

MOSFET - N-Channel, Shielded Gate, POWERTRENCH®

100 V, 16 A, 56 m Ω

FDMC8622

General Description

This N–Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

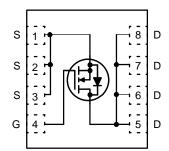
Features

- Shielded Gate MOSFET Technology
- Max $r_{DS(on)} = 56 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 4 \text{ A}$
- Max $r_{DS(on)} = 90 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 3 \text{ A}$
- High Performance Trench Technology for Extremely Low r_{DS(on)}
- High Power and Current Handling Capability in a Widely Used Surface Mount Package
- 100% UIL Tested
- This Device is Pb–Free and is ROHS Compliant

V _{DS}	r _{DS(on)} MAX	I _D MAX
100 V	56 mΩ @ 10 V	16 A
	90 mΩ @ 6 V	

WDFN8 3.3x3.3, 0.65P (MLP 3.3x3.3) CASE 511DR

MARKING DIAGRAM


\$Y = Logo

&Z = Assembly Plant Code &2 = 2-Digit Date Code Format

&K = 2-Digits Lot Run Traceability Code

FDMC8622 = Device Code

PIN ASSIGNMENT

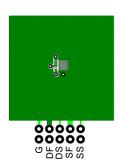
ORDERING INFORMATION

See detailed ordering and shipping information on page 6 of this data sheet.

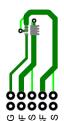
FDMC8622

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter			Ratings	Unit
V _{DS}	Drain to Source Voltage			100	V
V _{GS}	Gate to Source Voltage			±20	V
I _D	Drain Current	Continuous	T _C = 25°C	16	Α
		Continuous (Note 3a)	T _A = 25°C	4	
		Pulsed (Note 2)		30	
E _{AS}	Single Pulse Avalanche Energy (Note 1)		37	mJ	
P_{D}	Power Dissipation $T_C = 25^{\circ}C$		31	W	
F	Power Dissipation (Note 3a)	2.3			
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Starting $T_J = 25^{\circ}C$; N-ch: L = 3.0 mH, $I_{AS} = 5.0$ A, $V_{DD} = 100$ V, $V_{GS} = 10$ V. 2. Pulse Id refers to Figure 11. Forward Bias Safe Operation Area.


THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
Rелс	Thermal Resistance, Junction to Case (Note 3)	4.0	°C/W
RθJA	Thermal Resistance, Junction to Ambient (Note 3a)	53	

3. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined bythe user's board design.

a. 53°C/W when mounted on a 1 in² pad of 2 oz copper

b. 125°C/W when mounted on a minimum pad of 2 oz copper

FDMC8622

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARA	ACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100	_	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	69	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	_	-	1	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-	-	±100	nA
ON CHARAC	CTERISTICS					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2	2.9	4	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	-9	-	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 4 A	_	43.7	56	mΩ
		V _{GS} = 6 V, I _D = 3 A	_	59.9	90	1
		V _{GS} = 10 V, I _D = 4 A, T _J = 125°C	_	76.4	98	
9FS	Forward Transconductance	V _{DS} = 10 V, I _D = 4 A	_	8.9	-	S
DYNAMIC C	HARACTERISTICS		•	•		•
C _{iss}	Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	_	302	402	pF
C _{oss}	Output Capacitance	1	_	72.5	96	pF
C _{rss}	Reverse Transfer Capacitance]	_	4.2	6	pF
Rg	Gate Resistance]	_	1.0	-	Ω
SWITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50 \text{ V}, I_D = 4 \text{ A}, V_{GS} = 10 \text{ V},$	_	5.9	12	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	_	1.6	10	ns
t _{d(off)}	Turn-Off Delay Time	1	_	10.2	18	ns
t _f	Fall Time	1	_	2.2	10	ns
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DD} = 50 \text{ V}, I_D = 4 \text{ A}$	_	5.2	7.3	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 \text{ V to 5 V}, V_{DD} = 50 \text{ V}, I_D = 4 \text{ A}$	_	3.0	4.1	nC
Q _{gs}	Total Gate Charge	V _{DD} = 50 V, I _D = 4 A	_	1.4	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	1	_	1.4	-	nC
DRAIN-SOU	IRCE DIODE CHARACTERISTICS					
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 4 A (Note 4)	_	0.8	1.3	V
		V _{GS} = 0 V, I _S = 1.7 A (Note 4)	_	0.8	1.2	1
t _{rr}	Reverse Recovery Time	I _F = 4 A, di/dt = 100 A/μs	_	36	57	ns
	Reverse Recovery Charge	1	-	1	45	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: Pulse Width < 300 µs, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

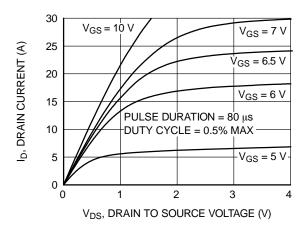


Figure 1. On Region Characteristics

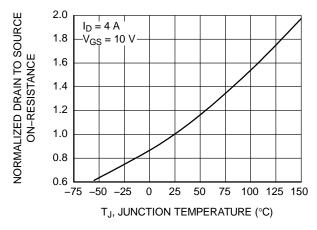


Figure 3. Normalized On–Resistance vs. Junction Temperature

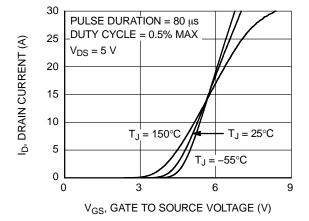


Figure 5. Transfer Characteristics

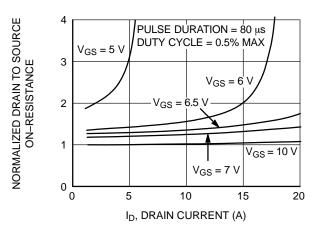


Figure 2. Normalized On–Resistance vs.
Drain Current and Gate Voltage

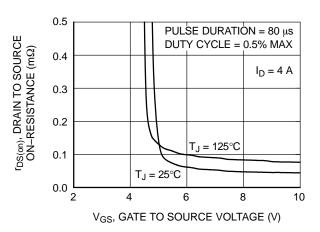


Figure 4. On–Resistance vs. Gate to Source Voltage

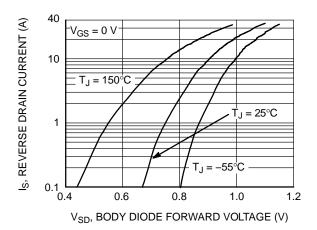


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

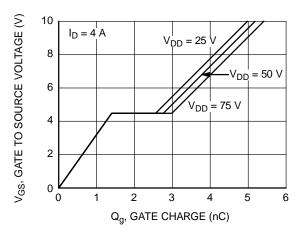


Figure 7. Gate Charge Characteristics

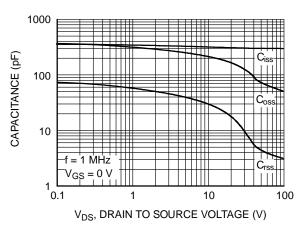


Figure 8. Capacitance vs. Drain to Source Voltage

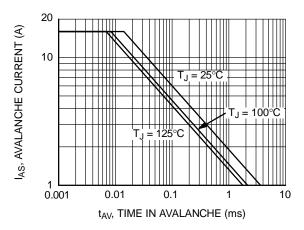


Figure 9. Unclamped Inductive Switching Capability

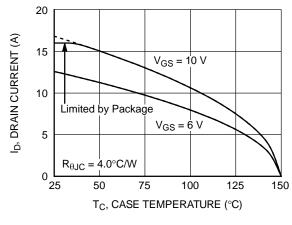


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

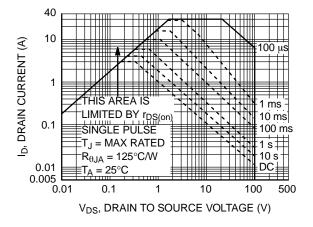


Figure 11. Forward Bias Safe Operating Area

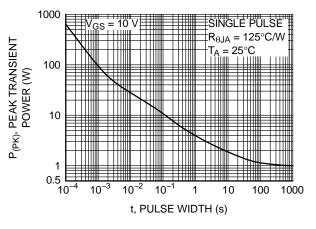


Figure 12. Single Pulse Maximum Power Dissipation

FDMC8622

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

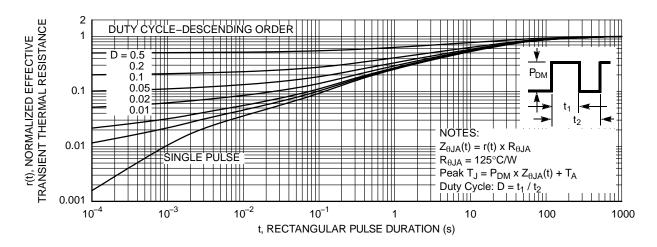


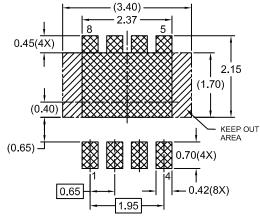
Figure 13. Junction-to-Ambient Transient Thermal Response Curve

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package Type	Reel Size	Tape Width	Shipping [†]
FDMC8622	FDMC8622	WDFN8 3.3x3.3, 0.65P (MLP 3.3x3.3) (Pb-Free)	13"	12 mm	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

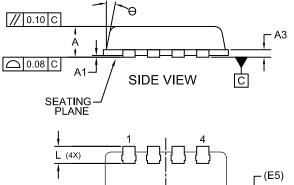
POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

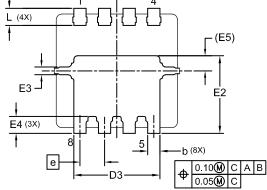


DATE 02 FEB 2022

NOTES:

- A. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- B. SEATING PLANE IS DEFINED BY TERMINAL TIPS ONLY
- C. BODY DIMENSIONS DO NOT INCLUDE MOLD FLASH PROTRUSIONS NOR GATE BURRS. MOLD FLASH PROTRUSION OR GATE BURR DOES NOT EXCEED 0.150MM.


DIM	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.70	0.75	0.80		
A1	0.00	ı	0.05		
А3	0.15	0.20	0.25		
b	0.27	0.32	0.37		
D	3.20	3.30	3.40		
D1	3.10	3.20	3.30		
D3	2.17	2.27	2.37		
Е	3.20	3.30	3.40		
E1	2.90	3.00	3.10		
E2	1.95	2.05	2.15		
E3	0.15	0.20	0.25		
E4	0.30	0.40	0.50		
E5	0.40 REF				
е	0.65 BSC				
L	0.30	0.40	0.50		
θ	0°	-	12°		



RECOMMENDED LAND PATTERN

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

○ 0.10 C 2X В PIN1 □ 0.10 C IDENT TOP VIEW

BOTTOM VIEW

GENERIC MARKING DIAGRAM*

XXXX AYWW= XXXX = Specific Device Code = Assembly Location = Year = Work Week ww = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13650G	Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3x3.3, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales