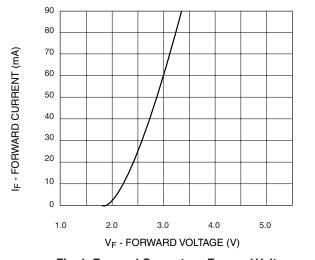


PACKAGE DIMENSIONS MV841X SUPER GREEN MV8410 MV8411 0.200 (5.08) 0.180 (4.57) 5°-**MV8412** 0.350 (8.89) 0.040 (1.02) 0.330 (8.38) **FEATURES** • Popular T-1 3/4 package 1.00 (25.4) · Super high brightness suitable for outdoor MIN applications · Solid state reliability Water clear optics 0.023 (0.58) 0.017 (0.43) SQ. (2X) 0.050 (1.27) · Standard 100 mil. lead spacing NOM 0.100 (2.54) NOM FLAT DENOTES CATHODE п Ø0.230 (5.84) NOTES: DESCRIPTION 1. Dimensions for all drawings are in inches (mm).

- 2. Lead spacing is measured where the leads emerge from the package.
- 3. Protruded resin under the flange is 1.5 mm (0.059") max.

This T-1 3/4 super bright LED has a narrow viewing angle of 12° for concentrated light output. The MV841X series is made with a GaP LED that emits green light at 565 nm. It is encapsulated in a water clear epoxy lens package.

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified)						
Parameter	Symbol	Rating	Unit			
Operating Temperature	T _{OPR}	-40 to +85	°C			
Storage Temperature	T _{STG}	-40 to +100	°C			
Lead Soldering Time	T _{SOL}	260 for 5 sec	°C			
Continuous Forward Current	I _F	30	mA			
Peak Forward Current		160	mA			
(f = 1.0 KHz, Duty Factor = 1/10)	IF IF	160				
Reverse Voltage	V _R	5	V			
Power Dissipation	PD	85	mW			


SUPER GREEN MV8410 MV8411 MV8412

2.5

MV841X

ELECTRICAL / OPTICAL CHARACTERISTICS (TA =25°C)					
Part Number	MV8410	MV8411	MV8412	Condition	
Luminous Intensity (mcd)				$I_F = 20 \text{mA}$	
Minimum	160	250	400		
Typical	240	370	600		
Forward Voltage (V)				$I_F = 20 \text{mA}$	
Maximum	2.8	2.8	2.8		
Typical	2.1	2.1	2.1		
Peak Wavelength (nm)	565	565	565	$I_F = 20 \text{mA}$	
Spectral Line Half Width (nm)	30	30	30	$I_F = 20 \text{mA}$	
Viewing Angle (°)	12	12	12	$I_F = 20mA$	

TYPICAL PERFORMANCE CURVES

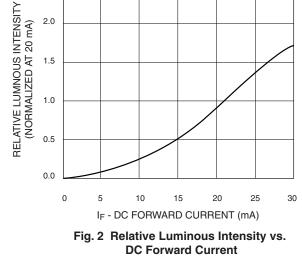


Fig. 1 Forward Current vs. Forward Voltage

SUPER GREENMV841XMV8410MV8411MV8412MV8412

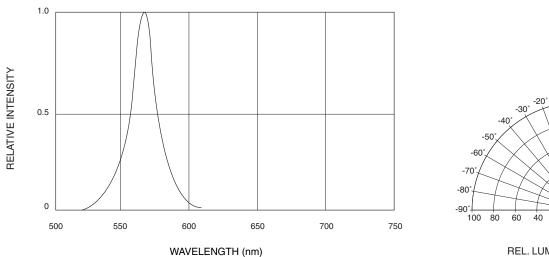
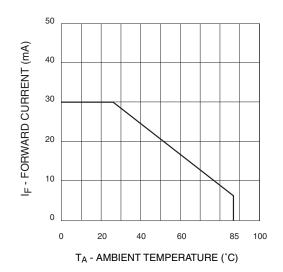



Fig. 3 Relative Intensity vs. Peak Wavelength

0° 10°

20°

30°

40

50°

60°

70°

80°

90

100

-10

Fig. 4 Radiation Diagram

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation