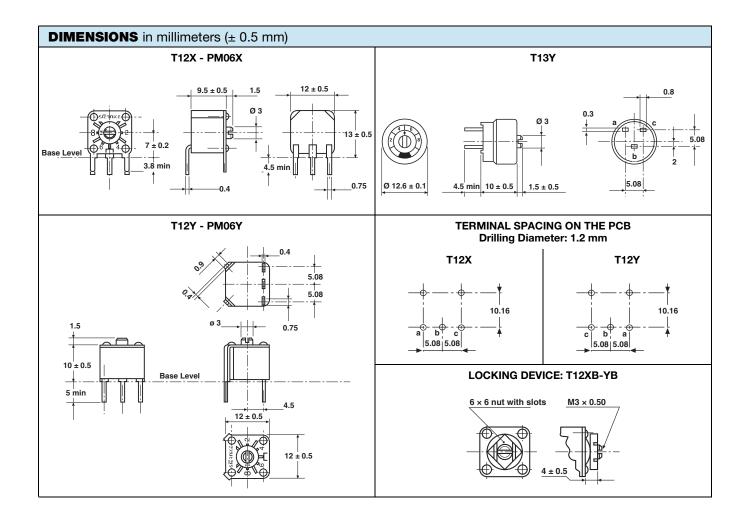
T12, T13

Vishay Sfernice

Fully Sealed Container 12 mm Square or Round Single-Turn Cermet Trimmer


The Vishay Sfernice trimming potentiometers T12 and T13 fully meet the requirements of CECC 41 100.

The use of a cermet track combined with sealing of the case provides unique characteristics and performances.

T12 and T13 have been specially designed for mounting on printed circuit board.

FEATURES

- Military and professional grade
- High power rating (1 W at 70 °C)
- Tests according to CECC 41000 or IEC 60393-1
- High stability (1 % typical)
- Mechanical strength
- Hermetic sealing of the case
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

1 For technical questions, contact: <u>sferpottrimmers@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 SHAY. www.vishay.com

Vishay Sfernice

T12, T13

Resistive element		Cermet		
Electrical travel		270° ± 10°		
Resistance range		22 Ω to 10 ΜΩ		
Standard series E3		1 - 2.2 - 4.7 and on request 1 - 2 - 5		
	standard	± 20 %		
Tolerance	on request	± 10 %, ± 5 %		
	linear	1 W at 70 °C		
Power rating	logarithmic	0.5 W at 70 °C		
Power rating chart		MI HANG 0.5 LOG. LAWS "L" and "F" LOG. LAWS "L" and "F" 0.5 LOG. LAWS "L" AND LOG BUILT THE LOG		
Circuit diagram		$a \longrightarrow c \\ (1) \longrightarrow c \\ (2) \qquad (3)$		
Resistance laws		PU P		
Temperature coefficient		See Standard Resistance Element Table		
Limiting element voltage (linea	ar law)	350 V		
Contact resistance variation	,	3 % <i>R</i> n or 3 Ω		
End resistance (typical)		1 Ω		
Dielectric strength (RMS)		1000 V		

2

Vishay Sfernice

MECHANICAL SPECIFICATIONS	
Mechanical travel	300° ± 5°
Operating torque (max. Ncm)	3
End stop torque (max. Ncm)	15
Unit weight (max. g)	4.7
Terminals	Pure Sn (code e3)

ENVIRONMENTAL SPECIFICATIONS					
Temperature range	-55 °C to +125 °C				
Climatic category	55/100/56				
Sealing	IP67 Fully sealed				

PERFORMANCES						
TEOTO		TYPICAL VALUES AND DRIFTS				
TESTS	CONDITIONS	∆R _T /R _T (%)	Δ R ₁₋₂ / R ₁₋₂ (%)			
Load life	1000 h at rated power 90'/30' - ambient temperature 70 °C	± 1 % Contact res. variation: < 2 % Rn	± 2 %			
Climatic sequence	Phase A dry heat 100 °C Phase B damp heat Phase C cold -55 °C Phase D damp heat 5 cycles	± 0.5 %	±1%			
Long term damp heat	56 days 40 °C, 93 % RH	\pm 0.5 % Dielectric strength: 1000 V_{RMS} Insulation resistance: > 10^4 $M\Omega$	±1%			
Rapid temperature change	5 cycles -55 °C to +125 °C	± 0.5 %	$\begin{array}{l} \Delta V_{1-2} / \Delta V_{1-3} \\ \leq \pm 1 \% \end{array}$			
Shock	50 <i>g</i> at 11 ms 3 successive shocks in 3 directions	± 0.1 %	± 0.5 %			
Vibration	10 Hz to 55 Hz 0.75 mm or 10 <i>g</i> during 6 h	± 0.1 %	$\begin{array}{l} \Delta V_{1\text{-}2}\!/\Delta V_{1\text{-}3} \\ \leq \pm \ 0.5 \ \% \end{array}$			
Rotational life	200 cycles	± 1 % Contact res. variation: < 2 % <i>R</i> n				

Note

Nothing stated herein shall be construed as a guarantee of quality or durability

www.vishay.com

T12, T13

Vishay Sfernice

STANDARD RESISTANCE ELEMENT DATA									
	LINEAR LAW				LOG LA	ws			
STANDARD RESISTANCE VALUES	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. CURRENT THROUGH WIPER	MAX. POWER AT 70 °C	MAX. WORKING VOLTAGE	MAX. CURRENT THROUGH WIPER	TYPICAL TCR -55 °C to +125 °C		
Ω	w	v	mA	w	v	mA	ppm/°C		
22	1	4.69	213.2						
47	1	6.85	145.8						
100	1	10	100						
220	1	14.8	67.4						
470	1	21.6	46.1						
1K	1	31.6	31.6	0.5	22.4	22.4			
2.2K	1	46.9	21.3	0.5	33.2	15.1			
4.7K	1	68.5	14.5	0.5	48.5	10.3			
10K	1	100	10	0.5	79.7	7.07	± 100		
22K	1	148.3	6.7	0.5	105	4.77	± 100		
47K	1	216.7	4.6	0.5	153	3.26			
100K	1	316.2	3.16	0.5	224	2.24			
220K	0.56	350	1.59	0.5	332	1.51			
470K	0.26	350	0.75	0.26	350	0.74			
1M	0.12	350	0.35	0.12	350	0.35			
2.2M	0.05	350	0.16						
4.7M	0.02	350	0.07						
10M	0.01	350	0.03						

MARKING

SHAY

- Vishay trademark
- Model
- Ohmic value (in Ω , k Ω , M Ω)
- Tolerance (in %)
- Manufacturing date
- Marking of terminal: 1, 2, 3

PACKAGING

- For T13Y: In plastic box of 50 pieces, code B25 (BL50)
- For T12Y, T12X: In carton box of 50 pieces, code B25 (BO50)

4

www.vishay.com

T12, T13

Vishay Sfernice

T12X YB = locking shaft 0 = withoutFrom 22Ω to $10 M\Omega$ $103 = 10 k\Omega$ M = 20% On request:A LB25 = box 50 pieces(If applicable) Given by Vishay for	ORDERING INFORMATION FOR T12 (part number)								
T12X YB = locking shaft 0 = withoutFrom 22Ω to $10 M\Omega$ $103 = 10 k\Omega$ M = 20% On request:A LB25 = box 50 pieces(If applicable) Given by Vishay for	T 1 2 X B	2 2 3	MA	B 2	2 5				
$ $ Y $ $ 0 = without $ $ 103 = 10 k Ω $ $ On request: $ $ L $ $ Given by Vishay for	MODEL STYLE OPTION	OHMIC VALUE	TOLERANCE	TAPER	PACKAGING CODE	SPECIAL NUMBER			
$\mathbf{K} = 10 \% \mathbf{F}$ $\mathbf{J} = 5 \%$			On request: K = 10 %	A L F	B25 = box 50 pieces	(If applicable) Given by Vishay for custom design			

DESCRIPTION (for information only)										
T12	X	В	22K	20 %	Α		ВО			e3
MODEL	STYLE	SPECIAL	VALUE	TOLERANCE	TAPER	SPECIAL	PACKAGING	SPECIAL	SHAFT	LEAD FINISH

ORDERING INFORMATION FOR T13 (part number)							
T 1 3 Y 1 0 5 M A B 2 5							
MODEL	STYLE	OHMIC VALUE	TOLERANCE	TAPER	PACKAGING CODE	SPECIAL NUMBER	
T13	Y	From 22 Ω to 10 MΩ 103 = 10 kΩ	M = 20 % On request: K = 10 %	A L F	B25 = box 50 pieces	(If applicable) Given by Vishay for custom design	

DESCRIPT	ION (for inform	nation only)					
T13	Y	1M	20 %	Α		BL50	e3
MODEL	STYLE	VALUE	TOLERANCE	TAPER	SPECIAL	PACKAGING	LEAD FINISH

RELATED DOCUMENTS	
APPLICATION NOTES	
Potentiometers and Trimmers	www.vishay.com/doc?51001
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.