

Plastic Silicon OPTOLOGIC Photosensor

QSE257, QSE259

Description

The QSE25x family are OPTOLOGIC ICs which feature a Schmitt trigger at output which provides hysteresis for noise immunity and pulse shaping. The basic building block of this IC consists of a photodiode, a linear amplifier, voltage regulator, Schmitt trigger and four output options. The TTL/LSTTL compatible output can drive up to ten TTL loads over supply currents from 4.5 to 16.0 Volts. The devices are marked with a color stripe for easy identification.

Features

- Bipolar Silicon IC
- Package Type: Sidelooker
- Medium Wide Reception Angle, 50°
- Package Material and Color: Black Epoxy
- Daylight Filter
- High Sensitivity
- Direct TTL/LSTTL Interface
- These are Pb-Free Devices

Block Diagrams

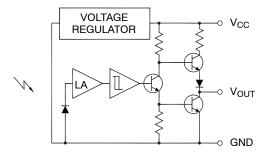


Figure 1. QSE257 Totem-Pole Output Inverter

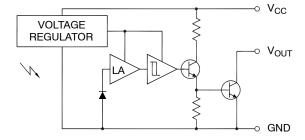


Figure 2. QSE259 Open-Collector Output Inverter

SIDELOOKER OPTOLOGIC CASE 100CL

INPUT/OUTPUT TABLE

Part Number	Light	Output
QSE257	On	LOW
	Off	HIGH
QSE259	On	LOW
	Off	HIGH

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

QSE257, QSE259

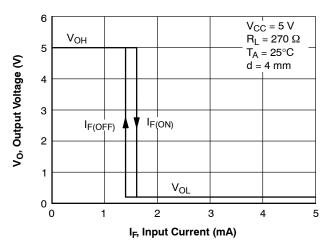
MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise specified)

Symbol	Parameter	Rating	Unit
T _{OPR}	Operating Temperature	-40 to +85	°C
T _{STG}	Storage Temperature	-40 to +100	°C
T _{SOL-I}	Soldering Temperature (Iron) (Notes 2, 3, 4)	240 for 5 s	°C
T _{SOL-F}	Soldering Temperature (Flow) (Notes 2, 3)	260 for 10 s	°C
Io	Output Current	50	mA
V_{CC}	Supply Voltage	4.0 to 16	V
Vo	Output Voltage	35	V
P _D	Power Dissipation (Note 1)	100	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Derate power dissipation linearly 2.50 mW/°C above 25°C.
- 2. RMA flux is recommended.
- 3. Methanol or isopropyl alcohols are recommended as cleaning agents.4. Soldering iron 1/16" (1.6 mm) minimum from housing.

ELECTRICAL CHARACTERISTICS (T_A = -40° C to $+85^{\circ}$ C, V_{CC} = 4.5 V to 5.5 V)


Parameter	Test Condition	Min	Тур	Max	Unit
Positive Going Threshold Irradiance (Note 5)	T _A = 25°C	0.025	_	0.250	mW/cm ²
Hysteresis Ratio		1.10	-	2.00	
Supply Current (Note 5)	Ee = 0 or 0.3 mW/cm ²	-	-	5.0	mA
Peak to Peak Ripple which will Cause False Triggering	f = DC to 50 MHz	-	-	2.00	V
RTER TOTEM POLE)	•				
High Level Output Voltage	Ee = 0, I _{OH} = -10 mA	2.4	-	-	V
Low Level Output Voltage (Note 5)	Ee = 0.3 mW/cm ² , I _{OL} = 16 mA	-	-	0.40	V
RTER OPEN COLLECTOR)					
High Level Output Voltage	Ee = 0, V _{OH} = 30 V	-	-	100	μΑ
Low Level Output Voltage (Note 5)	Ee = 0.3 mW/cm ² , I _{OL} = 16 mA	-	-	0.40	V
Output Rise, Fall Times	Ee = 0 or 0.3 mW/cm ² ,	-	-	70	ns
Propagation Delay	(Note 5)	-	6.0	-	μs
Output Rise, Fall Times	Ee = 0 or 0.3 mW/cm ² ,	_	-	100	ns
Propagation Delay	(Note 5)	-	6.0	-	μs
	Positive Going Threshold Irradiance (Note 5) Hysteresis Ratio Supply Current (Note 5) Peak to Peak Ripple which will Cause False Triggering RTER TOTEM POLE) High Level Output Voltage Low Level Output Voltage (Note 5) RTER OPEN COLLECTOR) High Level Output Voltage Low Level Output Voltage Output Rise, Fall Times Propagation Delay Output Rise, Fall Times	Positive Going Threshold Irradiance (Note 5) $T_A = 25^{\circ}C$ Hysteresis Ratio Ee = 0 or 0.3 mW/cm² Peak to Peak Ripple which will Cause False Triggering $f = DC$ to 50 MHz RTER TOTEM POLE) High Level Output Voltage Ee = 0, $I_{OH} = -10$ mA Low Level Output Voltage (Note 5) Ee = 0.3 mW/cm², $I_{OL} = 16$ mA RTER OPEN COLLECTOR) High Level Output Voltage Ee = 0, $V_{OH} = 30$ V Low Level Output Voltage (Note 5) Ee = 0.3 mW/cm², $I_{OL} = 16$ mA Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², $I_{OL} = 16$ mA Propagation Delay Ee = 0 or 0.3 mW/cm², $I_{OL} = 360$ Ω Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², $I_{OL} = 360$ Ω Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², $I_{OL} = 360$ Ω Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², $I_{OL} = 360$ Ω	Positive Going Threshold Irradiance (Note 5) $T_A = 25^{\circ}C$ 0.025 Hysteresis Ratio 1.10 Supply Current (Note 5) $Ee = 0 \text{ or } 0.3 \text{ mW/cm}^2$ - Peak to Peak Ripple which will Cause False Triggering $f = DC \text{ to } 50 \text{ MHz}$ - RTER TOTEM POLE) High Level Output Voltage $Ee = 0, I_{OH} = -10 \text{ mA}$ 2.4 Low Level Output Voltage (Note 5) $Ee = 0.3 \text{ mW/cm}^2, I_{OL} = 16 \text{ mA}$ - RTER OPEN COLLECTOR) High Level Output Voltage $Ee = 0, V_{OH} = 30 \text{ V}$ - Low Level Output Voltage (Note 5) $Ee = 0.3 \text{ mW/cm}^2, I_{OL} = 16 \text{ mA}$ - Output Rise, Fall Times $Ee = 0 \text{ or } 0.3 \text{ mW/cm}^2, I_{OL} = 360 \Omega$ - Output Rise, Fall Times $Ee = 0 \text{ or } 0.3 \text{ mW/cm}^2, I_{OL} = 360 \Omega$ - Output Rise, Fall Times $Ee = 0 \text{ or } 0.3 \text{ mW/cm}^2, I_{OL} = 360 \Omega$ - Output Rise, Fall Times $Ee = 0 \text{ or } 0.3 \text{ mW/cm}^2, I_{OL} = 360 \Omega$ - $I = 0 mass of ma$	Positive Going Threshold Irradiance (Note 5) $T_A = 25^{\circ}C$ 0.025 - Hysteresis Ratio 1.10 - Supply Current (Note 5) Ee = 0 or 0.3 mW/cm² - - Peak to Peak Ripple which will Cause False Triggering $f = DC$ to 50 MHz - - RTER TOTEM POLE) High Level Output Voltage Ee = 0, $I_{OH} = -10$ mA 2.4 - Low Level Output Voltage (Note 5) Ee = 0.3 mW/cm², $I_{OL} = 16$ mA - - RTER OPEN COLLECTOR) High Level Output Voltage Ee = 0, $V_{OH} = 30$ V - - - Low Level Output Voltage (Note 5) Ee = 0.3 mW/cm², $I_{OL} = 16$ mA - - Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², $I_{OL} = 16$ mA - - Propagation Delay Ee = 0 or 0.3 mW/cm², $I_{OL} = 16$ mA - - - Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², $I_{OL} = 16$ mA - - - Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², $I_{OL} = 16$ mA - - - Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², $I_{OL} = 16$ mA - - -	Positive Going Threshold Irradiance (Note 5) $T_A = 25^{\circ}C$ 0.025 - 0.250 Hysteresis Ratio 1.10 - 2.00 Supply Current (Note 5) Ee = 0 or 0.3 mW/cm² - - 5.0 Peak to Peak Ripple which will Cause False Triggering f = DC to 50 MHz - - 2.00 RTER TOTEM POLE) High Level Output Voltage Ee = 0, I _{OH} = -10 mA 2.4 - - Low Level Output Voltage (Note 5) Ee = 0.3 mW/cm², I _{OL} = 16 mA - - 0.40 RTER OPEN COLLECTOR) High Level Output Voltage Ee = 0, V _{OH} = 30 V - - 100 Low Level Output Voltage (Note 5) Ee = 0.3 mW/cm², I _{OL} = 16 mA - - 0.40 Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², I _{OL} = 16 mA - - 70 Propagation Delay (Note 5) - - - - - - Output Rise, Fall Times Ee = 0 or 0.3 mW/cm², I _{OL} = 50%, R _L = 360 Ω - - - - - -

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. $\lambda = 880 \text{ nm (AlGaAs)}.$

QSE257, QSE259

TYPICAL PERFORMANCE CURVES

(Sensor Coupled to QEE113 Emitter)

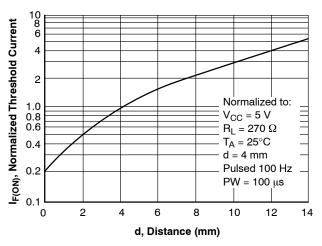


Figure 3. Output Voltage vs. Input Current

Figure 4. Threshold Current vs. Distance

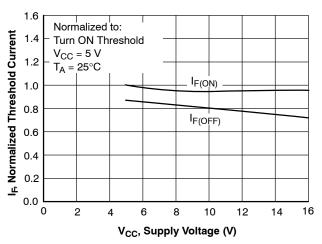


Figure 5. Normalized Threshold Current vs. Supply Voltage

QSE257, QSE259

TYPICAL PERFORMANCE CURVES (continued)

(Sensor Coupled to QEE113 Emitter)

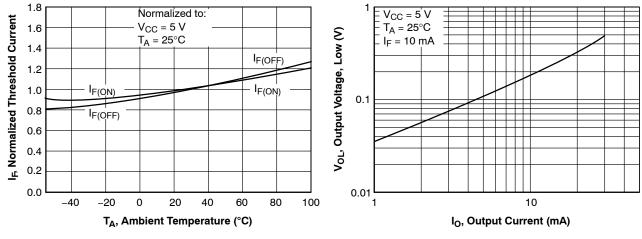


Figure 6. Normalized Threshold Current vs. Ambient Temperature

Figure 7. Low Output Voltage vs. Output Current

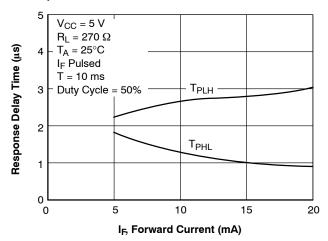


Figure 8. Response Time vs. Forward Current

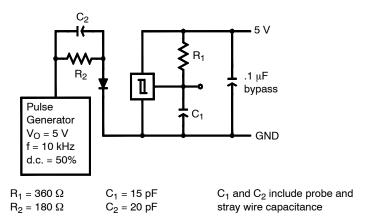


Figure 9. Switching Speed Test Circuit

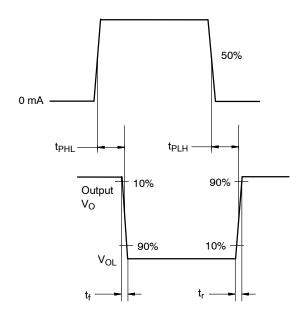
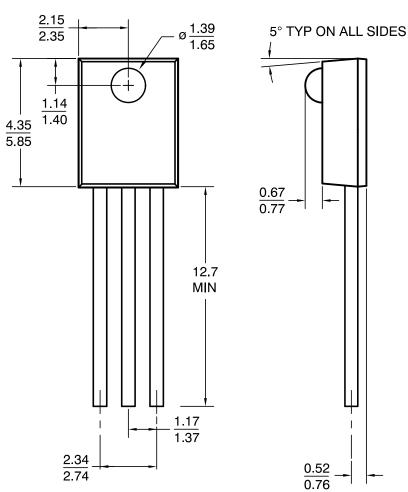
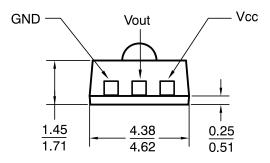


Figure 10. Switching Times Definitions

ORDERING INFORMATION


Part Number	Package	Part Number Definitions	Color Code	Shipping
QSE257	SIDELOOKER OPTOLOGIC (Pb-Free)	Totem-Pole, inverter output	Yellow	500 Units / Bulk
QSE259		Open-collector, inverter output	Blue	


ON

SIDELOOKER OPTOLOGIC

CASE 100CL ISSUE O

DATE 30 NOV 2016

Note:

1. Dimensions for all drawings are in millimeters.

DOCUMENT NUMBER:	98AON13426G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SIDELOOKER OPTOLOGIC		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales