MMBF2201N, NVF2201N

Power MOSFET 300 mAmps, 20 Volts

N-Channel SC-70/SOT-323

These miniature surface mount MOSFETs low $R_{DS(on)}$ assure minimal power loss and conserve energy, making these devices ideal for use in small power management circuitry. Typical applications are dc-dc converters, power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

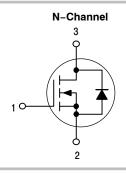
Features

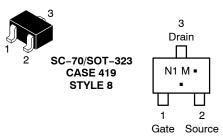
- Low R_{DS(on)} Provides Higher Efficiency and Extends Battery Life
- Miniature SC-70/SOT-323 Surface Mount Package Saves Board Space
- NVF Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	20	Vdc
Gate-to-Source Voltage - Continuous	V _{GS}	± 20	Vdc
	I _D I _D I _{DM}	300 240 750	mAdc
Total Power Dissipation @ T _A = 25°C (Note 1) Derate above 25°C	P _D	150 1.2	mW mW/°C
Operating and Storage Temperature Range	T _J , T _{stg}	- 55 to 150	°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	833	°C/W
Maximum Lead Temperature for Soldering Purposes, for 10 seconds	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


 Mounted on G10/FR4 glass epoxy board using minimum recommended footprint.


ON Semiconductor®

http://onsemi.com

300 mAMPS, 20 VOLTS $R_{DS(on)} = 1 \Omega$

MARKING DIAGRAM AND PIN ASSIGNMENT

N1 = Device Code

M = Date Code*

= Pb-Free Package

(Note: Microdot may be in either location)
*Date Code orientation may vary depending

upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBF2201NT1G	SOT-323 (Pb-Free)	3000 / Tape & Reel
NVF2201NT1G*	SOT-323 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MMBF2201N, NVF2201N

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Char	Symbol	Min	Tim	Max	Unit	
	Symbol	IVIII	Тур	IVIAX	Unit	
OFF CHARACTERISTICS		Τ	T	1	1	T
Drain-to-Source Breakdown Voltage $(V_{GS} = 0 \text{ Vdc}, I_D = 10 \mu\text{A})$	V _{(BR)DSS}	20	_	_	Vdc	
Zero Gate Voltage Drain Current (V_{DS} = 16 Vdc, V_{GS} = 0 Vdc) (V_{DS} = 16 Vdc, V_{GS} = 0 Vdc, V_{JS} =			_ _	_ _	1.0 10	μAdc
Gate-Body Leakage Current (V _{GS} = :	± 20 Vdc, V _{DS} = 0)	I _{GSS}	-	_	±100	nAdc
ON CHARACTERISTICS (Note 2)		•	_			
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 250 μAdc)	V _{GS(th)}	1.0	1.7	2.4	Vdc	
Static Drain-to-Source On-Resistan (V_{GS} = 10 Vdc, I_{D} = 300 mAdc) (V_{GS} = 4.5 Vdc, I_{D} = 100 mAdc)	r _{DS(on)}	_ _	0.75 1.0	1.0 1.4	Ω	
Forward Transconductance (V _{DS} = 10	9FS	-	450	-	mMhos	
DYNAMIC CHARACTERISTICS						
Input Capacitance	(V _{DS} = 5.0 V)	C _{iss}	-	45	_	pF
Output Capacitance	(V _{DS} = 5.0 V)	C _{oss}	-	25	_	
Transfer Capacitance	(V _{DG} = 5.0 V)	C _{rss}	-	5.0	_	
SWITCHING CHARACTERISTICS (N	lote 3)	•		•	•	•
Turn-On Delay Time		t _{d(on)}	-	2.5	_	ns
Rise Time	(V _{DD} = 15 Vdc, I _D = 300 mAdc,	t _r	-	2.5	_	
Turn-Off Delay Time	$R_L = 50 \Omega$)	t _{d(off)}	-	15	-	1
Fall Time		t _f	-	0.8	-	1
Gate Charge (See Figure 5)	Q _T	-	1400	-	pC	
SOURCE-DRAIN DIODE CHARACT	ERISTICS					
Continuous Current	I _S	_	_	0.3	Α	
Pulsed Current	I _{SM}	-	-	0.75		
Forward Voltage (Note 3)	V _{SD}	-	0.85	-	V	

^{2.} Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

TYPICAL CHARACTERISTICS

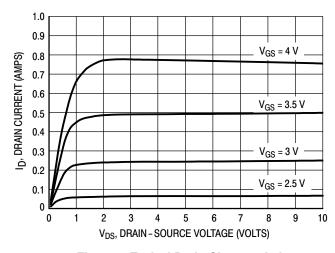


Figure 1. Typical Drain Characteristics

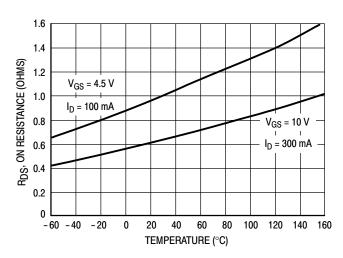
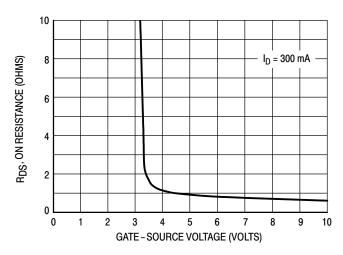
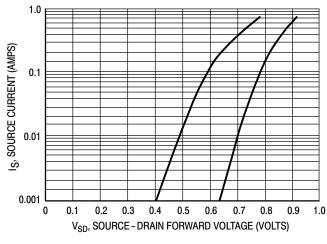



Figure 2. On Resistance versus Temperature

^{3.} Switching characteristics are independent of operating junction temperature.

MMBF2201N, NVF2201N


TYPICAL CHARACTERISTICS

1.2 1.0 $V_{GS} = 4.5 \text{ V}$ R_{DS}, ON RESISTANCE (OHMS) 8.0 0.6 V_{GS} = 10 V0.4 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 8.0 ID, DRAIN CURRENT (AMPS)

Figure 3. On Resistance versus Gate – Source Voltage

Figure 4. On Resistance versus Drain Current

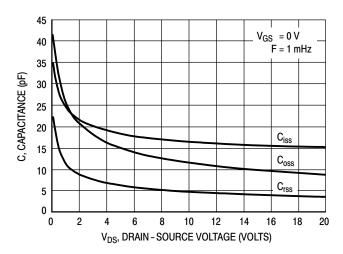


Figure 5. Source - Drain Forward Voltage

Figure 6. Capacitance Variation

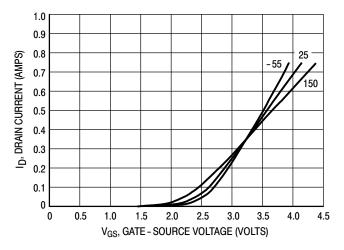
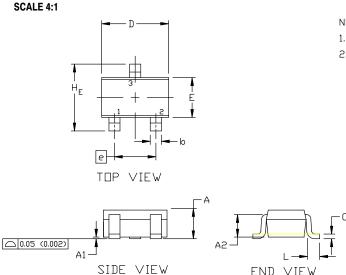


Figure 7. Transfer Characteristics

SC-70 (SOT-323) **CASE 419** ISSUE R


END VIEW

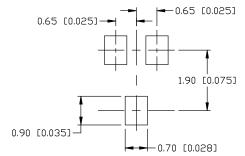
DATE 11 OCT 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH

	MILLIMETERS			INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70 REF			0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016
C	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.00	2.20	0.071	0.080	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC				0.026 BS	C
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

GENERIC MARKING DIAGRAM



= Specific Device Code XX

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

For additional information on our Pb-Free strategy and soldering details, please download the ID Semiconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

SOLDERING FOOTPRINT

STYLE 1: CANCELLED	STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE	STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE	
STYLE 6: PIN 1. EMITTER	STYLE 7: PIN 1. BASE	STYLE 8: PIN 1. GATE	STYLE 9: PIN 1. ANODE	STYLE 10: PIN 1. CATHODE	STYLE 11: PIN 1. CATHODE
2. BASE	2. EMITTER	2. SOURCE	2. CATHODE	2. ANODE	2. CATHODE
COLLECTOR	COLLECTOR	3. DRAIN	CATHODE-ANODE	3. ANODE-CATHODE	CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales