

# **DSA2311**

# Crystal-less<sup>TM</sup> Configurable Two-Output Clock Generator for Automotive

#### **Features**

- Automotive AEC-Q100 Qualified
- · Two Simultaneous CMOS Outputs
- Output 1 Range: 2.3 MHz to 170 MHz
- Output 2 Range: 2.3 MHz to 170 MHz
- Low RMS Phase Jitter: <1 ps (typ.)</li>
- High Stability: ±20 ppm, ±25 ppm, ±50 ppm
- · Wide Temperature Range:
  - Automotive Grade 1: -40°C to +125°C
  - Automotive Grade 2: -40°C to +105°C
  - Automotive Grade 3: -40°C to +85°C
- High Supply Noise Rejection: -50 dBc
- · High Shock and Vibration Immunity
  - Qualified to MIL-STD-883
- · High Reliability
  - 20x higher MTBF than crystal-based clock generator designs
- Supply Range of 2.25 to 3.63V
- · Lead-Free and RoHS Compliant

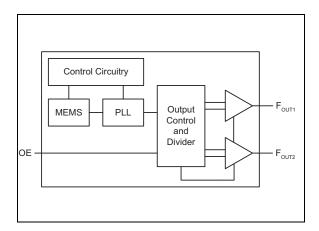
# **Applications**

- Automotive Infotainment
- Automotive ADAS
- · Automotive Camera Module
- · Automotive LIDAR and RADAR

#### **Benefits**

 Replace High Temperature Crystals and Quartz Oscillators

#### **General Description**


The DSA2311 is a crystal-less™ clock generator that is factory-configurable to simultaneously output two separate frequencies from 2.3 MHz to 170 MHz. The clock generator uses proven silicon MEMS technology to provide low jitter and high frequency stability across a wide range of supply voltages and temperatures. By eliminating the external quartz crystal, crystal-less clock generators significantly enhance reliability and accelerate product development, while meeting stringent clock performance criteria for a variety of consumer electronics, communications, and storage applications.

DSA2311 has an Output Enable/Disable feature that allows it to disable the outputs when OE is low. The device is available in a space-saving 6-pin 2.5 mm x 2.0 mm crystal-less VDFN package that uses only a single external bypass capacitor.

The two output frequencies can be customized by using Clockworks:

http://clockworks.microchip.com/timing

#### **Block Diagram**



#### 1.0 ELECTRICAL CHARACTERISTICS

## **Absolute Maximum Ratings †**

| Input Voltage, V <sub>IN</sub> | –0.3V to V <sub>DD</sub> +0.3V |
|--------------------------------|--------------------------------|
| Supply Voltage                 |                                |
| ESD Protection (HBM)           | 4 kV                           |
| ESD Protection (CDM)           | 1.5 kV                         |

**<sup>†</sup> Notice:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 1-1: ELECTRICAL CHARACTERISTICS

| Parameters                   | Sym.            | Min.                   | Тур. | Max.                   | Units             | Conditions                                                             |
|------------------------------|-----------------|------------------------|------|------------------------|-------------------|------------------------------------------------------------------------|
| Supply Voltage (Note 1)      | V <sub>DD</sub> | 2.25                   | _    | 3.6                    | ٧                 | _                                                                      |
| Supply Current (Note 2)      | I <sub>DD</sub> | _                      | 21   | 23                     | mA                | EN pin low. All outputs disabled.                                      |
|                              |                 | _                      | _    | ±20                    |                   | Includes frequency variations                                          |
| Frequency Stability (Note 3) | Δf              | _                      | _    | ±50                    | ppm               | due to initial tolerance,<br>temperature, and power supply<br>voltage. |
| Aging                        | Δf              | _                      | _    | ±5                     | ppm               | One year at +25°C                                                      |
| Start-up Time (Note 4)       | t <sub>SU</sub> | _                      | _    | 5                      | ms                | T = +25°C                                                              |
| Input Logic Levels           | $V_{IH}$        | 0.75 x V <sub>DD</sub> | _    |                        | <b>V</b>          | Input logic high                                                       |
| iliput Logic Levels          | $V_{IL}$        | _                      | _    | 0.25 x V <sub>DD</sub> | V                 | Input logic low                                                        |
| Output Disable Time          | t <sub>DA</sub> | _                      | _    | 5                      | ns                | _                                                                      |
| Output Enable Time           | t <sub>EN</sub> | _                      | _    | 20                     | ns                | _                                                                      |
| Pull-Up Resistor (Note 2)    | _               | _                      | 40   | _                      | kΩ                | Pull-up exists on all digital IO                                       |
| Output Logic Levels          | $V_{OH}$        | 0.9 x V <sub>DD</sub>  | _    | _                      | V                 | Output logic high, I = ±6 mA                                           |
| Output Logic Levels          | $V_{OL}$        | _                      | _    | 0.1 x V <sub>DD</sub>  | V                 | Output logic low, I = ±6 mA                                            |
| Output Transition Rise Time  | t <sub>R</sub>  | _                      | 1.1  | 2.0                    | no                | 20% to 80%; C <sub>L</sub> = 15 pF                                     |
| Output Transition Rise Time  | t <sub>F</sub>  | _                      | 1.4  | 2.0                    | ns                | 20% to 80%; C <sub>L</sub> = 15 pF                                     |
|                              |                 | 2.3                    | _    | 170                    |                   | Grade 3 temp. range                                                    |
| Frequency                    | $f_0$           | 3.3                    | _    | 100                    | MHz               | Grade 1 temp. range                                                    |
|                              |                 | 3.3                    | _    | 170                    |                   | Grade 2 temp. range                                                    |
| Output Duty Cycle            | SYM             | 45                     | _    | 55                     | %                 | _                                                                      |
| Period Jitter (Note 5)       | $J_{PER}$       | _                      | 3    |                        | ps <sub>RMS</sub> | F <sub>O1</sub> = F <sub>O2</sub> = 25 MHz                             |
|                              |                 | _                      | 0.3  | _                      |                   | 200 kHz to 20 MHz @ 25 MHz                                             |
| Integrated Phase Noise       | $J_{CC}$        | _                      | 0.38 |                        | ps <sub>RMS</sub> | 100 kHz to 20 MHz @ 25 MHz                                             |
|                              |                 | _                      | 1.7  | 2                      |                   | 12 kHz to 20 MHz @ 25 MHz                                              |

Note 1: Pin 4  $V_{DD}$  should be filtered with a 0.01  $\mu F$  capacitor.

- 2: Output is enabled if Enable pad is floated or not connected. Operating current = disabled current +  $\Delta I_{DD}$  from  $F_{OUT1}$  +  $\Delta I_{DD}$  from  $F_{OUT2}$ . See graph for more information.
- 3: For other ppm stabilities, please contact the factory.
- 4: t<sub>SU</sub> is time to 100 ppm stable output frequency after V<sub>DD</sub> is applied and outputs are enabled.
- 5: Period jitter includes crosstalk from adjacent output.

# **TEMPERATURE SPECIFICATIONS (Note 1)**

|                                 | 1              | 1    | 1    |      |       |                   |  |
|---------------------------------|----------------|------|------|------|-------|-------------------|--|
| Parameters                      | Sym.           | Min. | Тур. | Max. | Units | Conditions        |  |
| Temperature Ranges              |                |      |      |      |       |                   |  |
|                                 | T <sub>A</sub> | -40  | _    | +85  | °C    | Ordering Option I |  |
| Operating Temperature Range (T) | T <sub>A</sub> | -40  | _    | +105 | °C    | Ordering Option L |  |
|                                 | T <sub>A</sub> | -40  | _    | +125 | °C    | Ordering Option A |  |
| Junction Operating Temperature  | TJ             | _    | _    | +150 | °C    | _                 |  |
| Storage Temperature Range       | T <sub>A</sub> | -40  |      | +150 | °C    | _                 |  |
| Soldering Temperature Range     | T <sub>S</sub> | _    |      | +260 | °C    | 40 sec. max.      |  |

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T<sub>A</sub>, T<sub>J</sub>, θ<sub>JA</sub>). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.

# 2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

| Pin Number | Pin Name | Description                           |  |
|------------|----------|---------------------------------------|--|
| 1          | ENABLE   | Output Enable for both CLK0 and CLK1. |  |
| 2          | N/C      | Do not connect.                       |  |
| 3          | GROUND   | Ground.                               |  |
| 4          | CLK0     | Clock Output 0 (CMOS).                |  |
| 5          | CLK1     | Clock Output 1 (CMOS).                |  |
| 6          | VDD      | Supply Voltage.                       |  |

# 3.0 OUTPUT WAVEFORM

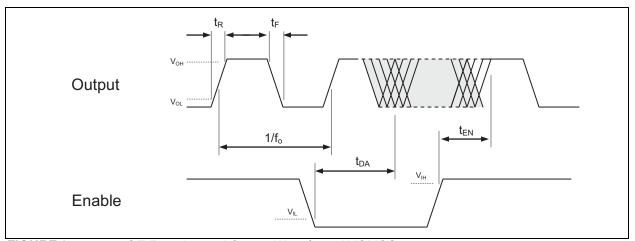
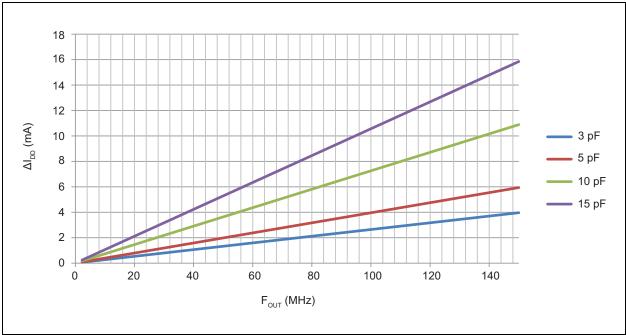




FIGURE 3-1: OE Function and Output Waveform: LVCMOS.

# 4.0 CURRENT CONSUMPTION

Total Current = Disabled Current +  $\Delta I_{DD} F_{OUT1} + \Delta I_{DD} F_{OUT2}$ 



**FIGURE 4-1:**  $\Delta I_{DD}$  / Output vs. Frequency and Load @ 3.3V  $V_{DD}$ .

# 5.0 SOLDER REFLOW PROFILE

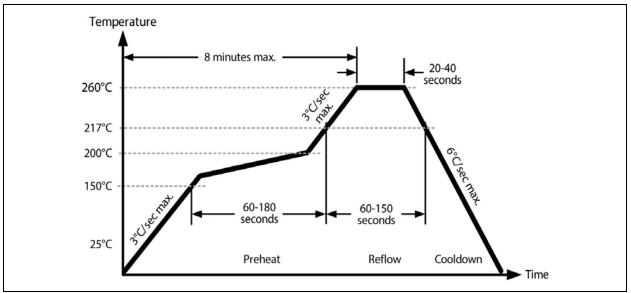



FIGURE 5-1: Solder Reflow Profile.

TABLE 5-1: SOLDER REFLOW

| MSL 1 @ 260°C Refer to JSTD-020C   |                |  |  |  |
|------------------------------------|----------------|--|--|--|
| Ramp-Up Rate (200°C to Peak Temp.) | 3°C/sec. max.  |  |  |  |
| Preheat Time 150°C to 200°C        | 60 to 180 sec. |  |  |  |
| Time Maintained above 217°C        | 60 to 150 sec. |  |  |  |
| Peak Temperature                   | 255°C to 260°C |  |  |  |
| Time within 5°C of Actual Peak     | 20 to 40 sec.  |  |  |  |
| Ramp-Down Rate                     | 6°C/sec. max.  |  |  |  |
| Time 25°C to Peak Temperature      | 8 minutes max. |  |  |  |

#### 6.0 PACKAGING INFORMATION

# 6.1 Package Marking Information

6-Lead VDFN\*

XXXXXXX DCPYYWW 0SSS Example

DSA2311 DCP1121 0603

**Legend:** XX...X Product code, customer-specific information, or frequency in MHz without printed decimal point

Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

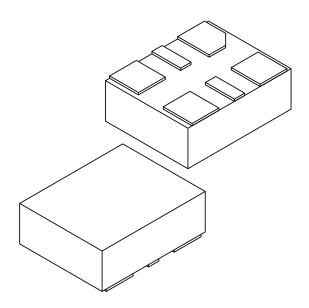
NNN Alphanumeric traceability code

(e3) Pb-free JEDEC<sup>®</sup> designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

•, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark).

**Note**: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo.


Underbar (\_) and/or Overbar (¯) symbol may not be to scale.

# 6-Lead VDFN 2.5 mm x 2.0 mm Package Outline and Recommended Land Pattern

# 6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN] For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Note: D Ν (DATUM A) (DATUM B) E NOTE 1 0.05 C 2X 0.05 C TOP VIEW // 0.10 C SEATING PLANE 6X 0.08 C SIDE VIEW L2 5X L1 4X b1 0.10(M) C A B 0.05(M) C ⊢e-**BOTTOM VIEW** Microchip Technology Drawing C04-1005A Sheet 1 of 2

# 6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

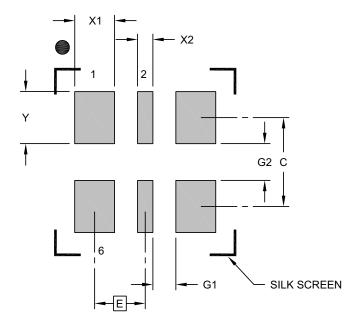
For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                     | Units  |                   |      | MILLIMETERS |  |  |  |
|---------------------|--------|-------------------|------|-------------|--|--|--|
| Dimension           | Limits | MIN               | NOM  | MAX         |  |  |  |
| Number of Terminals | Ν      | 6                 |      |             |  |  |  |
| Pitch               | е      | 0.825 BSC         |      |             |  |  |  |
| Overall Height      | Α      | 0.80              | 0.85 | 0.90        |  |  |  |
| Standoff            | A1     | 0.00 0.02 0.05    |      |             |  |  |  |
| Overall Length      | D      | 2.50 BSC          |      |             |  |  |  |
| Overall Width       | Е      | 2.00 BSC          |      |             |  |  |  |
| Terminal Width      | b1     | 0.60              | 0.65 | 0.70        |  |  |  |
| Terminal Width      | b2     | 0.20              | 0.25 | 0.30        |  |  |  |
| Terminal Length     | L1     | 0.60 0.70 0.80    |      |             |  |  |  |
| Terminal Length     | L2     | 0.665 0.765 0.865 |      |             |  |  |  |

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M  $\,$


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1005A Sheet 2 of 2

### 6-Lead Very Thin Dual Flatpack No-Leads (J7A) - 2.5x2.0 mm Body [VDFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



### RECOMMENDED LAND PATTERN

|                             | MILLIMETERS |             |      |      |
|-----------------------------|-------------|-------------|------|------|
| Dimension Limits            |             | MIN         | NOM  | MAX  |
| Contact Pitch               | Е           | E 0.825 BSC |      |      |
| Contact Pad Width (X4)      | X1          |             |      | 0.65 |
| Contact Pad Width (X2)      | X2          | 0.2         |      |      |
| Contact Pad Length (X6)     | Υ           |             |      | 0.85 |
| Contact Pad Spacing         | С           |             | 1.45 |      |
| Space Between Contacts (X4) | G1          | 0.38        |      |      |
| Space Between Contacts (X3) | G2          | 0.60        |      |      |

#### Notes:

- Dimensioning and tolerancing per ASME Y14.5M
   BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3005A

# **DSA2311**

NOTES:

# APPENDIX A: REVISION HISTORY

# Revision A (March 2018)

• Initial release of DSA2311 as Microchip data sheet DS20005893A.

# **DSA2311**

NOTES:

#### PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO. X X X X RXXXX X

Device Package Temperature Stability Frequency Packing Range Option

**Device:** DSA2311: Crystal-less Configurable Two-Output Clock Generator for Automotive

-40°C to +85°C (Grade 3)

Package: K = 6-LEAD 2.5 mm x 2.0 mm VDFN

Stability: 1 = ±50 ppm 2 = ±25 ppm

 $3 = \pm 20 \text{ ppm}$ 

Frequency: Rxxxx = Custom Frequency Code

## **Output Clock Frequencies**

Output frequencies are factory-configured to individual customer and product requirements, subject to output control and divider limitations. Contact sales with your custom frequency needs.

http://clockworks.microchip.com/timing/

| Frequency Code | F <sub>OUT1</sub> (MHz) | F <sub>OUT2</sub> (MHz) |
|----------------|-------------------------|-------------------------|
| R0001          | 127                     | 127                     |
| R0002          | 25                      | 125                     |

#### **Examples:**

a) DSA2311KL1-Rxxxx Crystal-less Configurable Two-Output Clock Generator, 6-LD VDFN, Grade 2 Temp. Range, ±50 ppm Stability, Custom Frequency (F<sub>OUT1</sub>

and F<sub>OUT2</sub>), Tube

b) DSA2311KI3-Rxxxx Crystal-less Configurable Two-Output Clock Generator, 6-LD VDFN, Grade 3 Temp. Range, ±20 ppm Stability, Custom Frequency (F<sub>OUT1</sub>

and F<sub>OUT2</sub>), Tube

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.

|   | S | Δ | 2 | 3 | 1 | 1 |
|---|---|---|---|---|---|---|
| ┙ | v |   |   | · |   |   |

NOTES:

#### Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
  intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

# QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949

#### **Trademarks**

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-2773-5



# **Worldwide Sales and Service**

#### **AMERICAS**

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

**Atlanta** Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

**Austin, TX** Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

**Detroit** Novi, MI

Tel: 248-848-4000

Houston, TX

Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

**Raleigh, NC** Tel: 919-844-7510

New York, NY Tel: 631-435-6000

**San Jose, CA** Tel: 408-735-9110 Tel: 408-436-4270

**Canada - Toronto** Tel: 905-695-1980 Fax: 905-695-2078

#### ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

**China - Beijing** Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

**China - Dongguan** Tel: 86-769-8702-9880

**China - Guangzhou** Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang

Tel: 86-24-2334-2829

**China - Shenzhen** Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

**China - Wuhan** Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

**China - Zhuhai** Tel: 86-756-3210040

#### ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

**Japan - Osaka** Tel: 81-6-6152-7160

**Japan - Tokyo** Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

**Singapore** Tel: 65-6334-8870

**Taiwan - Hsin Chu** Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

**Taiwan - Taipei** Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

#### **EUROPE**

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79 **Germany - Garching** 

Tel: 49-8931-9700

**Germany - Haan** Tel: 49-2129-3766400

**Germany - Heilbronn** Tel: 49-7131-67-3636

**Germany - Karlsruhe** Tel: 49-721-625370

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

**Italy - Padova** Tel: 39-049-7625286

**Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

**Poland - Warsaw** Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**Sweden - Gothenberg** Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

**UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820