Hyperfast Diode

50 A, 600 V

RHRG5060

Description

The RHRG5060 is a hyperfast diode with soft recovery characteristics. It has the half recovery time of ultrafast diodes and is silicon nitride passivated ionimplanted epitaxial planar construction. These devices are intended to be used as freewheeling/ clamping diodes and diodes in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

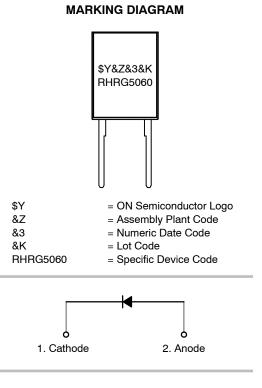
Features

- Hyperfast Recovery ($t_{rr} = 50 \text{ ns} (@ I_F = 50 \text{ A})$)
- Max Forward Voltage($V_F = 2.1 \text{ V}$ (@ $T_C = 25 \text{ °C}$)
- 600 V Reverse Voltage and High Reliability
- Avalanche Energy Rated
- This Device is Pb-Free and is RoHS Compliant

Applications

- Switching Power Supplies
- Power Switching Circuits
- General Purpose

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)


Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}	600	V
Working Peak Reverse Voltage	V _{RWM}	600	V
DC Blocking Voltage	V _R	600	V
Average Rectified Forward Current (T _C = 93 $^{\circ}$ C)	I _{F(AV)}	50	A
Repetitive Peak Surge Current (Square Wave, 20 kHz)	I _{FRM}	100	A
Nonrepetitive Peak Surge Current (Halfwave 1 Phase, 60 Hz)	I _{FSM}	500	A
Maximum Power Dissipation	PD	150	W
Avalanche Energy (See Figure 10 and Figure 11)	E _{AVL}	40	mJ
Operating and Storage Temperature	T _{STG,} T _J	–65 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

CATHODE ANODE

JEDEC STYLE TO-247 340CL

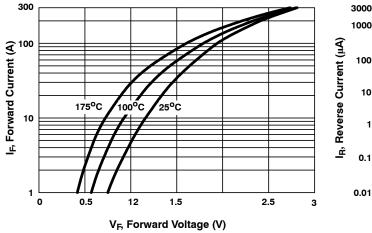
ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

RHRG5060

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Package	Brand
RHRG5060	TO-247-2L	RHRG5060


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
V _F	Instantaneous Forward Voltage (Pulse Width = 300 μs, Duty Cycle = 2%)	I _F = 50 A			2.1	V
		I _F = 50 A, T _C = 150°C			1.7	V
I _R Ins	Instantaneous Reverse Current	V _R = 600 V			250	μA
		V _R = 600 V T _C = 150°C			1.5	mA
t _{rr}	$t_{rr} \qquad Reverse Recovery Time (See Figure 9) \\ Summation of t_a + t_b$	I _F = 1 A, dI _F /dt = 100 A/μs			45	ns
		I _F = 50 A, dI _F /dt = 100 A/μs			50	ns
t _a	Time to Reach Peak Reverse Current (See Figure 9)	I _F = 50 A, dI _F /dt = 100 A/μs		25		ns
t _b	Time from Peak I_{RM} to Projected Zero Crossing of I_{RM} Based on a Straight Line from Peak I_{RM} Through 25% of I_{RM} (See Figure 9)	I _F = 50 A, dI _F /dt = 100 A/μs		20		ns
Q _{rr}	Reverse Recovery Charge	I _F = 50 A, dI _F /dt = 100 A/μs		65		nC
CJ	Junction Capacitance	V _R = 10 V, I _F = 0 A		140		pF
$R_{\theta JC}$	Thermal Resistance Junction to Case				1.0	°C/W

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

RHRG5060

TYPICAL PERFORMANCE CURVES

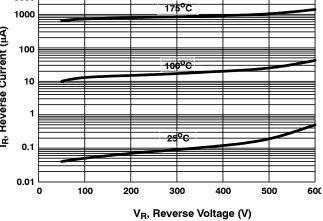


Figure 1. Forward Current vs. Forward Voltage

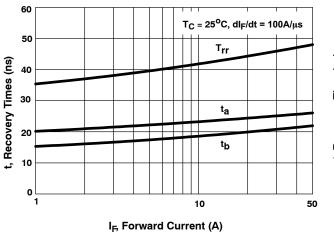
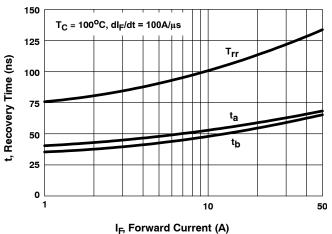
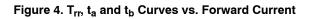
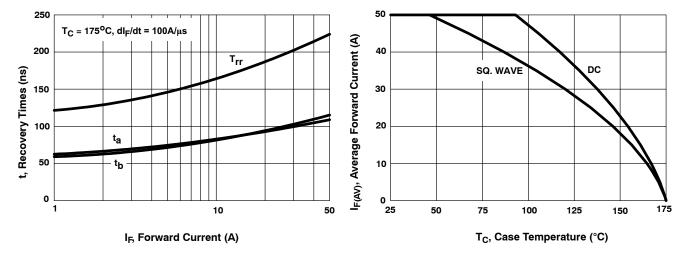





Figure 3. T_{rr}, t_a and t_b Curves vs. Forward Current

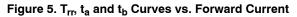
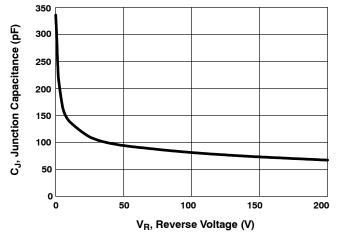



Figure 6. Current Derating Curve

RHRG5060

TYPICAL PERFORMANCE CURVES (continued)

TEST CIRCUITS AND WAVEFORMS

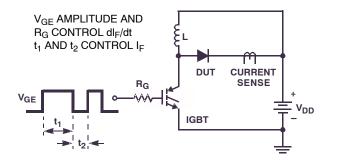


Figure 8. T_{rr} Test Circuit

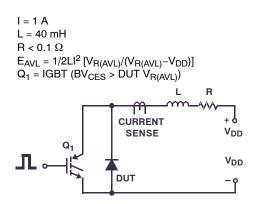


Figure 10. Avalanche Energy Test Circuit

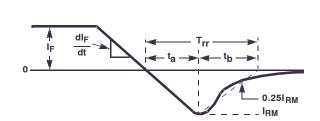


Figure 9. T_{rr} Waveforms and Definitions

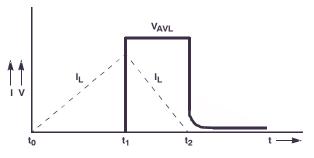


Figure 11. Avalanche Current and Voltage Waveforms

1

MILLIMETERS

NOM

4.70

2.40

1.50

1.26

1.65

0.61

20.57

16.57

0.93

15.62

~

5.08

11.12

16.00

3.81

3.58

6.73

5.46

5.46

MAX

4.82

2.66

1.70

1.35

1.77

0.71

20.82

16.77

1.35

15.87

~

5.20

~

16.25

3.93

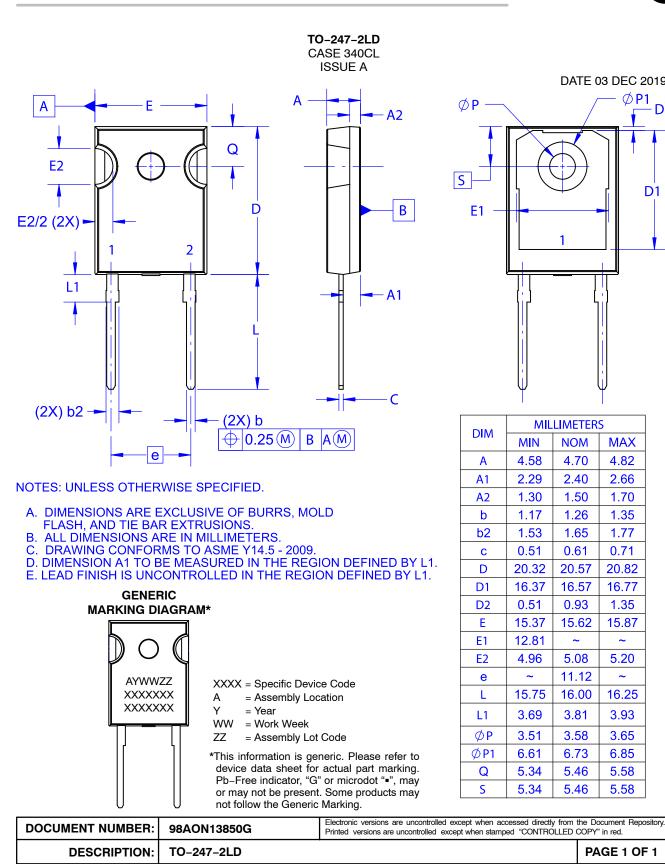
3.65

6.85

5.58

5.58

PAGE 1 OF 1


DATE 03 DEC 2019

ØP1

D2

D1

ON Semiconductor and 🔘 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales