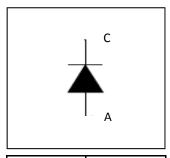


 V_{RRM} = 1200V

 $I_{F \text{ (Nominal)}} = 40A$


 $T_{J \text{ (max)}} = 150^{\circ}\text{C}$

 $V_F typ = 2.3V$

Applications

- Industrial Motor Drive
- Uninterruptible Power Supply
- Welding
- Solar Inverter

Ultra Fast-Soft Recovery Diode

С	Α			
Cathode	Anode			

Features —	→ Benefits
Low V _F	High efficiency in a wide range of applications
Ultra Fast-Soft Recovery	Performance optimized for IGBT anti parallel diode

Chip Type	V_{RRM}	I _{F(Nominal)}	Die Size	Package Type	
IRD3CH24DB6	1200V	40A	4.293 x 5.588mm ²	Wafer	

Mechanical Parameters

Die Size	4.293 x 5.588					
Anode Pad Size	2.844 x 4.135	mm ²				
Area Total / Active	24.0/14.1					
Thickness	330	μm				
Wafer Size	150	mm				
Minimum Street Width	100	μm				
Flat Position	0	Degree				
Maximum-Possible Chips per Wafer	611pcs					
Passivation Frontside	Silicon Nitride					
Front Metal-Anode Pad	Al-1%Si (3μm)	Al-1%Si (3μm)				
Backside Metal	Cr /Ni /Ag	Cr /Ni /Ag				
Die Bond	Electrically conductive epoxy or	Electrically conductive epoxy or solder				
Reject Ink Dot Size	0.25mm min (black, center	0.25mm min (black, center)				
Recommended Storage Environment	Store in original container, in dry I	Store in original container, in dry Nitrogen,				
	<6 months at an ambient temperatu	re of 23°C				

www.irf.com © 2013 International Rectifier July 15, 2013

Maximum Ratings

	Parameter	Max.	Units
V_{RRM}	Reverse Voltage	1200	V
T_{J}, T_{STG}	Operating Junction and Storage Temperature	-40 to +150	°C

Static Characteristics (Tested on wafers) . T_J=25°C

	Parameter	Min.	Тур.	Max.	Units	Conditions
V_{RRM}	Maximum Reverse Breakdown Voltage	1200			\/	$I_{RRM} = 150 \mu A, T_J = 25 ^{\circ} C$
V_{FM}	Maximum Forward Voltage			1.85	V	$T_J = 25^{\circ}C, I_F = 10A,$
I_{RM}	Maximum Reverse Leakage Current			10	μΑ	$T_J = 25^{\circ}C, V_{RRM} = 1200V$

Electrical Characteristics (Not subject to production test)

	Parameter	Min.	Тур.	Max.	Units	TJ	Conditions
	Forward Voltage		2.3	2.7	V	25°C	$I_F = 40A$, $T_J = 25^{\circ}C$
V_{F}			2.5		V	150°C	I _F = 40A , T _J = 150°C
I _R	Leakage Current		1.9		μΑ	25°C	V _R = 1200V, T _J = 25°C
			1.0		mA	150°C	V _R = 1200V, T _J = 150°C

Switching Characteristics (Inductive Load-Not subject to production test)

	Parameter	Min.	Тур.	Max.	Units	ΤJ	Conditions
4	Doverse Decevery Time		250	_		25°C	
t _{rr}	Reverse Recovery Time		255	_	ns	150°C	
0	Poverse Pesevery Charge	_	3.6	_		25°C	
Q_{rr}	Reverse Recovery Charge	_	6.2	_	μC	150°C	
	Peak Reverse Recovery Current		,	25°C	$I_F = 40A$, di/dt=400A/ μ s,		
Itt	Feak Reverse Recovery Current		38	_	A	A 150°C	
_	Dayoraa Dagayary Engray	_	2.2	_	- m I	25°C	
Err	Reverse Recovery Energy		3.7	_	mJ	150°C	
	Softness (t. /t.)		2.2	_		25°C	
S	Softness (t _b /t _a)	_	1.2	_		150°C	

www.irf.com © 2013 International Rectifier July 15, 2013

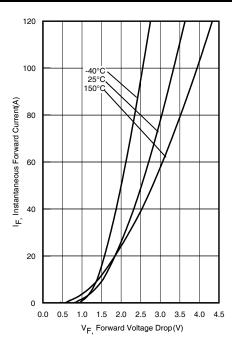


Fig 1. Typical Forward Charateristic

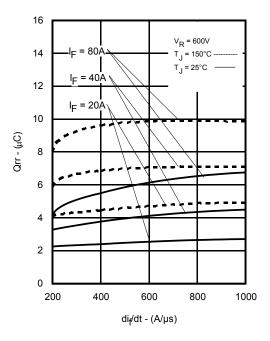


Fig 3. Typical Q_{rr} vs. di/dt

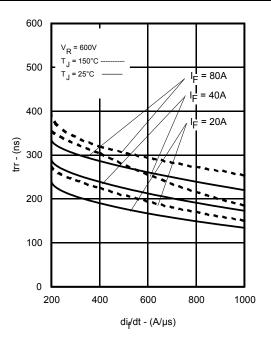


Fig 2. Typical t_{rr} vs. di/dt

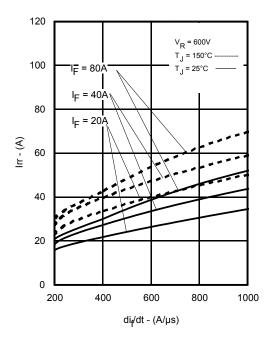


Fig 4. Typical I_{rr} vs. di/dt

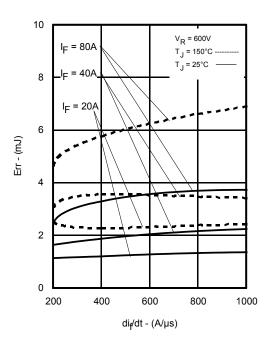


Fig 5. Typical Err vs. di/dt

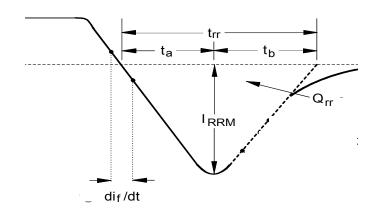
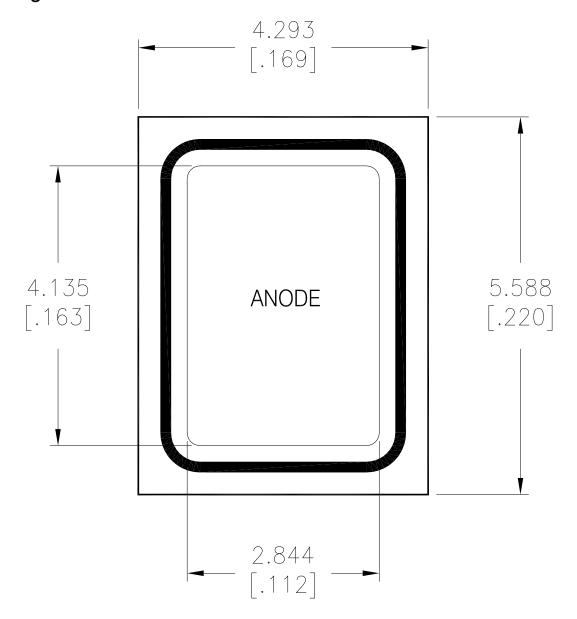



Fig 6. Reverse Recovery Waveform

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIE WIDTH AND LENGTH TOLERANCE: + 0/ -0.0508 [+ 0/ -.002]
- 4. DIE THICKNESS = 0.330 [.013]

REFERENCE: IRD3CH24DB6

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales.

Shipping

Three shipping options are offered.

- Un-sawn wafer
- Die in waffle pack (consult the IR Die Sales team for availability)
- Die on film (consult the IR Die Sales team for availability)

Tape and Reel is also available for some products. Please consult your local IR sales office or email http://die.irf.com for additional information.

Please specify your required shipping option when requesting prices and ordering Die product. If not specified, Un-sawn wafer will be assumed.

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Un-sawn wafers and singulated die can be stored for up to 12 months when in the original sealed packaging at room temperature (45% +/- 15% RH controlled environment).
- Un-sawn wafers and singulated die that have been opened can be stored when returned to their containers and placed in a Nitrogen purged cabinet, at room temperature (45% +/- 15% RH controlled environment).
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the
 assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.
- Die in Surf Tape type carrier tape are intended for immediate use and have a limited shelf life. This is primarily due to the nature of the adhesive tape used to hold the product in the carrier tape cavity. This product can be stored for up to 30 days. This applies whether or not the material has remained in its original sealed container.

Further Information

For further information please contact your local IR Sales office or email your enquiry to

http://die.irf.com

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

www.irf.com © 2013 International Rectifier July 15, 2013