## 



## 1.5W CONVECTION COOLED

The G Series is a line of miniature high voltage converters that provide up to 6kV output, positive or negative, in a compact PCB mount package. The isolated output is directly proportional to the input, and is linear from approximately 0.7 volts in. Excellent filtering techniques and a low noise quasi-sinewave oscillator provide clean, reliable DC to HV DC conversion with low ripple and low EMI/RFI.

The isolated output allows for user selectable output polarity. When the optional center-tap pin is grounded, the unit provides both positive and negative outputs from one compact, low cost module. The pin pattern used on this model has become an industry standard for high voltage modules. The G Series units are component level converters that are easy to integrate, low cost, and come with decades of field proven reliability.

#### **Features**

- Output Voltages from 100V to 6kV
- Output Voltage Proportional to Input
- Low Turn-on Voltage 0.7VDC
- Input to Output Isolation
- Dual Output Models
- No Minimum Load
- 3 Year Warranty

#### DC-HVDC CONVERTER

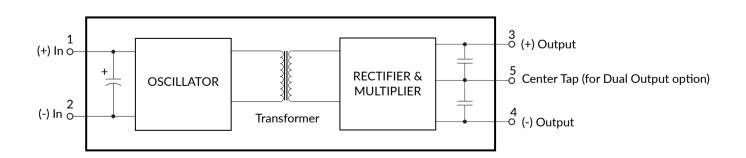


#### **Typical Applications**










- Mass Spectrometry
- Electrostatic Chucks
- Electrophoresis
- Capacitor Charging
- Particle Counter
- Ignition/Spark
- Sustaining Ion Pumps

#### **Dimensions**

1.50 x 1.50 x 0.63" (38.1 x 38.1 x 16.0mm)

#### **Block Diagram**





## Input

| Characteristic           | Minimum | Typical | Maximum | Units | Notes & Conditions            |
|--------------------------|---------|---------|---------|-------|-------------------------------|
| Input Voltage            | 0.7     |         | 12      | VDC   |                               |
| Input Current, No Load   |         |         | 175     | mA    | See Models and Ratings Table. |
| Input Current, Full Load |         |         | 400     | mA    | See Models and Ratings Table. |

## Output

| Characteristic           | Minimum                                                                                                      | Typical | Maximum | Units | Notes & Conditions                    |
|--------------------------|--------------------------------------------------------------------------------------------------------------|---------|---------|-------|---------------------------------------|
| Output Voltage           |                                                                                                              |         | 6000    | VDC   | See Models & Ratings table            |
| Output Current           |                                                                                                              |         | 15      | mA    | See Models & Ratings table            |
| Output Voltage Tolerance |                                                                                                              | ±3      |         | %     | At Max Vout, Full Load                |
| Minimum Load             | No minimum load required                                                                                     |         |         |       |                                       |
| Regulation               | Unregulated, Output is proportional to Input. Unloaded output voltage is typically 10% higher than unloaded. |         |         |       |                                       |
| Ripple and Noise         | 0.1                                                                                                          |         | 2.0     | %     | See Models & Ratings table            |
| Response Time            |                                                                                                              | 15      |         | msec  | 0 to Max Vout, Full Load [G01 to G60] |

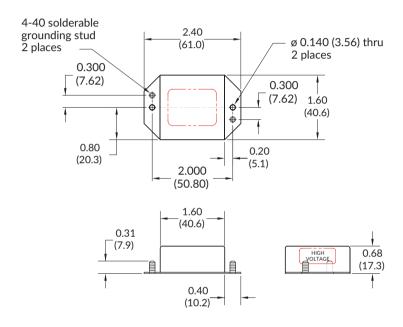
#### **Environmental**

| Characteristic        | Minimum            | Typical | Maximum | Units | Notes & Conditions |
|-----------------------|--------------------|---------|---------|-------|--------------------|
| Operating Temperature | -10                |         | +60     | °C    | Case temperature   |
| Storage Temperature   | -25                |         | +90     | °C    |                    |
| Cooling               | Natural convection |         |         |       |                    |
| Humidity              |                    |         | 95      | %RH   | Non-condensing     |

#### General

| Characteristic             | Minimum                                                                              | Typical | Maximum | Units | Notes & Conditions                                |  |
|----------------------------|--------------------------------------------------------------------------------------|---------|---------|-------|---------------------------------------------------|--|
| Isolation: Input to Output |                                                                                      |         | 3500    | V     | <±3500 Bias                                       |  |
| Switching Frequency        | 60                                                                                   |         | 190     | kHz   | Stable frequency over entire output voltage range |  |
| Construction               | Case material is Diallyl Phthalate (DAP). UL 94 V-0 rated solid vacuum encapsulation |         |         |       |                                                   |  |
| Mean Time Between Failure  | 2.29                                                                                 |         |         | Mhrs  | Bellcore TR 332                                   |  |

#### **Notes:**


- 1. Maximum rated output current is available at maximum rated output voltage and derates linearly as input voltage is decreased.
- 2. Output voltage is load dependent. Under light or no-load conditions, reduce the input voltage so maximum rated output voltage is not exceeded.
- 3. Specifications after 30 minute warm-up, full load, at 25  $^{\circ}\text{C}$  unless otherwise indicated.
- 4. Proper thermal management techniques are required to maintain safe case temperature at maximum power output.
- 5. Ripple specification for center-tapped units applies to the voltage between the positive and negative output terminals.
- $6.\ Models\ G40,\ G50\ \&\ G60\ do\ not\ have\ internal\ bleeder\ resistors\ on\ the\ output.$  Provisions must be made externally to discharge the output capacitors.



## **Safety Approvals**

| Safety Agency | Standard                            | Notes & Conditions              |  |  |  |
|---------------|-------------------------------------|---------------------------------|--|--|--|
| UL            | IEC/UL/CSA/EN 62368                 |                                 |  |  |  |
| CE            | Meets all applicable directives     | Meets all applicable directives |  |  |  |
| RoHS          | RoHS 2 and 3 Directive (2011/65/EU) | Where applicable                |  |  |  |

## **External EMI/RFI Shield**



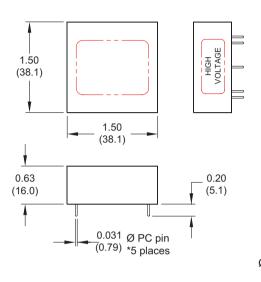
An AB suffix is used to indicate an added external EMI/RFI Shield as shown above. These five-sided aluminum enclosures feature a durable, non-conductive black anodized finish. On models with outputs of 3kV or higher, special care must be taken to ensure adequate spacing and insulation between the metal can and the high voltage output. Single sided layout, encapsulation, or conformal coating may be required. Case grounding studs must be connected to ground. Case ground is not connected to (-) Input.



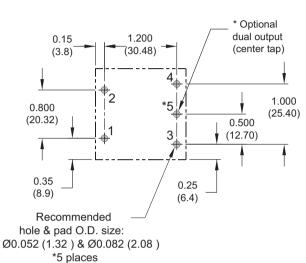
## **Models & Ratings**

| Model Number | Output Voltage | Output Current(1) | input   | Ripple    |        |
|--------------|----------------|-------------------|---------|-----------|--------|
| Woder Humber | Output voitage | Output Current    | No Load | Full Load | кірріе |
| G01          | 0 to 100V      | 15mA              | <100mA  | <250mA    | <1.75% |
| G01CT        | 0 to +/-50V    | 15mA              | <100mA  | <250mA    | <1.75% |
| G02          | 0 to 200V      | 7.5mA             | <100mA  | <250mA    | <0.75% |
| G02CTAB      | 0 to +/-100V   | 7.5mA             | <100mA  | <250mA    | <0.75% |
| G03          | 0 to 300V      | 5mA               | <100mA  | <250mA    | <0.75% |
| G03CTAB      | 0 to +/-150V   | 5mA               | <100mA  | <250mA    | <0.75% |
| G04          | 0 to 400V      | 3.75mA            | <100mA  | <250mA    | <0.75% |
| G04CTR       | 0 to +/-200V   | 3.75mA            | <100mA  | <250mA    | <0.75% |
| G05          | 0 to 500V      | 3mA               | <100mA  | <250mA    | <0.1%  |
| G06          | 0 to 600V      | 2.5mA             | <100mA  | <250mA    | <0.1%  |
| G10          | 0 to 1000V     | 1.5mA             | <100mA  | <250mA    | <0.1%  |
| G12          | 0 to 1200V     | 1.25mA            | <150mA  | <275mA    | <0.1%  |
| G12AB        | 0 to 1200V     | 1.25mA            | <150mA  | <275mA    | <0.1%  |
| G12CTR       | 0 to +/-600V   | 1.25mA            | <150mA  | <275mA    | <0.1%  |
| G15          | 0 to 1500V     | 1mA               | <125mA  | <275mA    | <0.5%  |
| G15AB        | 0 to 1500V     | 1mA               | <125mA  | <275mA    | <0.5%  |
| G20          | 0 to 2000V     | 0.75mA            | <165mA  | <275mA    | <0.5%  |
| G25          | 0 to 2500V     | 0.6mA             | <125mA  | <275mA    | <1%    |
| G25AB        | 0 to 2500V     | 0.6mA             | <125mA  | <275mA    | <1%    |
| G25CT        | 0 to +/-1250V  | 0.6mA             | <125mA  | <275mA    | <1%    |
| G30          | 0 to 3000V     | 0.5mA             | <125mA  | <300mA    | <2%    |
| G30AB        | 0 to 3000V     | 0.5mA             | <125mA  | <300mA    | <2%    |
| G30CT        | 0 to +/-1500V  | 0.5mA             | <125mA  | <300mA    | <2%    |
| G40          | 0 to 4000V     | 0.37mA            | <125mA  | <300mA    | <1%    |
| G40RAB       | 0 to 4000V     | 0.37mA            | <125mA  | <300mA    | <1%    |
| G50          | 0 to 5000V     | 0.3mA             | <125mA  | <300mA    | <2%    |
| G50AB        | 0 to 5000V     | 0.3mA             | <125mA  | <300mA    | <2%    |
| G50CT        | 0 to +/-2500V  | 0.3mA             | <125mA  | <300mA    | <2%    |
| G60          | 0 to 6000V     | 0.25mA            | <125mA  | <300mA    | <2%    |
| G60RAB       | 0 to 6000V     | 0.25mA            | <125mA  | <300mA    | <2%    |
| G60CT        | 0 to +/-3000V  | 0.25mA            | <125mA  | <300mA    | <2%    |
| G60CTAB      | 0 to +/-3000V  | 0.25mA            | <125mA  | <300mA    | <2%    |
| GPMT         | 0 to 1250V     | 0.35mA            | <35mA   | <75mA     | <0.05% |

#### Notes:

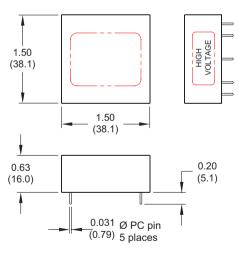

- 1. All orderable part numbers are listed above.
- $2.\ \mathsf{CT}\ \mathsf{indicates}\ \mathsf{dual}\ \mathsf{output}, \mathsf{center}\ \mathsf{tap}.\ \mathsf{Negative}\ \mathsf{side}\ \mathsf{will}\ \mathsf{be}\ \mathtt{\sim}10\%\ \mathsf{larger}\ \mathsf{than}\ \mathsf{positive}\ \mathsf{side}\ \mathsf{w.r.t.}\ \mathsf{the}\ \mathsf{center}\ \mathsf{tap}\ \mathsf{pin}.$
- 3. AB suffix indicates external shield, see Mechanicals.
- 4. R suffix is used as a RoHS indicator for legacy models.
- 5. Model GPMT is rated for 0.4375 Watts.

# **←** G Series

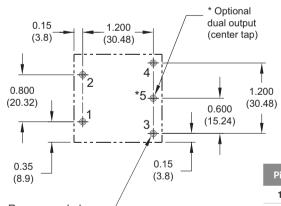

## **Mechanical Details**

## G01 to G40 G01CT to G12CT

#### Top View




## **PCB Layout**




#### G50 to G60 G25CT to G60CT

#### Top View

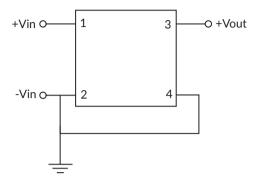


#### **PCB Layout**

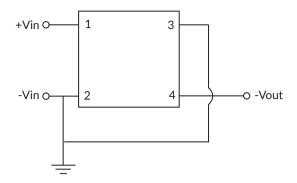


Recommended —/
hole & pad O.D. size:
Ø0.052 (1.32) & Ø0.082 (2.08)
\*5 places

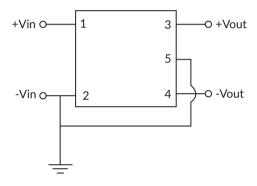
| Pin | Function                          |
|-----|-----------------------------------|
| 1   | (+) Input                         |
| 2   | (-) Input                         |
| 3   | (+) Output                        |
| 4   | (-) Output                        |
| 5   | Dual Output/Center Tap (Optional) |
|     |                                   |


#### Notes:

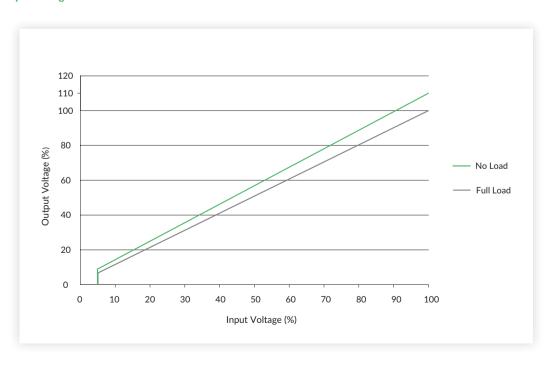
- 1. All dimensions are in inches (mm)
- 2. Weight 1.5oz (43g)
- 3. Tolerance: X.XX±0.02 (0.51)
- 4. Pin Tolerance: ±0.005 (0.127)


# **← G** Series

## **Application Notes**


#### **Positive Output**




#### **Negative Output**



#### **Dual Output**



#### Typical Output vs. Input Voltage



24 Jan 2022