

DESCRIPTION

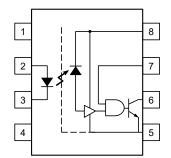
The ICPLW137 consists of an high efficient AlGaAs light emitting diode optically coupled to a high speed integrated photo detector. Output of the photo detector features an open collector Schottky clamped transistor. The enable function allows the output to be strobable.

An internal shield provides a guaranteed common mode transient immunity up to 10 KV/us at 3.3V/5V operation voltage.

This device belongs to Isocom wide body package range optocouplers.

FEATURES

- High Speed 10Mbit/s
- 3.3V / 5V Dual Operation Voltages
- Wide Body Package
- Guaranteed Performance from -40°C to 105°C
- LVTTL /LVCMOS Compatible
- Strobable Output
- Minimum Common Mode Transient Immunity 10kV/µs at V_{CM} 1000V
- High AC Isolation Voltage 5000V_{RMS}
- Pb Free and RoHS Compliant
- UL Approval E91231


APPLICATIONS

- Line Receivers, Data Communication
- LSTTL to TTL, LSTTL or 5V CMOS
- Data Multiplexing
- Pulse Transformer Replacement
- Switch Mode Power Supplies
- Ground Loop Elimination
- Computer Peripheral Interface

ORDER INFORMATION

- Add SM after PN for Surface Mount
- Add SMT&R after PN for Surface Mount Tape & Reel

- l NC
- 2 Anode
- 3 Cathode
- 4 NC
- 5 GND
- 6 V₀
- 7 V_E
- V_{CC}

A 0.1µF bypass Capacitor must be connected between Pins 8 and 5.

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Stresses exceeding the absolute maximum ratings can cause permanent damage to the device.

Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Input

Forward Current	20mA
Reverse Voltage	5V
Power dissipation	40mW
Junction Temperature	125°C

Output

Output Current	50mA
Output Voltage	7.0V
Supply Voltage	7.0V
Enable Input Voltage	V_{CC} +0.5 V
Enable Input Current	5mA
Power Dissipation	85mW

Total Package

Isolation Voltage	$5000V_{\text{RMS}}$
Operating Temperature	−40 to 105°C
Storage Temperature	−55 to 125°C
Lead Soldering Temperature (10s)	260°C

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate Hartlepool, Cleveland, TS25 1PE, United Kingdom Tel: +44 (0)1429 863 609 Fax: +44 (0)1429 863 581 e-mail: sales@isocom.co.uk

http://www.isocom.com

ISOCOM COMPONENTS ASIA LTD

Hong Kong Office
Block A, 8/F, Wah Hing Industrial Mansions
36 Tai Yau Street, San Po Kong, Kowloon, Hong Kong
Tel: +852 2995 9217 Fax: +852 8161 6292
e-mail: sales@isocom.com.hk

Truth Table (Positive Logic)

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н
Н	NC	L
L	NC	Н

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_A	-40	105	°C
Supply Valtage	V	2.7	3.6	V
Supply Voltage	$ m V_{CC}$	4.5	5.5	V
Input Current, High Level	${ m I}_{ m FH}$	5	15	mA
Input Current, Low Level	${ m I}_{ m FL}$	0	250	μΑ
Enable Voltage, High Level	$V_{\scriptscriptstyle EH}$	2.0	V_{CC}	V
Enable Voltage, Low Level	V_{EL}	0	0.8	V
Output Pull-up Resistor	R_{L}	330	4k	Ω
Fan Out $(R_L = 1k\Omega)$	N	_	5	TTL Loads

ELECTRICAL CHARACTERISTICS (T_A = -40 to 105°C, 2.7V \leq V_{CC} \leq 3.6V, I_F = 7.5mA unless otherwise specified)

INPUT

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Forward Voltage	V_{F}	$I_F = 10 \text{mA}$		1.38	1.70	V
Forward Voltage Temperature Coefficient	$\Delta V_F/\Delta T$	$I_F = 10 \text{mA}$		-1.5		mV/°C
Reverse Voltage	V_R	$I_R = 10 \mu A$	5.0			V
Input Capacitance	C_{IN}	$V_F = 0V$, $f = 1MHz$		34		pF

OUTPUT

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
High Level Supply Current	I_{CCH}	$I_F = 0$ mA, $V_{CC} = 3.3$ V $V_E = 0.5$ V		3.3	5	mA
Low Level Supply Current	I_{CCL}	$I_F = 10 \text{mA}, V_{CC} = 3.3 \text{V}$ $V_E = 0.5 \text{V}$		3.1	5	mA
High Level Enable Current	I_{EH}	$V_{CC} = 3.3 V, V_E = 2.0 V$		-0.19	-1.6	mA
Low Level Enable Current	${ m I}_{ m EL}$	$V_{CC} = 3.3V, V_E = 0.5V$		-0.41	-1.6	mA
High Level Enable Voltage	V_{EH}		2.0			V
Low Level Enable Voltage	V_{EL}				0.8	V

COUPLED

Parameter	Symbol	Test Condition	Min	Typ.*	Max	Unit
High Level Output Current	I_{OH}	$I_F = 250 \mu A, \ V_{CC} = 3.3 V \\ V_E = 2.0 V, \ V_O = 3.3 V$		1	10	μΑ
Low Level Output Voltage	V_{OL}	$I_F = 5mA, V_{CC} = 3.3V$ $V_E = 2.0V, I_{OL} = 13mA$		0.20	0.60	V
Input Threshold Current	$ m I_{TH}$	$V_{CC} = 3.3V, V_E = 2.0V$ $V_O = 0.6V, I_{OL} = 13mA$		2.5	5	mA

^{*} Typical values at T_A = 25°C, V_{CC} = 3.3V

ELECTRICAL CHARACTERISTICS (T_A = -40 to 105°C, 2.7V \leq V_{CC} \leq 3.6V, I_F = 7.5mA unless otherwise specified)

SWITCHING

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Propagation Delay Time to High Output Level	$t_{\rm PLH}$	$R_L = 350\Omega$ $C_L = 15pF$	25	50	90	ns
Propagation Delay Time to Low Output Level	$t_{ m PHL}$		25	40	90	
Pulse Width Distortion	$ t_{PLH} - t_{PHL} $			10		
Propagation Delay Skew	t _{PSK}				40	
Output Rise Time (10% to 90%)	t _r			23		
Output Fall Time (90% to 10%)	t_{f}			10		
Enable Propagation Delay Time to High Output Level	$t_{ m ELH}$	$V_{EL} = 0V$ $V_{EH} = 3V$ $R_{L} = 350\Omega$		15		
Enable Propagation Delay Time to Low Output Level	$t_{ m EHL}$	$C_L = 15pF$		15		

^{*} Typical values at $T_A = 25$ °C, $V_{CC} = 3.3V$

ELECTRICAL CHARACTERISTICS (T_A = -40 to 105°C, 4.5V \leq V_{CC} \leq 5.5V, I_F = 7.5mA unless otherwise specified)

INPUT

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Forward Voltage	V_{F}	$I_F = 10 \text{mA}$		1.38	1.70	V
Forward Voltage Temperature Coefficient	$\Delta V_F/\Delta T$	$I_F = 10 \text{mA}$		-1.5		mV/°C
Reverse Voltage	V_R	$I_R = 10 \mu A$	5.0			V
Input Capacitance	C_{IN}	$V_F = 0V$, $f = 1MHz$		34		pF

OUTPUT

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
High Level Supply Current	I_{CCH}	$I_F = 0$ mA, $V_{CC} = 5.5$ V $V_E = 0.5$ V		3.7	5	mA
Low Level Supply Current	I_{CCL}	$I_F = 10 \text{mA}, V_{CC} = 5.5 \text{V}$ $V_E = 0.5 \text{V}$		3.5	5	mA
High Level Enable Current	I_{EH}	$V_{CC} = 5.5 V, V_E = 2.0 V$		-0.6	-1.6	mA
Low Level Enable Current	${ m I}_{ m EL}$	$V_{CC} = 5.5 V, V_E = 0.5 V$		-0.9	-1.6	mA
High Level Enable Voltage	V_{EH}		2.0			V
Low Level Enable Voltage	V_{EL}				0.8	V

COUPLED

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
High Level Output Current	I_{OH}	$I_F = 250 \mu A, \ V_{CC} = 5.5 V \\ V_E = 2.0 V, \ V_O = 5.5 V$		1	10	μΑ
Low Level Output Voltage	V_{OL}	$I_F = 5mA, V_{CC} = 5.5V$ $I_{OL} = 13mA$		0.20	0.60	V
Input Threshold Current	${ m I}_{ m TH}$	$V_{CC} = 5.5V$ $V_{O} = 0.6V, I_{OL} > 13mA$		2	5	mA

^{*} Typical values at T_A = 25°C, V_{CC} = 5.0V

ELECTRICAL CHARACTERISTICS (T_A = -40 to 105°C, 4.5V \leq V_{CC} \leq 5.5V, I_F = 7.5mA unless otherwise specified)

SWITCHING

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Propagation Delay Time to High Output Level	t_{PLH}	$R_L = 350\Omega$, $C_L = 15pF$			100	ns
		$R_L = 350\Omega, C_L = 15pF$ $T_A = 25^{\circ}C$	25	50	90	
Propagation Delay Time to Low Output Level	t_{PHL}	$R_L = 350\Omega, C_L = 15pF$			100	
		$R_L = 350\Omega, C_L = 15pF$ $T_A = 25^{\circ}C$	25	40	90	
Pulse Width Distortion	t _{PLH} - t _{PHL}	$R_L = 350\Omega$ $C_L = 15pF$		10		
Propagation Delay Skew	t_{PSK}				40	
Output Rise Time (10% to 90%)	$t_{\rm r}$			23		
Output Fall Time (90% to 10%)	t_{f}			10		
Enable Propagation Delay Time to High Output Level	t _{ELH}	$V_{EL} = 0V$ $V_{EH} = 3V$ $R_{L} = 350\Omega$		15		
Enable Propagation Delay Time to Low Output Level	t_{EHL}	$C_L = 15 pF$		15		

^{*} Typical values at $T_A = 25$ °C, $V_{CC} = 5.0V$

ELECTRICAL CHARACTERISTICS ($T_A = -40$ to 105° C unless otherwise specified)

SWITCHING

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Common Mode Transient Immunity at Logic High		$\begin{split} I_F = 0 m A, V_{CC} = 3.3 V \\ R_L = 350 \Omega \\ V_{CM} = 1000 V p \text{-} p \\ T_A = 25 ^{\circ} C \end{split}$	10	15		kV/μs
		$\begin{split} I_F = 0 mA, V_{CC} = 5.0 V \\ R_L = 350 \Omega \\ V_{CM} = 1000 V p \text{-} p \\ T_A = 25 ^{\circ} C \end{split}$	10	15		
Common Mode Transient Immunity at Logic Low	CM_{L}	$\begin{split} I_F = 10 \text{mA}, \ V_{CC} = 3.3 V \\ R_L = 350 \Omega \\ V_{CM} = 1000 V \text{p-p} \\ T_A = 25 ^{\circ} C \end{split}$	10	15		V/µs
		$I_{F} = 10 \text{mA}, \ V_{CC} = 5.0 \text{V}$ $R_{L} = 350 \Omega$ $V_{CM} = 1000 \text{Vp-p}$ $T_{A} = 25 ^{\circ}\text{C}$	10	15		

ISOLATION

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Isolation Voltage	$V_{\rm ISO}$	RH $\leq 50\%$, t = 1 min T _A = 25°C	5000			V_{RMS}
Leakage Current	$I_{I\text{-}O}$	$V_{I-O} = 3kVDC$ RH = 45%, t = 5s $T_A = 25^{\circ}C$			1.0	μΑ
Input-Output Resistance	R _{I-O}	$V_{I-O} = 500 VDC$		10 ¹²		Ω
Input-Output Capacitance	C _{I-O}	$f = 1MHz$ $T_A = 25^{\circ}C$		1.0		pF

Device is considered a two terminal device : pins 1 to 4 are shorted together and pins 5 to 8 are shorted together.

^{*} Typical values at T_A = 25°C

ELECTRICAL CHARACTERISTICS

Notes:

- V_{CC} supply must be bypassed by a 0.1µF capacitor or larger.
- Peaking drive circuit may be used to speed up the LED. Peak driving current may go up to 50mA with maximum pulse width 50ns, provided average current does not exceed 20mA.
- t_{PLH} is measured from the 3.75mA level on the HIGH to LOW transition of the input current pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.
- t_{PHL} is measured from the 3.75mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- t_{ELH} is measured from the 1.5V level on the HIGH to LOW transition of the input Enable voltage pulse to the 1.5V level on the LOW to HIGH transition of the output voltage pulse.
- t_{EHL} is measured from the 1.5V level on the LOW to HIGH transition of the input Enable voltage pulse to the 1.5V level on the HIGH to LOW transition of the output voltage pulse.
- CM_H is the maximum tolerable rate of rise of the Common Mode voltage to ensure the output will remain in the HIGH state (i.e., $V_O > 2.0V$).
- CM_L is the maximum tolerable rate of rise of the Common Mode voltage to ensure the output will remain in the LOW state (i.e., $V_O < 0.8V$).

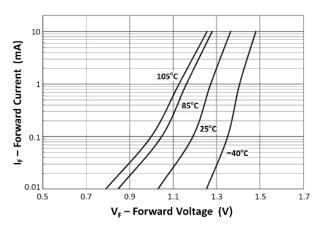


Fig 1 Forward Current vs Forward Voltage

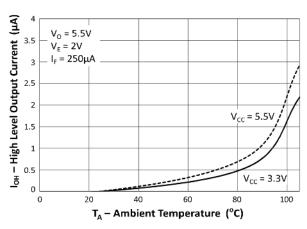


Fig 3 High Level Output Current vs Ambient Temperature

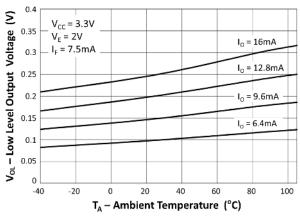


Fig 5 Low Level Output Voltage at $V_{\rm CC}$ 3.3V vs Ambient Temperature

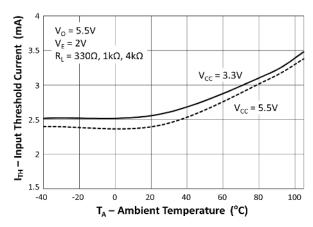


Fig 2 Input Threshold Current vs Ambient Temperature

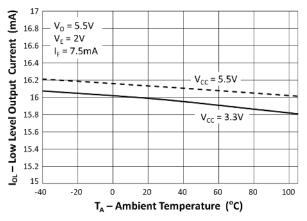


Fig 4 Low Level Output Current vs Ambient Temperature

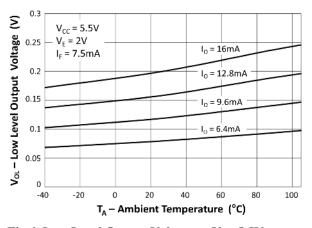


Fig 6 Low Level Output Voltage at $V_{\rm CC}$ 5.5V vs Ambient Temperature

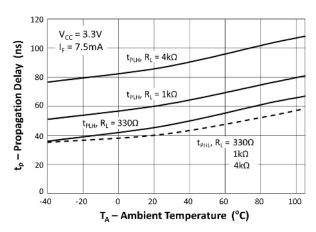


Fig 7 Propagation Delay at V_{CC} 3.3V vs Ambient Temperature

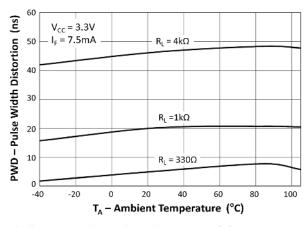
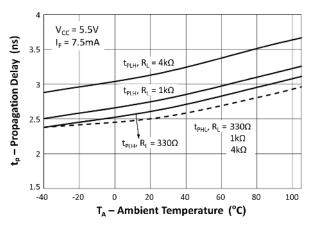
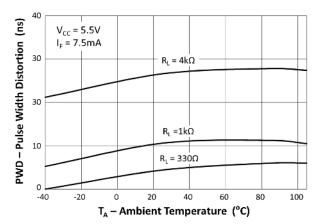
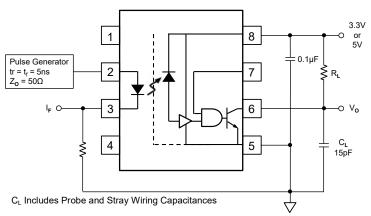
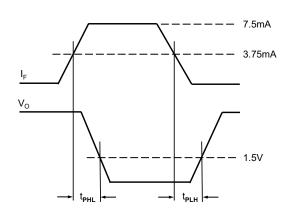
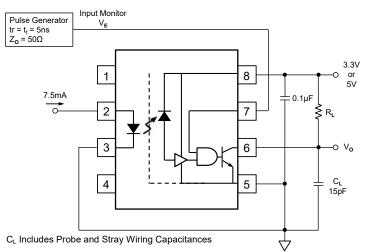
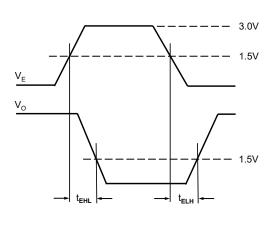


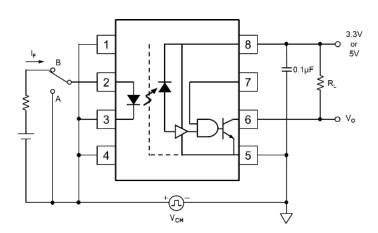
Fig 9 Pulse Width Distortion at $V_{\rm CC}$ 3.3V vs Ambient Temperature

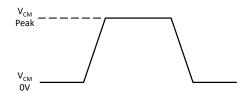




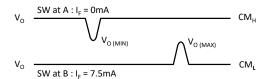

Fig 8 Propagation Delay at V_{CC} 5.5V vs Ambient Temperature


 $\begin{array}{ccc} Fig~10~Pulse~Width~Distortion~at~V_{CC}~5.5V~vs\\ Ambient~Temperature \end{array}$

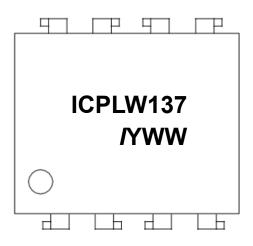





t_{PLH} and t_{PHL} Test Circuit



 $t_{ELH} \ and \ t_{EHL} \ Test \ Circuit$


Common Mode Transient Immunity Test Circuit

ORDER INFORMATION

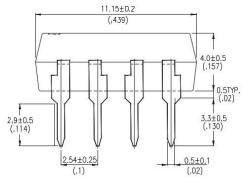
ICPLW137				
After PN	PN	Description	Packing quantity	
None	ICPLW137	Wide Body DIP8	40 pcs per tube	
SM	ICPLW137SM	Surface Mount	40 pcs per tube	
SMT&R	ICPLW137SMT&R	Surface Mount Tape & Reel	750 pcs per reel	

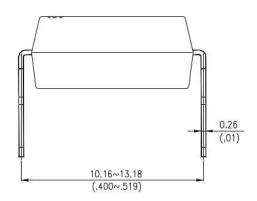
DEVICE MARKING

ICPLW137 denotes Device Part Number

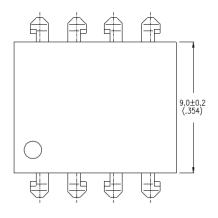
I denotes Isocom

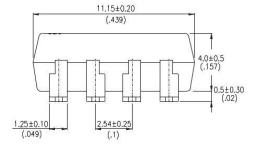
Y denotes Year code (A = 2010, B = 2011, etc.)

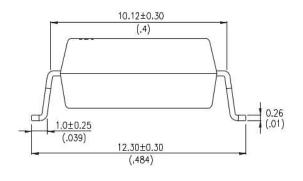

WW denotes 2 digit Week Code



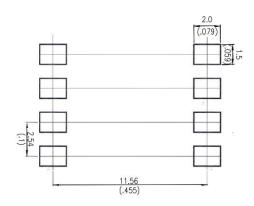
PACKAGE DIMENSIONS (mm)

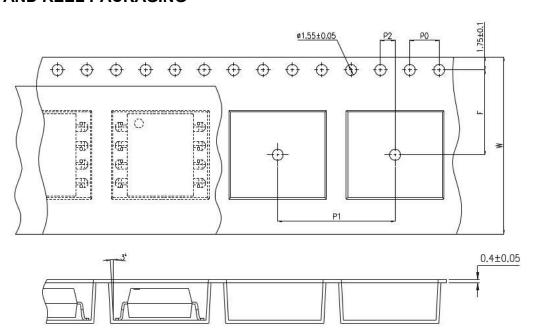

DIP



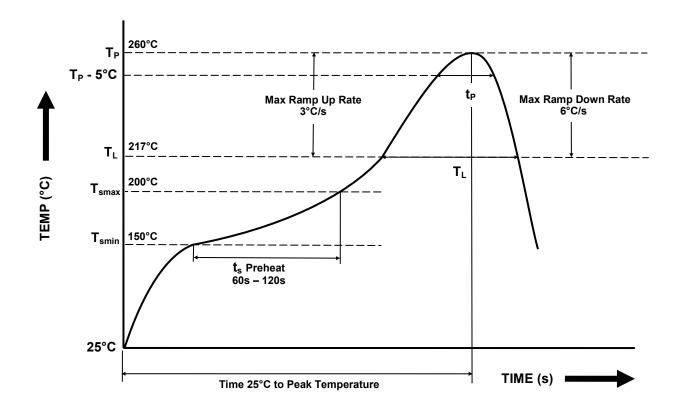


SMD





RECOMMENDED PAD LAYOUT FOR SMD (mm)


TAPE AND REEL PACKAGING

Description	Symbol	Dimension mm (inch)
Tape Width	W	24 ± 0.3 (0.945)
Pitch of Sprocket Holes	P ₀	4 ± 0.1 (0.157)
Distance of Compartment to Sprocket Holes	F	11.5 ± 0.1 (0.453)
Distance of Compartment to Sprocket Flores	P ₂	2 ± 0.1 (0.079)
Distance of Compartment to Compartment	P ₁	16 ± 0.1 (0.630)

IR REFLOW SOLDERING TEMPERATURE PROFILE One Time Reflow Soldering is Recommended. Do not immerse device body in solder paste.

Profile Details	Conditions
$ \begin{array}{l} \textbf{Preheat} \\ \textbf{- Min Temperature } (T_{SMIN}) \\ \textbf{- Max Temperature } (T_{SMAX}) \\ \textbf{- Time T}_{SMIN} \ \text{to T}_{SMAX} \left(t_{s} \right) \end{array} $	150°C 200°C 60s - 120s
$\begin{tabular}{ll} \textbf{Soldering Zone} \\ - & \mbox{Peak Temperature } (T_P) \\ - & \mbox{Time at Peak Temperature} \\ - & \mbox{Liquidous Temperature } (T_L) \\ - & \mbox{Time within 5°C of Actual Peak Temperature } (T_P - 5°C) \\ - & \mbox{Time maintained above } T_L (t_L) \\ - & \mbox{Ramp Up Rate } (T_L \mbox{ to } T_P) \\ - & \mbox{Ramp Down Rate } (T_P \mbox{ to } T_L) \\ \end{tabular}$	260°C 10s max 217°C 30s max 60s - 100s 3°C/s max 6°C/s max
Average Ramp Up Rate (T _{smax} to T _P)	3°C/s max
Time 25°C to Peak Temperature	8 minutes max

DISCLAIMER

Isocom Components is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing Isocom Components products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such Isocom Components products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that Isocom Components products are used within specified operating ranges as set forth in the most recent Isocom Components products specifications.

The Isocom Components products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Isocom Components products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of Isocom Components products listed in this document shall be made at the customer's own risk.

Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by Isocom Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of Isocom Components or others.

The information contained herein is subject to change without notice.