

# 256-Kbit (32 K × 8) Static RAM

#### **Features**

■ Temperature ranges

☐ Commercial: 0 °C to +70 °C ☐ Industrial: -40 °C to +85 °C ☐ Automotive-A: -40 °C to +85 °C ☐ Automotive-E: -40 °C to +125 °C

■ High speed: 55 ns

■ Voltage range: 4.5 V to 5.5 V operation

■ Low active power □ 275 mW (max)

■ Low standby power (LL version)

□ 82.5 µW (max)

■ Easy memory expansion with CE and OE Features

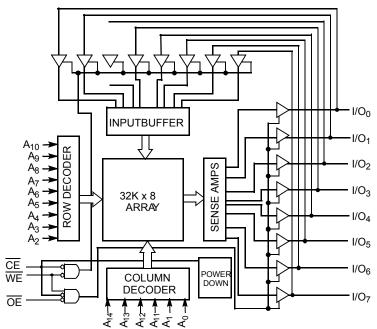
■ TTL-compatible inputs and outputs

■ Automatic power-down when deselected

■ CMOS for optimum speed and power

■ Available in Pb-free and non Pb-free 28-pin (600-mil) PDIP, 28-pin (300-mil) narrow SOIC, 28-pin TSOP I, and 28-pin reverse TSOP I packages

### **Functional Description**


The CY62256N is a high performance CMOS static RAM organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and active LOW output enable (OE) and tristate drivers. This device has an automatic power-down feature, reducing the power consumption by 99.9 percent when deselected.

An active LOW write enable signal ( $\overline{\text{WE}}$ ) controls the writing/reading operation of the memory. When  $\overline{\text{CE}}$  and  $\overline{\text{WE}}$  inputs are both LOW, data on the eight data input/output pins (I/O<sub>0</sub> through I/O<sub>7</sub>) is written into the memory location addressed by the address present on the address pins (A<sub>0</sub> through A<sub>14</sub>). Reading the device is accomplished by selecting the device and enabling the outputs,  $\overline{\text{CE}}$  and  $\overline{\text{OE}}$  active LOW, while  $\overline{\text{WE}}$  remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

For a complete list of related documentation, click here.

### **Logic Block Diagram**





### **Contents**

| Product Portfolio3                  | Truth Table                             | 11 |
|-------------------------------------|-----------------------------------------|----|
| Pin Configurations3                 | Ordering Information                    | 12 |
| Pin Definitions3                    | Ordering Code Definitions               | 12 |
| Maximum Ratings4                    | Package Diagrams                        | 13 |
| Operating Range4                    | Acronyms                                | 15 |
| Electrical Characteristics4         |                                         |    |
| Capacitance5                        | Units of Measure                        | 15 |
| Thermal Resistance5                 | Document History Page                   | 16 |
| AC Test Loads and Waveforms5        | Sales, Solutions, and Legal Information | 17 |
| Data Retention Characteristics6     | Worldwide Sales and Design Support      | 17 |
| Data Retention Waveform6            | Products                                | 17 |
| Switching Characteristics7          | PSoC® Solutions                         | 17 |
| Switching Waveforms8                | Cypress Developer Community             | 17 |
| Typical DC and AC Characteristics10 | Technical Support                       | 17 |

| Truth Table                             | 11 |
|-----------------------------------------|----|
| Ordering Information                    | 12 |
| Ordering Code Definitions               | 12 |
| Package Diagrams                        |    |
| Acronyms                                | 15 |
| Document Conventions                    |    |
| Units of Measure                        | 15 |
| Document History Page                   | 16 |
| Sales, Solutions, and Legal Information | 17 |
| Worldwide Sales and Design Support      | 17 |
| Products                                | 17 |
| PSoC® Solutions                         | 17 |
| Cypress Developer Community             | 17 |
| Technical Support                       | 17 |



### **Product Portfolio**

|            | V Pango (V)  |                           |                           | Power Dissipation |            |                                 |     |                                |     |
|------------|--------------|---------------------------|---------------------------|-------------------|------------|---------------------------------|-----|--------------------------------|-----|
| Product    |              | V <sub>CC</sub> Range (V) |                           |                   | Speed (ns) | Operating, I <sub>CC</sub> (mA) |     | Standby, I <sub>SB2</sub> (μA) |     |
|            |              | Min                       | <b>Typ</b> <sup>[1]</sup> | Max               |            | <b>Typ</b> <sup>[1]</sup>       | Max | <b>Typ</b> <sup>[1]</sup>      | Max |
| CY62256NLL | Commercial   | 4.5                       | 5.0                       | 5.5               | 70         | 25                              | 50  | 0.1                            | 5   |
| CY62256NLL | Industrial   |                           |                           |                   | 55/70      | 25                              | 50  | 0.1                            | 10  |
| CY62256NLL | Automotive-A |                           |                           |                   | 55/70      | 25                              | 50  | 0.1                            | 10  |
| CY62256NLL | Automotive-E |                           |                           |                   | 55         | 25                              | 50  | 0.1                            | 15  |

### **Pin Configurations**

Figure 1. 28-pin DIP and Narrow SOIC pinout

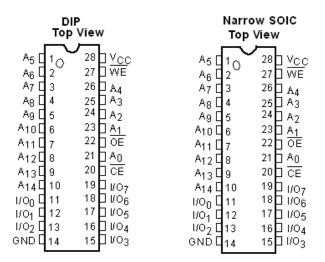
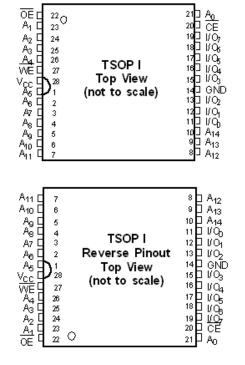




Figure 2. 28-pin TSOP I and Reverse TSOP I pinout



### **Pin Definitions**

| Pin Number      | Type          | Description                                                                                                                                                                           |
|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1–10, 21, 23–26 | Input         | A <sub>0</sub> -A <sub>14</sub> . Address Inputs                                                                                                                                      |
| 11–13, 15–19,   | Input/Output  | I/O <sub>0</sub> -I/O <sub>7</sub> . Data lines. Used as input or output lines depending on operation                                                                                 |
| 27              | Input/Control | WE. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted                                                                                                  |
| 20              | Input/Control | CE. When LOW, selects the chip. When HIGH, deselects the chip                                                                                                                         |
| 22              | Input/Control | <b>OE</b> . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are tristated, and act as input data pins |
| 14              | Ground        | GND. Ground for the device                                                                                                                                                            |
| 28              | Power Supply  | V <sub>CC</sub> . Power supply for the device                                                                                                                                         |

#### Note

Document Number: 001-06511 Rev. \*J

Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T<sub>A</sub> = 25 °C, V<sub>CC</sub>). Parameters are guaranteed by design and characterization, and not 100% tested.



### **Maximum Ratings**

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage temperature ......-65 °C to +150 °C Ambient temperature with Supply voltage to ground potential (pin 28 to pin 14)  $^{[2]}$  .....-0.5 V to +7.0 V DC voltage applied to outputs DC input voltage  $^{[2]}$  ......-0.5 V to  $V_{CC}$  + 0.5 V

| Output current into outputs (LOW                        | )20 mA   |
|---------------------------------------------------------|----------|
| Static discharge voltage (per MIL-STD-883, method 3015) | > 2001 V |
| Latch-up current                                        |          |
| -a.c ap ca                                              |          |

### **Operating Range**

| Range        | Ambient Temperature (T <sub>A</sub> ) [3] | V <sub>cc</sub> |
|--------------|-------------------------------------------|-----------------|
| Commercial   | 0 °C to +70 °C                            | 5 V ± 10%       |
| Industrial   | –40 °C to +85 °C                          | 5 V ± 10%       |
| Automotive-A | –40 °C to +85 °C                          | 5 V ± 10%       |
| Automotive-E | –40 °C to +125 °C                         | 5 V ± 10%       |

### **Electrical Characteristics**

Over the Operating Range

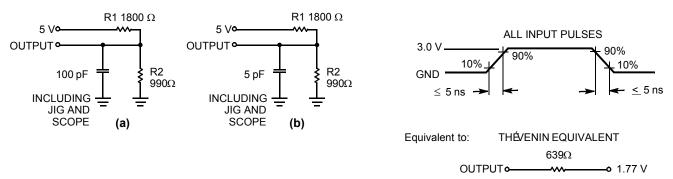
| Davamatav        | Decemention                  | Test Conditions                                                                                 |                   | -55  |         |                       | -70  |         |                       | 11:::4 |
|------------------|------------------------------|-------------------------------------------------------------------------------------------------|-------------------|------|---------|-----------------------|------|---------|-----------------------|--------|
| Parameter        | Description                  |                                                                                                 |                   | Min  | Typ [4] | Max                   | Min  | Typ [4] | Max                   | Unit   |
| V <sub>OH</sub>  | Output HIGH voltage          | $V_{CC}$ = Min, $I_{OH}$ = $-1$ .                                                               | 0 mA              | 2.4  | -       | _                     | 2.4  | _       | -                     | V      |
| V <sub>OL</sub>  | Output LOW voltage           | $V_{CC}$ = Min, $I_{OL}$ = 2.1                                                                  | mA                | _    | -       | 0.4                   | -    | -       | 0.4                   | V      |
| V <sub>IH</sub>  | Input HIGH voltage           |                                                                                                 |                   | 2.2  | -       | V <sub>CC</sub> + 0.5 | 2.2  | -       | V <sub>CC</sub> + 0.5 | V      |
| V <sub>IL</sub>  | Input LOW voltage            |                                                                                                 |                   | -0.5 | -       | 0.8                   | -0.5 | -       | 0.8                   | V      |
| I <sub>IX</sub>  | Input leakage current        | $GND \leq V_I \leq V_CC$                                                                        |                   | -0.5 | -       | +0.5                  | -0.5 | -       | +0.5                  | μА     |
| I <sub>OZ</sub>  | Output leakage current       | $GND \le V_O \le V_{CC}, output disabled$                                                       |                   | -0.5 | -       | +0.5                  | -0.5 | -       | +0.5                  | μА     |
| I <sub>CC</sub>  | V <sub>CC</sub> operating    | V <sub>CC</sub> = Max,                                                                          | LL - Commercial   | _    | -       | _                     | -    | 25      | 50                    | mA     |
|                  | supply current               | $I_{OUT} = 0 \text{ mA},$<br>$f = f_{MAX} = 1/t_{RC}$                                           | LL - Industrial   | _    | 25      | 50                    | _    | 25      | 50                    | mA     |
|                  |                              | I WAX TRO                                                                                       | LL - Automotive-A | _    | 25      | 50                    | _    | 25      | 50                    | mA     |
|                  |                              |                                                                                                 | LL - Automotive-E | -    | 25      | 50                    | -    | -       | -                     | mA     |
| I <sub>SB1</sub> | Automatic CE                 | Max. $V_{CC}$ , $\overline{CE} \ge V_{IH}$ ,                                                    | LL - Commercial   | -    | -       | -                     | -    | 0.3     | 0.5                   | mA     |
|                  | power-down<br>current – TTL  | $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$ ,<br>$f = f_{MAX}$                                   | LL - Industrial   | -    | 0.3     | 0.5                   | -    | 0.3     | 0.5                   | mA     |
|                  | inputs                       | IVIAX                                                                                           | LL - Automotive-A | _    | 0.3     | 0.5                   | _    | 0.3     | 0.5                   | mA     |
|                  |                              |                                                                                                 | LL - Automotive-E | -    | 0.3     | 0.5                   | -    | -       | -                     | mA     |
| I <sub>SB2</sub> | Automatic CE                 | Max. V <sub>CC</sub> ,                                                                          | LL - Commercial   | -    | -       | _                     | -    | 0.1     | 5                     | μΑ     |
|                  | power-down<br>current – CMOS | $\overline{CE} \ge V_{CC} - 0.3 \text{ V},$<br>$V_{IN} \ge V_{CC} - 0.3 \text{ V}, \text{ or }$ | LL - Industrial   | -    | 0.1     | 10                    | I    | 0.1     | 10                    | μА     |
|                  | inputs                       | $V_{IN} \le 0.3 \text{ V, f} = 0$                                                               | LL - Automotive-A | -    | 0.1     | 10                    | I    | 0.1     | 10                    | μА     |
|                  |                              |                                                                                                 | LL - Automotive-E | _    | 0.1     | 15                    | -    | -       | _                     | μΑ     |

- V<sub>IL</sub> (min) = -2.0 V for pulse durations of less than 20 ns.
   T<sub>A</sub> is the "Instant-On" case temperature.
   Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T<sub>A</sub> = 25 °C, V<sub>CC</sub>). Parameters are guaranteed by design and characterization, and not 100% tested.

Document Number: 001-06511 Rev. \*J



# Capacitance


| Parameter [5]    | Description        | Test Conditions                                                         | Max | Unit |
|------------------|--------------------|-------------------------------------------------------------------------|-----|------|
| C <sub>IN</sub>  | Input capacitance  | $T_A = 25  ^{\circ}\text{C}, f = 1  \text{MHz}, V_{CC} = 5.0  \text{V}$ | 6   | pF   |
| C <sub>OUT</sub> | Output capacitance |                                                                         | 8   | pF   |

### **Thermal Resistance**

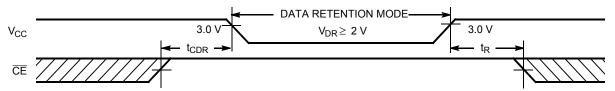
|            | Parameter [5] | Description           | Test Conditions                             | DIP   | SOIC  | TSOP  | RTSOP | Unit |
|------------|---------------|-----------------------|---------------------------------------------|-------|-------|-------|-------|------|
| $\epsilon$ |               | (junction to ambient) | Still air, soldered on a 4.25 × 1.125 inch, | 75.61 | 76.56 | 93.89 | 93.89 | °C/W |
| $\epsilon$ | 00            | i i nermai registance | 4-layer printed circuit board               | 43.12 | 36.07 | 24.64 | 24.64 | °C/W |

### **AC Test Loads and Waveforms**

Figure 3. AC Test Loads and Waveforms



Note5. Tested initially and after any design or process changes that may affect these parameters.




### **Data Retention Characteristics**

| Parameter                       | Description              |                                  | Conditions <sup>[6]</sup>                                                 | Min | <b>Typ</b> [7] | Max | Unit |
|---------------------------------|--------------------------|----------------------------------|---------------------------------------------------------------------------|-----|----------------|-----|------|
| $V_{DR}$                        | V <sub>CC</sub> for data | retention                        |                                                                           | 2.0 | _              | _   | V    |
| I <sub>CCDR</sub>               | Data                     | LL – Commercial                  | $V_{CC}$ = 2.0 V, $\overline{CE} \ge V_{CC} - 0.3$ V,                     | _   | 0.1            | 5   | μА   |
|                                 | retention<br>current     | LL – Industrial/<br>Automotive-A | $V_{IN} \ge V_{CC} - 0.3 \text{ V}, \text{ or } V_{IN} \le 0.3 \text{ V}$ | _   | 0.1            | 10  | μА   |
|                                 |                          | LL – Automotive-E                |                                                                           | _   | 0.1            | 10  | μА   |
| t <sub>CDR</sub> <sup>[7]</sup> | Chip deseled time        | ct to data retention             |                                                                           | 0   | _              | _   | ns   |
| t <sub>R</sub> <sup>[7]</sup>   | Operation re             | covery time                      | CY62256NLL-55                                                             | 55  | _              | -   | ns   |
|                                 |                          |                                  | CY62256NLL-70                                                             | 70  | _              | _   | 1    |

### **Data Retention Waveform**

Figure 4. Data Retention Waveform



 <sup>6.</sup> No input may exceed V<sub>CC</sub> + 0.5 V.
 7. Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions (T<sub>A</sub> = 25 °C, V<sub>CC</sub>). Parameters are guaranteed by design and characterization, and not 100% tested.

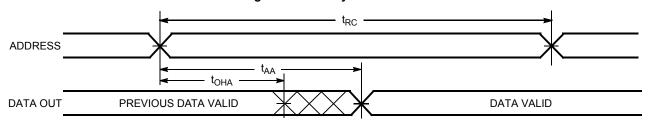


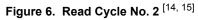
# **Switching Characteristics**

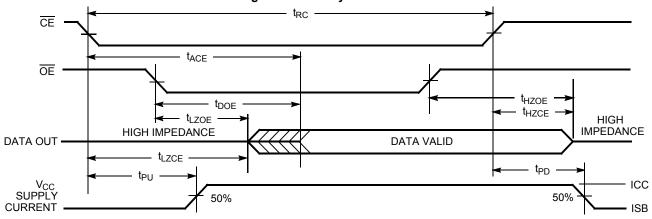
Over the Operating Range

| [8]               | B 1.41                        | CY622 | CY62256N-55 |     |     |      |
|-------------------|-------------------------------|-------|-------------|-----|-----|------|
| Parameter [8]     | neter [8] Description         |       | Max         | Min | Max | Unit |
| Read Cycle        |                               |       | •           | •   | 1   |      |
| t <sub>RC</sub>   | Read cycle time               | 55    | _           | 70  | _   | ns   |
| t <sub>AA</sub>   | Address to data valid         | _     | 55          | _   | 70  | ns   |
| t <sub>OHA</sub>  | Data hold from address change | 5     | _           | 5   | _   | ns   |
| t <sub>ACE</sub>  | CE LOW to data valid          | _     | 55          | _   | 70  | ns   |
| t <sub>DOE</sub>  | OE LOW to data valid          | _     | 25          | _   | 35  | ns   |
| t <sub>LZOE</sub> | OE LOW to low Z [9]           | 5     | _           | 5   | _   | ns   |
| t <sub>HZOE</sub> | OE HIGH to high Z [9, 10]     | _     | 20          | _   | 25  | ns   |
| t <sub>LZCE</sub> | CE LOW to low Z [9]           | 5     | -           | 5   | _   | ns   |
| t <sub>HZCE</sub> | CE HIGH to high Z [9, 10]     | _     | 20          | _   | 25  | ns   |
| t <sub>PU</sub>   | CE LOW to power-up            | 0     | _           | 0   | _   | ns   |
| t <sub>PD</sub>   | CE HIGH to power-down         | _     | 55          | _   | 70  | ns   |
| Write Cycle [11   | , 12]                         |       | •           | •   | -   | •    |
| t <sub>WC</sub>   | Write cycle time              | 55    | -           | 70  | _   | ns   |
| t <sub>SCE</sub>  | CE LOW to write end           | 45    | _           | 60  | _   | ns   |
| t <sub>AW</sub>   | Address setup to write end    | 45    | _           | 60  | _   | ns   |
| t <sub>HA</sub>   | Address hold from write end   | 0     | -           | 0   | _   | ns   |
| t <sub>SA</sub>   | Address setup to write start  | 0     | _           | 0   | _   | ns   |
| t <sub>PWE</sub>  | WE pulse width                | 40    | _           | 50  | _   | ns   |
| t <sub>SD</sub>   | Data setup to write end       | 25    | _           | 30  | _   | ns   |
| t <sub>HD</sub>   | Data hold from write end      | 0     | _           | 0   | _   | ns   |
| t <sub>HZWE</sub> | WE LOW to high Z [9, 10]      | _     | 20          | _   | 25  | ns   |
| t <sub>LZWE</sub> | WE HIGH to low Z [9]          | 5     | _           | 5   | _   | ns   |

### Notes


<sup>8.</sup> Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> and 100-pF load capacitance.


At any temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, t<sub>HZOE</sub> is less than t<sub>LZCE</sub>, and t<sub>HZWE</sub> is less than t<sub>LZWE</sub> for any device.
 t<sub>HZOE</sub>, t<sub>HZCE</sub>, and t<sub>HZWE</sub> are specified with C<sub>L</sub> = 5 pF as in (b) of <u>AC</u> Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal Write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a Write and either signal can terminate a Write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the Write.
 The minimum write cycle time for Write Cycle No. 3 (WE Controlled, OE LOW) is the sum of tHzwE and tsD.




# **Switching Waveforms**

Figure 5. Read Cycle No. 1 [13, 14]







<sup>13. &</sup>lt;u>Device</u> is continuously selected. <del>OE</del>, <del>CE</del> = V<sub>IL</sub>.

14. <del>WE</del> is HIGH for Read cycle.

15. Address valid prior to or coincident with <del>CE</del> transition LOW.



### Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 (WE Controlled) [16, 17, 18]

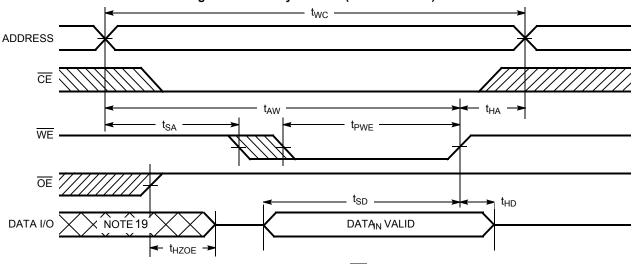



Figure 8. Write Cycle No. 2 (CE Controlled) [16, 17, 18]

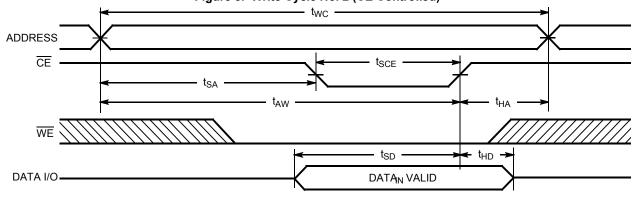
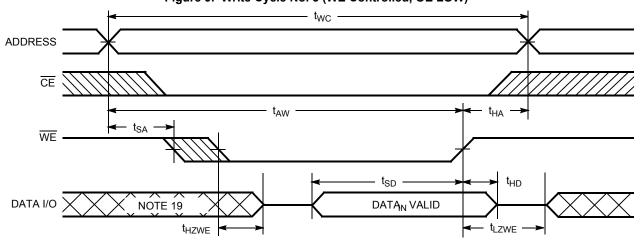
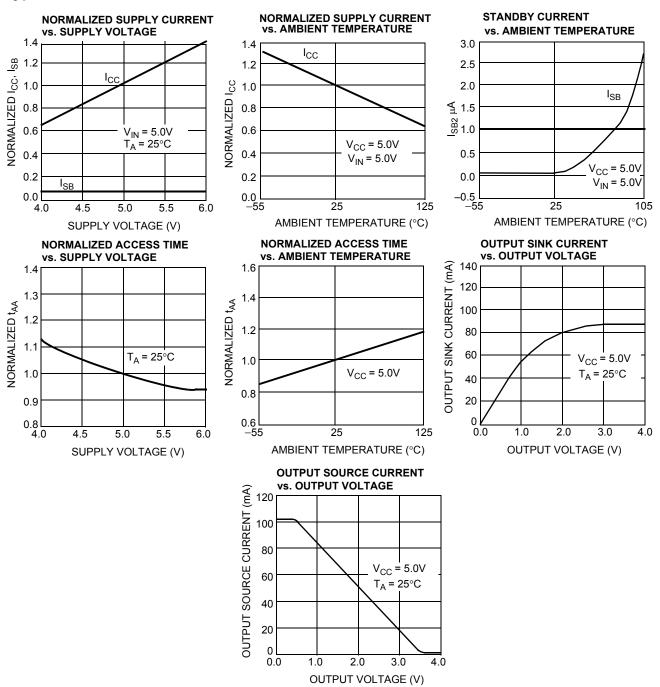



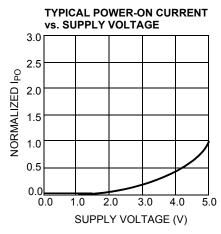

Figure 9. Write Cycle No. 3 (WE Controlled, OE LOW) [18, 20]

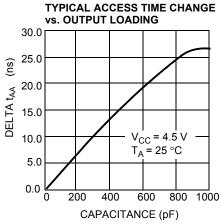


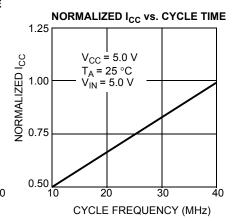

#### Notes

- 16. The internal Write time of the memory is defined by the overlap of  $\overline{\text{CE}}$  LOW and  $\overline{\text{WE}}$  LOW. Both signals must be LOW to initiate a Write and either signal can terminate a Write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the Write.
- 17. Data I/O is high impedance if  $\overline{OE} = V_{IH}$ .

  18. If  $\overline{CE}$  goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
- 19. During this period, the I/Os are in output state and input signals should not be applied.
- 20. The minimum write cycle pulse width should be equal to the sum of tsD and tHZWE.





## **Typical DC and AC Characteristics**





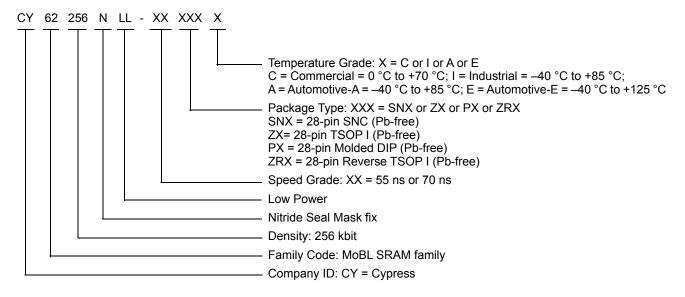

# **Typical DC and AC Characteristics** (continued)







### **Truth Table**


| CE | WE | OE | Inputs/Outputs | Mode                | Power                      |
|----|----|----|----------------|---------------------|----------------------------|
| Н  | Х  | X  | High Z         | Deselect/power-down | Standby (I <sub>SB</sub> ) |
| L  | Н  | L  | Data Out       | Read                | Active (I <sub>CC</sub> )  |
| L  | L  | Х  | Data In        | Write               | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | High Z         | Output Disabled     | Active (I <sub>CC</sub> )  |



## **Ordering Information**

| Speed (ns) | Ordering Code     | Package<br>Diagram | Package Type                                | Operating<br>Range |
|------------|-------------------|--------------------|---------------------------------------------|--------------------|
| 55         | CY62256NLL-55SNXI | 51-85092           | 28-pin SNC (300 Mils) Narrow Body (Pb-free) | Industrial         |
|            | CY62256NLL-55ZXI  | 51-85071           | 28-pin TSOP I (Pb-free)                     |                    |
|            | CY62256NLL-55ZXA  | 51-85071           | 28-pin TSOP I (Pb-free)                     | Automotive-A       |
|            | CY62256NLL-55SNXE | 51-85092           | 28-pin SNC (300 Mils) Narrow Body (Pb-free) | Automotive-E       |
|            | CY62256NLL-55ZXE  | 51-85071           | 28-pin TSOP I (Pb-free)                     |                    |
| 70         | CY62256NLL-70PXC  | 51-85017           | 28-pin (600 Mil) Molded DIP (Pb-free)       | Commercial         |
|            | CY62256NLL-70SNXC | 51-85092           | 28-pin SNC (300 Mils) Narrow Body (Pb-free) |                    |
|            | CY62256NLL-70ZRXI | 51-85074           | 28-pin Reverse TSOP I (Pb-free)             | Industrial         |
|            | CY62256NLL-70SNXA | 51-85092           | 28-pin SNC (300 Mils) Narrow Body (Pb-free) | Automotive-A       |

### **Ordering Code Definitions**





# **Package Diagrams**

### Figure 10. 28-pin PDIP (1.480 × 0.550 × 0.195 Inches) P28.6/PZ28.6 Package Outline, 51-85017

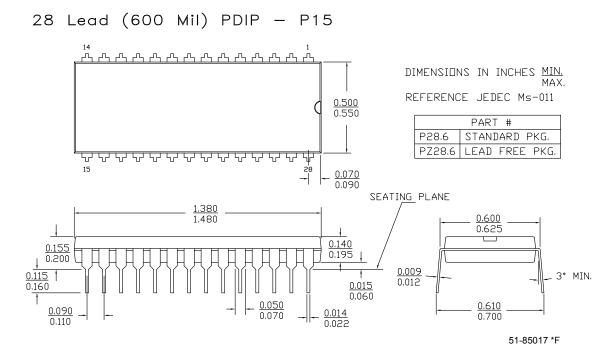
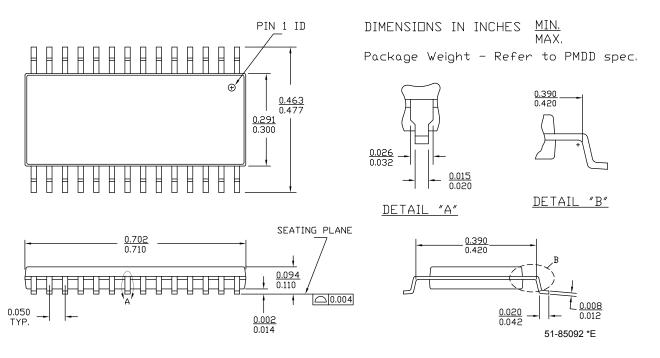




Figure 11. 28-pin SNC (300 Mils) SN28.3 (Narrow Body) Package Outline, 51-85092





### Package Diagrams (continued)

Figure 12. 28-pin TSOP I (8 × 13.4 × 1.2 mm) Z28 (Standard) Package Outline, 51-85071

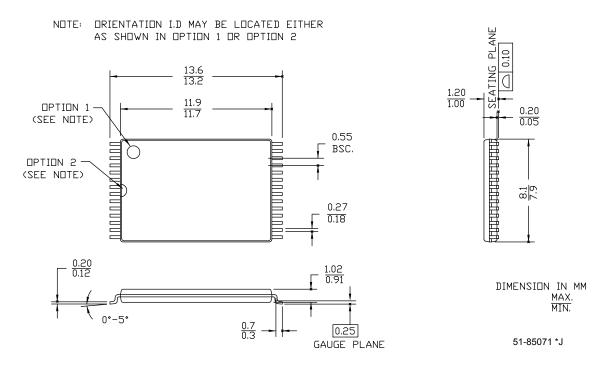
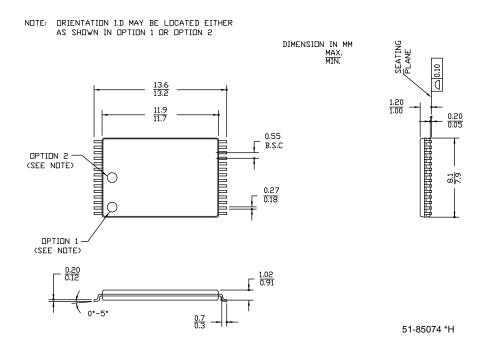




Figure 13. 28-pin TSOP I (8 × 13.4 mm) Package Outline - Reverse, 51-85074





# **Acronyms**

| Acronym | Description                             |  |  |
|---------|-----------------------------------------|--|--|
| CMOS    | Complementary Metal Oxide Semiconductor |  |  |
| I/O     | Input/Output                            |  |  |
| SRAM    | Static Random Access Memory             |  |  |
| TSOP    | Thin Small Outline Package              |  |  |
| VFBGA   | Very Fine-Pitch Ball Grid Array         |  |  |

## **Document Conventions**

### **Units of Measure**

| Symbol | Unit of Measure |  |  |
|--------|-----------------|--|--|
| °C     | degree Celsius  |  |  |
| μΑ     | microampere     |  |  |
| mA     | milliampere     |  |  |
| MHz    | megahertz       |  |  |
| ns     | nanosecond      |  |  |
| Ω      | ohm             |  |  |
| pF     | picofarad       |  |  |
| V      | volt            |  |  |
| W      | watt            |  |  |



# **Document History Page**

|          | Number: 0 | 01-00511           |                    |                                                                                                                                                                                                                                                                                                         |  |
|----------|-----------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Revision | ECN       | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                   |  |
| **       | 426504    | NXR                | See ECN            | New data sheet.                                                                                                                                                                                                                                                                                         |  |
| *A       | 488954    | NXR                | See ECN            | Added Automotive product Updated ordering Information table                                                                                                                                                                                                                                             |  |
| *B       | 2715270   | VKN / AESA         | 06/05/2009         | Updated POD of 28-Pin (600-Mil) Molded DIP package (Spec# 51-8501                                                                                                                                                                                                                                       |  |
| *C       | 2891344   | VKN                | 03/12/2010         | Added Table of Contents Removed "L" product information Updated Ordering Information table Updated Package Diagrams (Figure 10, Figure 11, and Figure 12) Updated Sales, Solutions, and Legal Information                                                                                               |  |
| *D       | 3119519   | AJU                | 01/04/2011         | Updated Ordering Information. Added Ordering Code Definitions.                                                                                                                                                                                                                                          |  |
| *E       | 3329873   | RAME               | 07/27/11           | Updated template and styles according to current Cypress standards. Added acronyms and units. Removed reference to AN1064 SRAM system guidelines. Updated operation recovery time parameter under Data Retention Characteristics on page 6.                                                             |  |
| *F       | 3433878   | TAVA               | 11/09/11           | Updated Package Diagrams.                                                                                                                                                                                                                                                                               |  |
| *G       | 4122787   | VINI               | 09/13/2013         | Updated Package Diagrams: spec 51-85092 – Changed revision from *D to *E. Updated in new template. Completing Sunset Review.                                                                                                                                                                            |  |
| *H       | 4525875   | VINI               | 10/06/2014         | Updated Maximum Ratings: Referred Note 2 in "Supply voltage to ground potential (pin 28 to pin 14) Updated Package Diagrams: spec 51-85071 – Changed revision from *I to *J. spec 51-85074 – Changed revision from *G to *H. Completing Sunset Review.                                                  |  |
| *        | 4576406   | VINI               | 01/16/2015         | Added related documentation hyperlink in page 1. Added Note 12 in Switching Characteristics. Added note reference 12 in the Switching Characteristics table. Added Note 20 in Switching Waveforms. Added note reference 20 in Figure 9. Updated Figure 10 in Package Diagrams (spec 51-85017 *E to *F). |  |
| *J       | 5718683   | AESATMP7           | 04/28/2017         | Updated Cypress Logo and Copyright.                                                                                                                                                                                                                                                                     |  |



### Sales, Solutions, and Legal Information

### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

#### **Products**

Automotive
Clocks & Buffers
Interface

Lighting & Power Control

Memory PSoC

Touch Sensing USB Controllers

Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

### PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP| PSoC 6

### **Cypress Developer Community**

Community | Forums | Blogs | Video | Training

### **Technical Support**

cypress.com/go/support

© Cypress Semiconductor Corporation, 2006-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and obes not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-06511 Rev. \*J Revised April 28, 2017 Page 17 of 17

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# Cypress Semiconductor:

 CY62256NLL-55SNXE
 CY62256NLL-55SNXET
 CY62256NLL-55ZXA
 CY62256NLL-55ZXAT
 CY62256NLL-55ZXAT
 CY62256NLL-55ZXAT
 CY62256NLL-55ZXAT
 CY62256NLL-55ZXAT
 CY62256NLL-55ZXAT
 CY62256NLL-55SNXIT
 CY62256NLL-55SNX