EV2665A-QB-00A

21V, 1A, Linear Charger for Single-Cell Li-Ion Batteries with Power Management Evaluation Board

DESCRIPTION

The EV2665A-QB-00A is an evaluation board designed to demonstrate the capabilities of the MP2665A, a highly integrated, single-cell Li-ion/Li-polymer battery charger with system power path management. The MP2665A is ideal for space-constrained portable applications. It takes input power from either an AC adapter or a USB port to supply the system load and charge the battery simultaneously. It also features pre-charge, constant current (CC) fast charge, constant voltage (CV) regulation, charge termination, and auto-recharge.

The MP2665A ensures that the system is continuously powered by automatically selecting the input, the battery, or both to power the system.

It provides system short-circuit protection (SCP) to prevent the Li-ion battery from being damaged due to excessively high currents.

The MP2665A also provides an on-chip battery under-voltage lockout (UVLO) threshold that cuts off the path between the battery and the system if the battery voltage drops below the configurable UVLO threshold. This prevents the Li-ion battery from being overly discharged.

The integrated I²C interface can configure the following charging parameters: input current limit, input voltage regulation limit, charging current, battery regulation voltage, safety timer, and battery UVLO threshold. The MP2665A is available in a QFN-12 (2.5mmx3mm) package.

PERFORMANCE SUMMARY

Specifications are at $T_A = 25$ °C, unless otherwise noted.

Parameters	Conditions	Value
Input voltage (V _{IN}) range		4.35V to 5.5V
Battery voltage (V _{BATT})		3.6V to 4.545V
Fast charge current (Icc)		16mA to 896mA
Input current limit		50mA to 1000mA
Minimum V _{IN} regulation		3.88V to 5.08V

EVALUATION BOARD

LxWxH (6.3cmx6.3cmx0.16cm) 2 Layers, 1oz/1oz

Board Number	MPS IC Number	
EV2665A-QB-00A	MP2665AGQB-xxxx	

QUICK START GUIDE

The EV2665A-QB-00A evaluation board is designed to demonstrate the capabilities of the MP2665A, a highly integrated, single-cell Li-ion/Li-polymer battery charger with system power path management. The EV2665A-QB-00A's layout accommodates most commonly used capacitors. The default function of this board is preset for charger mode, and the full-charge voltage is preset to 4.2V for single-cell Liion batteries.

Evaluation Platform Preparation:

1. To use the evaluation platform, the following is required: a computer with at least one USB port, a USB cable, and a USB-to-I²C communication kit (EVKT-USBI2C-02) (see Figure 1).

Figure 1: USB-to-I²C Communication Kit

2. The MP2665A programming tool software must also be properly installed. This software can be downloaded from the MPS website.

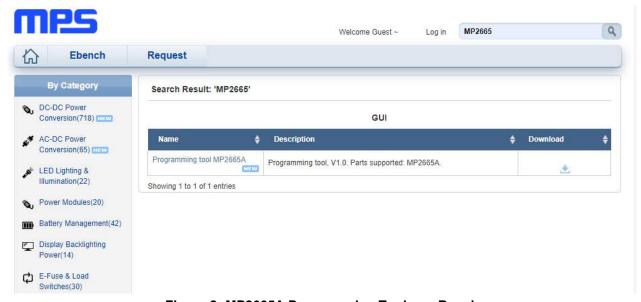


Figure 2: MP2665A Programming Tool on eBench

- 3. Figure 3 on page 3 shows the original test set-up for the MP2665A.
 - a. Connect the input voltage $(V_{IN} = 5V)$ and the input ground to the VIN and GND pins, respectively.
 - b. Connect the load terminals to:
 - Positive (+): SYS
 - Negative (-): GND

- c. Connect the battery ($V_{BATT} = 3V$ to 4.2V) terminals to:
 - Positive (+): BATT
 - Negative (-): GND

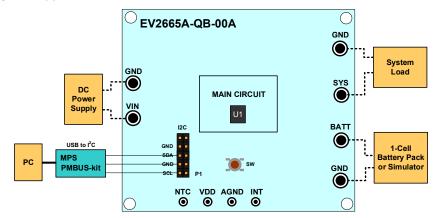


Figure 3: Test Set-Up for the MP2665A

4. Turn on the computer and launch the MP2665A evaluation software. Figure 4 shows the main window of the software.

Figure 4: MP2665A Evaluation Interface

EV2665A-QB-00A Rev. 1.0 MonolithicPower.com
1/3/2022 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.

PROCEDURE

Ensure that all the connections (e.g. between the USB-to-I²C communication kit and the EV2665A-QB-00A) are successful.

1. Figure 5 shows the default values of the charger function.

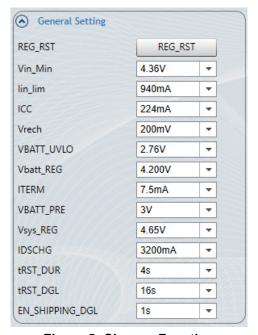


Figure 5: Charger Function

2. Figure 6 shows the minimum V_{IN} setting. Set the minimum V_{IN} to 4.36V (the range is 3.88V to 5.08V).

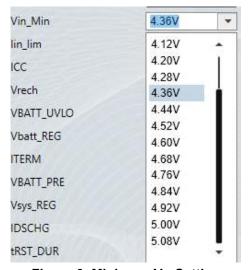
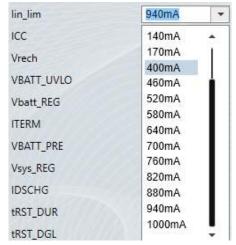
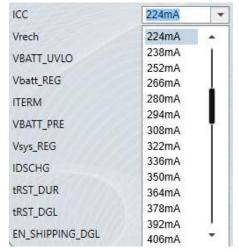



Figure 6: Minimum V_{IN} Setting

-



3. Figure 7 shows the input current limit setting. Set the input current limit to 940mA (the range is 50mA to 1000mA).

Figure 7: Input Current Limit Setting

4. Figure 8 shows the fast charge current setting. Set the fast charge current to 224mA (the range is 16mA to 896mA).

Figure 8: Fast Current Charge Setting

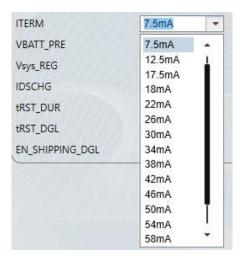

5. Figure 9 shows the BATT_UVLO threshold setting. Set the BATT_UVLO threshold to 2.76V (the range is 2.4V to 3.03V).

Figure 9: BATT_UVLO Threshold Setting

6. Figure 10 shows the charge termination current setting. Set the charge termination current to 7.5mA (the range is 2.5mA to 62mA).

Figure 10: Charge Termination Current Setting

7. Figure 11 shows the battery regulation voltage setting. Set the battery regulation voltage to 4.2V (the range is 3.6V to 4.545V).

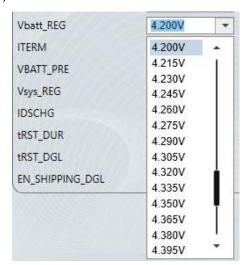


Figure 11: Battery Regulation Voltage Setting

8. Figure 12 shows the pre-charge to fast charge threshold setting. Set the pre-charge to fast charge threshold voltage to 3V (the range is 2.8V to 3V).

Figure 12: Pre-Charge to Fast Charge Threshold Setting

EV2665A-QB-00A Rev. 1.0 MonolithicPower.com

1/3/2022 MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.

Figure 13 shows the battery auto-recharge voltage setting. Set the battery auto-recharge voltage to VBAT REG to 200mV (the range is 100mV to 200mV).

Figure 13: Battery Auto-Recharge Voltage Setting

10. Figure 14 shows the battery discharge current limit. Set the battery discharge current limit to 3200mA (the range is 400mA to 3200mA).

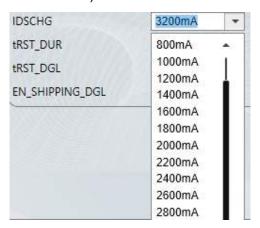


Figure 14: Battery Discharge Current Limit

11. Figure 15 shows the INT control setting.

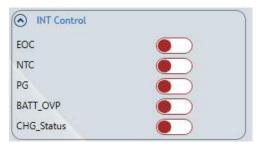


Figure 15: INT Control Setting

- 12. Figure 16 on page 8 shows the FET control setting.
 - a. EN_HIZ controls the low-dropout (LDO) FET's on/off function.
 - b. CEB controls the Battery FET's on/off function in charge mode.
 - c. Select FET_DIS to turn off the Battery FET in both the charge and discharge modes.
 - d. De-selecting FET_DIS cannot turn on the battery FET. Use the push button or plug in the input adapter for 2 seconds to pull INT low, which turns on the battery FET when it is turned off by FET_DIS.

EV2665A-QB-00A Rev. 1.0 MonolithicPower.com 7

Figure 16: FET Control Setting

13. Figure 17 shows the VIN LOOP control setting.

Figure 17: VIN_LOOP Control Setting

14. Figure 18 shows the battery FET time setting.

Figure 18: Battery FET Time Setting

15. Figure 19 shows the thermal control setting to enable PCB over-temperature protection (OCP).

Figure 19: Thermal Control Setting

For other applications, see Table 1 for the NTC function selection.

Table 1: NTC Function Selection

I ² C Control		Eupotion	
EN_NTC	EN_PCB OTP	Function	
0	X ⁽¹⁾	Disabled	
1	1	NTC	
1	0	PCB OTP	

Notes:

- 1) "x" means not applicable.
- 16. Figure 20 shows the safety timer setting.

Figure 20: Safety Timer Setting

17. Figure 21 shows the I²C watchdog timer setting.

Figure 21: I²C Watchdog Timer Setting

18. Figure 22 shows the content of the registers.



Figure 22: Content of the Registers

(A) Fault

19. Figure 23 shows the MP2665A's operation status and fault report.

Figure 23: MP2665A Operation Status and Fault Report

© 2022 MPS. All Rights Reserved.

EVALUATION BOARD SCHEMATIC

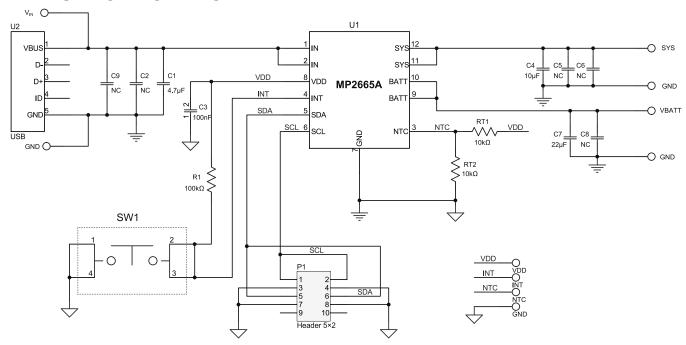
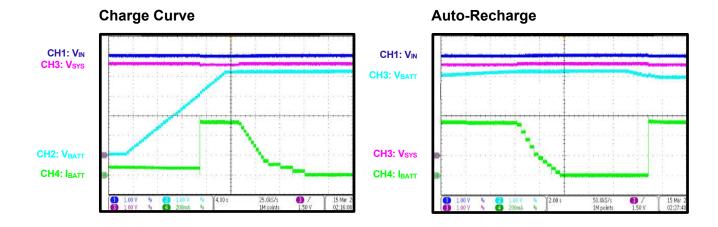


Figure 24: Evaluation Board Schematic


EV2665A-QB-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
1	C1	4.7μF	Ceramic capacitor, 25V, X5R	0603	Murata	GRM188R61E475KE11D
2	C2, C9	NC				
1	C3	100nF	Ceramic capacitor, 25V, X7R	0603	Murata	GRM188R71E104KA01D
1	C4	10μF	Ceramic capacitor, 16V, X7R	0805	Murata	GRM21BR61C106KE15
1	C5	NC	Ceramic capacitor, 25V, X7R	0805	Murata	GRM21BR71E225KA73L
2	C6, C8	NC	Ceramic capacitor, 16V, X7R	0805	Murata	GRM21BR61C106KE15
1	C7	22µF	Ceramic capacitor, 16V, X5R	0805	Murata	GRM21BR61C226ME44L
1	P1	2.54mm	5-pin, dual-row header	DIP	Any	
1	R1	100kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-07100KL
2	RT1, RT2	10kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0710KL
1	SW1	6.35mmx 8.89mm	Push switch	7914J	Any	
1	U2	6.8mmx 8.23mm	Micro-B USB connector	DIP	Any	
1	U1	MP2665A	1A, single-cell battery charger	QFN-12 (2.5mmx 3mm)	MPS	MP2665AGQB-0000

EVB TEST RESULTS

Performance curves and waveforms are tested on the evaluation board. $V_{IN} = 5V$, $V_{BATT_REG} = 4.2V$, $I_{IN_LIM} = 1000mA$, $I_{CC} = 896mA$, $I_{SYS} = 0.4A$, $T_A = 25^{\circ}C$, unless otherwise noted.

PCB LAYOUT

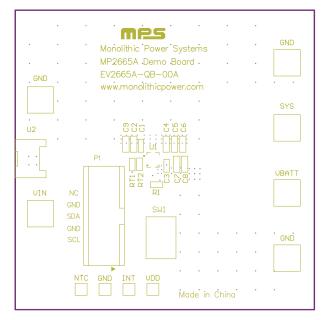


Figure 25: Top Silk

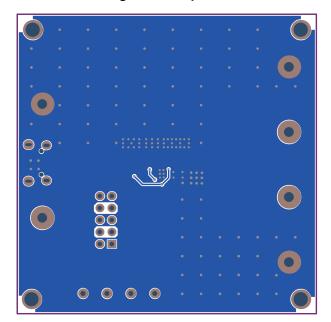


Figure 27: Bottom Layer

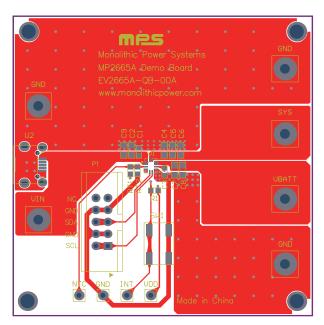


Figure 26: Top Layer

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	1/3/2022	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.