

BUK9Y27-40B

N-channel TrenchMOS logic level FET Rev. 04 — 7 April 2010

Product data sheet

Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in automotive critical applications.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Q101 compliant

- Suitable for logic level gate drive sources
- Suitable for thermally demanding environments due to 175 °C rating

1.3 Applications

- 12 V loads
- Automotive systems

- General purpose power switching
- Motors, lamps and solenoids

1.4 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	40	V
I _D	drain current	V _{GS} = 5 V; T _{mb} = 25 °C; see <u>Figure 1</u> ; see <u>Figure 4</u>	-	-	34	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	59.4	W
Static char	acteristics					
R _{DSon}	drain-source on-state resistance	$V_{GS} = 5 \text{ V}; I_D = 15 \text{ A};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{\text{Figure } 13};$ see Figure 13	-	22	27	mΩ
		V _{GS} = 10 V; I _D = 15 A; T _j = 25 °C; see <u>Figure 12</u>	-	18	24	mΩ

Table 1. Quick reference data ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Avalanche	ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$\begin{split} I_D &= 34 \text{ A; } V_{sup} \leq 40 \text{ V;} \\ R_{GS} &= 50 \text{ \Omega; } V_{GS} = 5 \text{ V;} \\ T_{j(init)} &= 25 \text{ °C; } unclamped \end{split}$	-	-	39	mJ
Dynamic characteristics						
Q_{GD}	gate-drain charge	$V_{GS} = 5 \text{ V}; I_D = 15 \text{ A};$ $V_{DS} = 32 \text{ V}; \text{ see } \frac{\text{Figure } 14}{\text{ Figure } 14}$	-	4.2	-	nC

2. Pinning information

Table 2. Pinning information

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S	source		
2	S	source	mb	D
3	S	source		
4	G	gate		
mb	D	mounting base; connected to drain	1 2 3 4	mbb076 S
			SOT669 (LFPAK)	

3. Ordering information

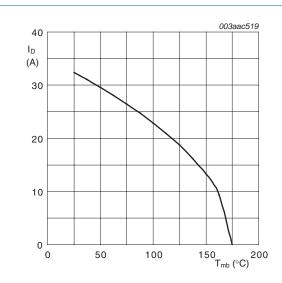
Table 3. Ordering information

Type number	Package		
	Name	Description	Version
BUK9Y27-40B	LFPAK	plastic single-ended surface-mounted package (LFPAK); 4 leads	SOT669

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	40	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$		-	-	40	V
V _{GS}	gate-source voltage			-15	-	15	V
I _D drain current		T_{mb} = 25 °C; V_{GS} = 5 V; see <u>Figure 1</u> ; see <u>Figure 4</u>		-	-	34	Α
		$T_{mb} = 100 ^{\circ}C; V_{GS} = 5 V; \text{see } \underline{\text{Figure 1}}$		-	-	24	Α
I _{DM}	peak drain current	T_{mb} = 25 °C; t_p ≤ 10 μs; pulsed; see Figure 4		-	-	136	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	59.4	W
T _{stg}	storage temperature			-55	-	175	°C
Tj	junction temperature			-55	-	175	°C
Source-drain of	diode						
Is	source current	T _{mb} = 25 °C		-	-	34	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	-	136	Α
Avalanche rug	gedness						
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	I_D = 34 A; V_{sup} ≤ 40 V; R_{GS} = 50 Ω; V_{GS} = 5 V; $T_{j(init)}$ = 25 °C; unclamped		-	-	39	mJ
E _{DS(AL)R}	repetitive drain-source avalanche energy	see Figure 3	[1][2][3] [4]	-	-	-	J

^[1] Maximum value not quoted. Repetitive rating defined in avalanche rating figure.

^[2] Single-pulse avalanche rating limited by maximum junction temperature of 175 $^{\circ}$ C.

^[3] Repetitive avalanche rating limited by an average junction temperature of 170 °C.

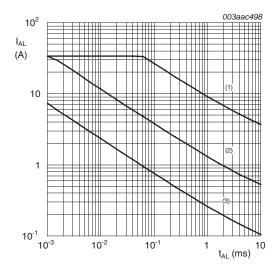
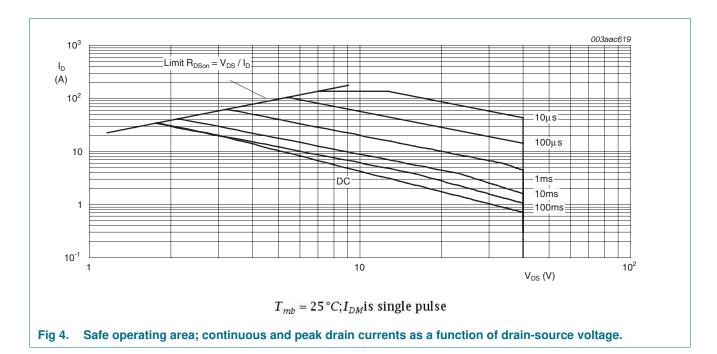
^[4] Refer to application note AN10273 for further information.

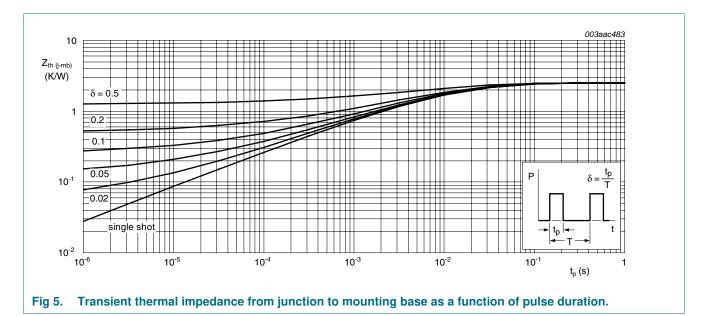
003aab844 120 P_{der} (%) 80 40 0 150 C°C) 200 100

 $P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$

Continuous drain current as a function of Fig 1. mounting base temperature

Fig 2. Normalized total power dissipation as a function of mounting base temperature


Fig 3. Single-pulse and repetitive avalanche rating; avalanche current as a function of avalanche time

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j\text{-}mb)}$	thermal resistance from junction to mounting base	see Figure 5	-	-	2.53	K/W

6. Characteristics

Table 6. Characteristics

	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	aracteristics					
$V_{(BR)DSS}$	drain-source	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$	36	-	-	V
	breakdown voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	40	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = 25$ °C; see <u>Figure 10</u> ; see <u>Figure 11</u>	1.1	1.5	2	V
V _{GSth} gate-source threshold voltage	$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = 175$ °C; see <u>Figure 10</u> ; see <u>Figure 11</u>	0.5	-	-	V	
	$I_D = 1$ mA; $V_{DS} = V_{GS}$; $T_j = -55$ °C; see Figure 10; see Figure 11	-	-	2.3	V	
I _{DSS}	drain leakage current	$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.02	1	μΑ
		$V_{DS} = 40 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	-	-	500	μΑ
I _{GSS}	gate leakage current	$V_{DS} = 0 \text{ V}; V_{GS} = 15 \text{ V}; T_j = 25 \text{ °C}$	-	2	100	nA
		$V_{DS} = 0 \text{ V}; V_{GS} = -15 \text{ V}; T_j = 25 \text{ °C}$	-	2	100	nA
R _{DSon} drain-source on-state resistance	$V_{GS} = 5 \text{ V}$; $I_D = 15 \text{ A}$; $T_j = 25 \text{ °C}$; see Figure 12; see Figure 13	-	22	27	mΩ	
		$V_{GS} = 4.5 \text{ V}; I_D = 15 \text{ A}; T_j = 25 \text{ °C}$	-	-	30	mΩ
	$V_{GS} = 5 \text{ V}; I_D = 15 \text{ A}; T_j = 175 °C;$ see Figure 13	-	-	57	mΩ	
		$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A}; T_j = 25 \text{ °C};$ see Figure 12	-	18	24	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	$I_D = 15 \text{ A}; V_{DS} = 32 \text{ V}; V_{GS} = 5 \text{ V};$	-	11	-	nC
Q _{GS}	gate-source charge	see Figure 14		0.5		
0	9-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		-	2.5	-	пC
⊶GD	gate-drain charge		-	4.2	-	nC nC
		V _{GS} = 0 V; V _{DS} = 25 V; f = 1 MHz;	- - -			
C _{iss}	gate-drain charge	$V_{GS} = 0 \text{ V; } V_{DS} = 25 \text{ V; } f = 1 \text{ MHz;}$ $T_j = 25 \text{ °C; see } \frac{\text{Figure 15}}{\text{ or } 15 \text{ or } 15 $	-	4.2	-	nC
C _{iss}	gate-drain charge input capacitance		-	4.2 719	- 959	nC pF
C _{iss} C _{oss} C _{rss}	gate-drain charge input capacitance output capacitance reverse transfer	T_j = 25 °C; see <u>Figure 15</u> V_{DS} = 30 V; R_L = 2 Ω ; V_{GS} = 5 V;		4.2 719 146	- 959 175	nC pF pF
C _{iss} C _{oss} C _{rss}	gate-drain charge input capacitance output capacitance reverse transfer capacitance	T _j = 25 °C; see <u>Figure 15</u>	- - -	4.2 719 146 83	959 175 114	nC pF pF pF
C _{iss} C _{oss} C _{rss} t _{d(on)}	gate-drain charge input capacitance output capacitance reverse transfer capacitance turn-on delay time	T_j = 25 °C; see <u>Figure 15</u> V_{DS} = 30 V; R_L = 2 Ω ; V_{GS} = 5 V;	- - -	4.2 719 146 83 14.5	959 175 114	nC pF pF pF
Ciss Coss Crss id(on) ir	gate-drain charge input capacitance output capacitance reverse transfer capacitance turn-on delay time rise time	T_j = 25 °C; see <u>Figure 15</u> V_{DS} = 30 V; R_L = 2 Ω ; V_{GS} = 5 V;	- - -	4.2 719 146 83 14.5 35	- 959 175 114 -	nC pF pF pF ns
Ciss Coss Crss d(on) dr d(off)	gate-drain charge input capacitance output capacitance reverse transfer capacitance turn-on delay time rise time turn-off delay time	T_j = 25 °C; see <u>Figure 15</u> V_{DS} = 30 V; R_L = 2 Ω ; V_{GS} = 5 V;	- - -	4.2 719 146 83 14.5 35 40	- 959 175 114 -	nC pF pF pF ns ns
Ciss Coss Crss Id(on) Ir Id(off) Source-di	gate-drain charge input capacitance output capacitance reverse transfer capacitance turn-on delay time rise time turn-off delay time fall time	T_j = 25 °C; see <u>Figure 15</u> V_{DS} = 30 V; R_L = 2 Ω ; V_{GS} = 5 V;	- - -	4.2 719 146 83 14.5 35 40	- 959 175 114 -	nC pF pF pF ns ns
Q_{GD} C_{iss} C_{oss} C_{rss} $t_{d(on)}$ t_r $t_{d(off)}$ t_f $Source-d$ V_{SD}	gate-drain charge input capacitance output capacitance reverse transfer capacitance turn-on delay time rise time turn-off delay time fall time rain diode	T_j = 25 °C; see Figure 15 V_{DS} = 30 V; R_L = 2 Ω ; V_{GS} = 5 V; $R_{G(ext)}$ = 10 Ω	- - -	4.2 719 146 83 14.5 35 40 24	- 959 175 114 - - -	nC pF pF pF ns ns ns

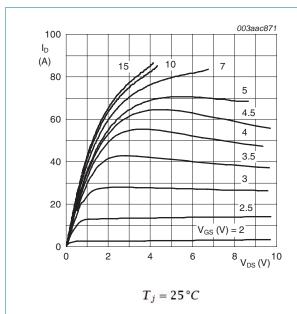


Fig 6. Output characteristics: drain current as a function of drain-source voltage; typical values.

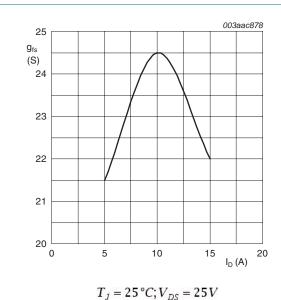


Fig 8. Forward transconductance as a function of drain current; typical values.



Fig 7. Transfer characteristics: drain current as a function of gate-source voltage; typical values.

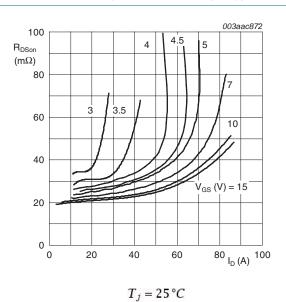


Fig 9. Drain-source on-state resistance as a function of drain current; typical values.

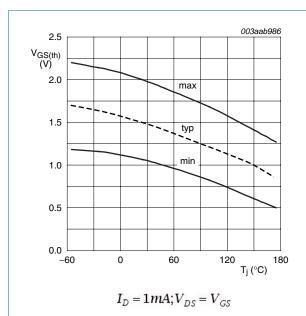


Fig 10. Gate-source threshold voltage as a function of junction temperature

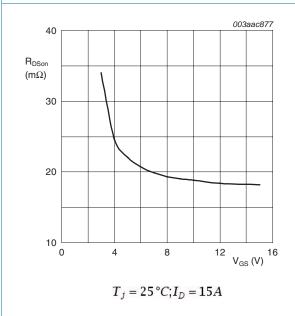
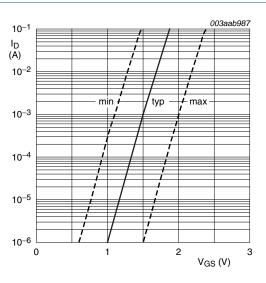



Fig 12. Drain-source on-state resistance as a function of gate-source voltage; typical values.

 $T_j = 25$ °C; $V_{DS} = V_{GS}$

Fig 11. Sub-threshold drain current as a function of gate-source voltage

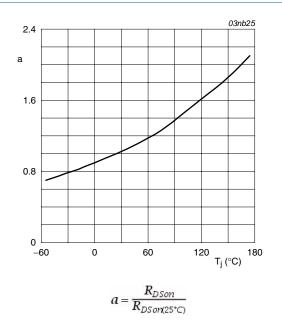


Fig 13. Normalized drain-source on-state resistance factor as a function of junction temperature

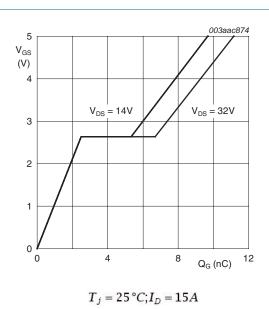
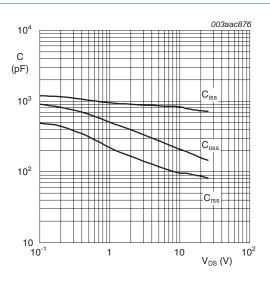



Fig 14. Gate-source voltage as a function of gate charge; typical values.

 $V_{GS} = 0V; f = 1MHz$

Fig 15. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values.

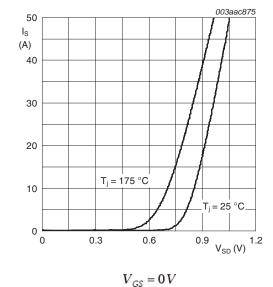


Fig 16. Source (diode forward) current as a function of source-drain (diode forward) voltage; typical values.

7. Package outline

Plastic single-ended surface-mounted package (LFPAK); 4 leads **SOT669** С c₂ → E_1 mounting b₄ base D_1 D **→** w M A 1/2 e (A_3) detail X scale **DIMENSIONS (mm are the original dimensions)** D₁⁽¹⁾ A₂ b₃ $D^{(1)}$ E⁽¹⁾ E₁⁽¹⁾ L_2 UNIT Α b b_2 b_4 θ Α₁ A_3 С c_2 L_1 1.20 0.15 1.10 0.50 4.41 0.9 0.25 0.30 4.10 0.85 0.25 0.35 3.62 0.19 0.24

NOTE

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DA	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	135UE DATE	
SOT669		MO-235		$ \ \ \bigoplus \big($	04-10-13 06-03-16	

Fig 17. Package outline SOT669 (LFPAK)

BUK9Y27-40B

All information provided in this document is subject to legal disclaimers.

Revision history

Table 7. **Revision history**

Document ID	Release date	Data sheet status	Change notice	Supersedes
BUK9Y27-40B_4	20100407	Product data sheet	-	BUK9Y27-40B_3
Modifications:	 Status chair 	nged from objective to pro	oduct.	
BUK9Y27-40B_3	20100216	Objective data sheet	-	BUK9Y27-40B_2

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL https://www.nexperia.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the Nexperia product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. Nexperia does not accept any liability in this respect.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BUK9Y27-40B

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

BUK9Y27-40B

Nexperia

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile
1.1	General description
1.2	Features and benefits1
1.3	Applications
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics5
6	Characteristics6
7	Package outline
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks13
10	Contact information 13