

TSM4806

20V N-Channel MOSFET

SOP-8

Pin Definition:

	•
1. Source	8. Drain
2. Source	7. Drain
3. Source	6. Drain
4. Gate	5. Drain

Note:

MSL 1 (Moisture Sensitivity Level) per J-STD-020

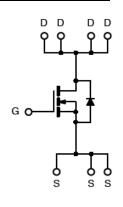
Key Parameter Performance

Parameter		Value	Unit	
V_{DS}		20	٧	
R _{DS(on)} (max)	V _{GS} = 4.5V	20		
	V _{GS} = 2.5V	25	mΩ	
	V _{GS} = 1.8V	31		
Q	g	12.3	nC	

Features

- Advanced High Cell Density Trench Technology.
- Low Gate Charge.

Application


- Networking DC-DC Power System.
- Load Switch.

Ordering Information

Part No.	Package	Packing
TSM4806CS RLG	SOP-8	2.5kpcs / 13" Reel

•Note: Halogen-free according to IEC 61249-2-21 definition

Block Diagram

N-Channel MOSFET

Absolute Maximum Ratings (T_A=25°C, unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	20	V
Gate-Source Voltage	V_{GS}	±8	V
Continuous Drain Current ^a	I _D	28	Α
Pulsed Drain Current ^b	I _{DM}	70	Α
Continuous Source Current (Diode Conduction) ^{a,c}	Is	28	Α
Total Power Dissipation T _A =25°C	P _D	2	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Performance

Parameter	Symbol	Limit	Unit
Thermal Resistance Junction to Lead	RO _{JL}	40	°C/W
Thermal Resistance Junction to Ambient	RΘ _{JA}	62.5	°C/W

Notes

- a. The data tested by surface mounted on a 1 inch² FR-4 board with 2oz copper.
- b. The data tested by pulsed, pulse width \leq 300 μ s, duty cycle \leq 2% surface mounted on FR4 Board, t \leq 5s.
- c. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

1/6 Version: B1710

TSM4806

20V N-Channel MOSFET

Electrical Specifications

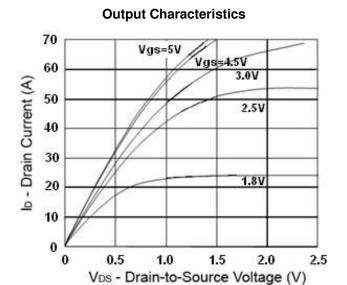
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250\mu A$	BV _{DSS}	20			V
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	$V_{GS(TH)}$	0.3	0.6	1.0	V
Gate-Source Leakage Current	$V_{GS} = \pm 8V$, $V_{DS} = 0V$	I _{GSS}			±100	nA
Drain-Source Leakage Current	$V_{DS} = 16V, V_{GS} = 0V$	I _{DSS}			1	μΑ
	$V_{GS} = 4.5V, I_D = 20A$			16	20	
Drain-Source On-State Resistance	$V_{GS} = 2.5V, I_D = 15A$	R _{DS(ON)}		20	25	mΩ
	$V_{GS} = 1.8V, I_D = 10A$			25	31	
Forward Transconductance	$V_{DS} = 5V, I_{D} = 15A$	g _{fs}		27		S
Diode Forward Voltage	$I_S = 1A$, $V_{GS} = 0V$	V_{SD}			1.2	V
Dynamic ^b						
Gate Resistance	$V_{DS} = 0V$, $V_{GS} = 0V$, $f = 1MHz$	R_{g}		1.4	2.8	Ω
Total Gate Charge	\/ 45\/ L 45A	Q_g		12.3		
Gate-Source Charge	$V_{DS} = 15V, I_{D} = 15A,$	Q_gs		1.95		nC
Gate-Drain Charge	$V_{GS} = 4.5V$	Q_{gd}		3.08		
Input Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$ f = 1MHz	C_{iss}		961		
Output Capacitance		C _{oss}		92.3		рF
Reverse Transfer Capacitance		C_{rss}		80.4		
Reverse Recovery Time	I _F = 15A, dI/dt= 100A/μs,	t _{rr}		6		ns
Reverse Recovery Charge	T _J =25°C	Q_{rr}		1.38		nC
Switching ^{b,c}						
Turn-On Delay Time		t _{d(on)}		3.02		
Turn-On Rise Time	$V_{DD} = 10V, I_D = 15A,$	t _r		13.1		no
Turn-Off Delay Time	$V_{GS} = 4.5V, R_G = 3.3\Omega$	t _{d(off)}		28		ns
Turn-Off Fall Time		t _f		8.3		

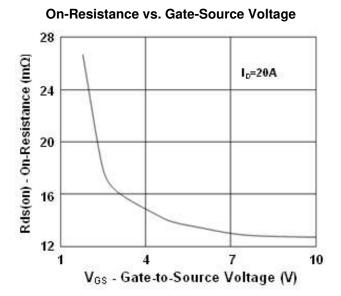
2/6

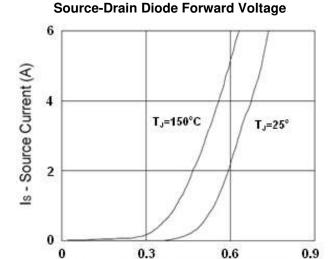
Notes:

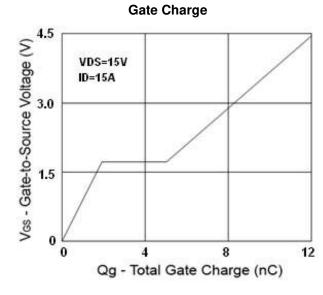
- a. Pulse test: PW \leq 300 μ s, duty cycle \leq 2%
- b. For DESIGN AID ONLY, not subject to production testing.
- c. Switching time is essentially independent of operating temperature.

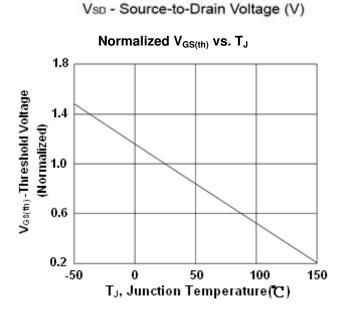
Version: B1710

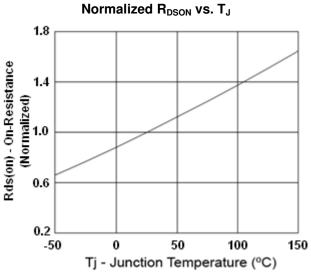



TSM4806

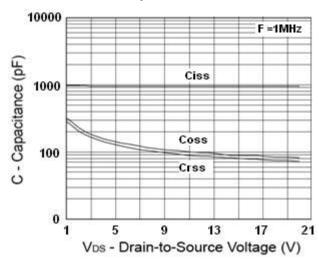

20V N-Channel MOSFET




Electrical Characteristics Curve (T_A=25°C, unless otherwise noted)



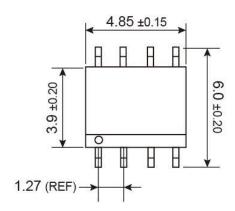
Version: B1710

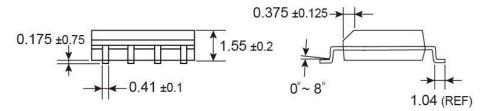

3/6

TSM4806 20V N-Channel MOSFET

$\textbf{Electrical Characteristics Curve} \ (T_A=25^{\circ}C, \ unless \ otherwise \ noted)$

Capacitance

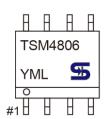



Version: B1710

4/6

TSM4806 20V N-Channel MOSFET

SOP-8 Mechanical Drawing



5/6

Unit: Millimeters

Marking Diagram

Y = Year Code

M = Month Code for Halogen Free Product (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

L = Lot Code

Version: B1710

TSM4806 20V N-Channel MOSFET

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.

6/6 Version: B1710