

^{*} Fairchild 1,000 piece Budgetary Pricing
** A sample button will appear if the part is available through Fairchild's on-line samples program. If there is no sample button, please contact a Fairchild distributor to obtain samples

Indicates product with Pb-free second-level interconnect. For more information click here.

back to top

Qualification Support

Click on a product for detailed qualification data

Product
KA3843ACS

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions |