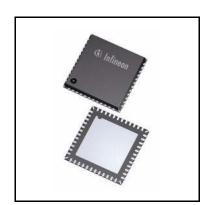


Multiple MOSFET Driver IC

1 Overview

Features


- Eight half-bridge gate drivers for external N-channel MOSFETs
- Control of reverse battery protection MOSFET
- Adaptive MOSFET gate control
 - Improved electromagnetic emission
 - Reduced switching losses in PWM mode
- 24-bit Serial Peripheral Interface
- Two current sense amplifiers with configurable gain
 - High-side and low-side capable for protection and diagnosis
- Drain-source monitoring for short circuit detection
- · Overtemperature warning and shutdown
- Timeout watchdog
- Detailed off-state diagnostic (open load, short circuit to battery or short circuit to GND) via SPI
- Three PWM inputs
 - High-side and low-side PWM capable
 - Active free-wheeling
 - Up to 25 kHz PWM frequency
- Low current consumption in sleep mode
- · Leadless power package with support of optical lead tip inspection
- Green Product (RoHS compliant)
- AEC Qualified

Potential applications

- Seat control and extended functions (steering column adjustment, gas pedal adjustment)
- Central door lock
- Body control module (cargo cover, washer pump, window lift, rear wiper ...)

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

Overview

Description

The TLE92108-231QX is a Multi-MOSFET driver IC dedicated to control up to sixteen n-channel MOSFETs. It includes eight half-bridges for DC motor control applications such as automotive power seat control or other applications.

A 24-bit Serial Peripheral Interface (SPI) is used to configure the TLE92108-231QX and to control the halfbridges. It also allows the read out of the status registers for diagnostic purpose.

The TLE92108-231QX offers a wide range of diagnostic features such as the monitoring of the supply voltage, the charge pump voltage, temperature warning and over-temperature shutdown. Each gate driver monitors independently its external MOSFET drain-source voltage for fault conditions.

The device is housed in a VQFN-48 with exposed pad supporting lead tip inspection. The package provides a good thermal performance and minimizes the required PCB space.

Туре	Package	Marking
TLE92108-231QX	PG-VQFN-48	TLE92108-231QX

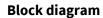


Table of contents

1	Overview	. 1
2	Block diagram	. 5
2.1	Voltage and current definition	. 6
3	Pin configuration	. 7
3.1	Pin assignment	. 7
3.2	Pin definitions and functions	. 8
4	General product characteristics	10
4.1	Absolute maximum ratings	
4.2	Functional range	
4.3	Thermal resistance	13
5	General description	14
5.1	Power supply	
5.2	Operation modes	
5.2.1	Normal mode	14
5.2.2	Sleep mode	15
5.2.3	Fail Safe Mode	
5.3	Reset behavior	
5.4	Charge pump	
5.5	Frequency modulation	
5.6 5.6.1	Electrical characteristics	
5.6.1 5.6.2	Electrical characteristics: supply	
5.6.3	Electrical characteristics charge pump	
6	Floating gate drivers	
6.1 6.2	MOSFET control with bridge driver in active mode (BD_PASS = 0 and EN = High)	
6.2.1	Static activation of a high-side MOSFET	
6.2.2	Static activation of a low-side MOSFET	
6.2.3	Turn-off of the high-side and low-side MOSFETs of a half-bridge	
6.3	PWM operation with bridge driver in active mode (BD_PASS = 0)	
6.3.1	Determination of the active and free-wheeling MOSFET	
6.3.2	Configuration in PWM mode	
6.3.3	PWM operation with adaptive gate control	35
6.3.3.1	High-side PWM with adaptive gate control, motor operating as load	
6.3.3.2	Low-side PWM with adaptive gate control, motor operating as load	
6.3.3.3	High-side PWM with adaptive gate control, motor operating as generator	
6.3.3.4	Low-side PWM with adaptive gate control, motor operating as generator	
6.3.3.5	Status bits for regulation of turn-on and turn-off delay times	
6.3.3.6	Precharge and predischarge phases with EN_DEEP_AD = 1	
6.3.4	PWM operation without adaptive gate control	
6.3.4.1 6.3.4.2	PWM operation without adaptive gate control, AGC[1:0] = (0,0)	
6.3.5	PWM operation at high and low duty cycles	
6.3.6	Gate driver current	
6.4	Passive discharge	
	0	

6.5 6.6	Bridge driver in passive mode	
	•	
7	Protections and diagnostics	
7.1 7.2	Reverse polarity protection	
	, ,	
7.3 7.4	Drain-source voltage monitoring with bridge driver in active mode	
7.4 7.4.1	Cross-current protection and drain-source overvoltage blank time	
7.4.1 7.4.2	Cross-current protection	
7.4.2 7.4.3	Drain-source overvoltage blank time in bridge driver active mode	
7. 4 .5 7.5	Mapping of cross-current protection and blank times	
7.6	Temperature monitoring	
7.7	V_{S} overvoltage and undervoltage shutdown	
7.7.1	$V_{\rm S}$ overvoltage and undervoltage shutdown	
7.7.2	$V_{\rm S}$ undervoltage	
7.7.3	V _{DD} undervoltage	
7.7.4	Charge pump undervoltage	
7.7. 4 7.8	Switching parameters of MOSFETs in PWM mode	
7.9	Timeout watchdog	
7.10	Current sense amplifier	
7.10.1	Unidirectional and bidirectional operation	
7.10.1	Gain configuration	
7.10.2	High-side and low-side setting	
7.10.4	Overcurrent detection	
7.10.5	CSO outputs capacitor	
7.11	Electrical characteristics protections and diagnostics	
	·	
8	Serial Peripheral Interface - SPI	
8.1	SPI protocol with independent slave selection	
8.2	Global Error Flag (GEF)	
8.3	Global status byte	
8.4	SPI error detection	
8.5 8.6	Daisy chain	
	SPI electrical characteristics: timings	
9	Register specification	. 99
9.1	Control registers	
9.1.1	General Control Registers and Protection Settings	101
9.1.2	Half-bridge control	
9.2	Status register	
9.2.1	General status register	136
10	Application information	150
11	Package outlines	152
12	Revision History	153

2 Block diagram

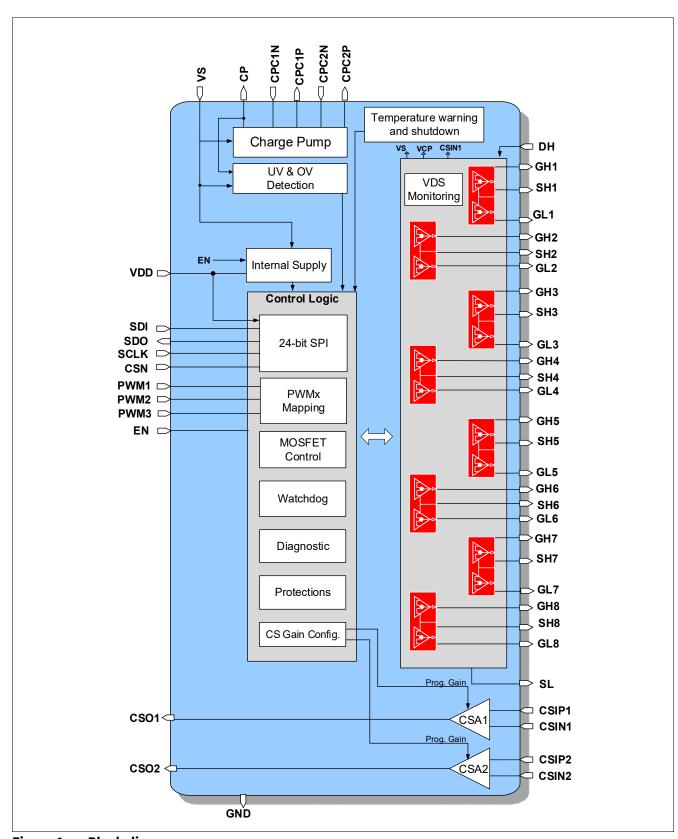
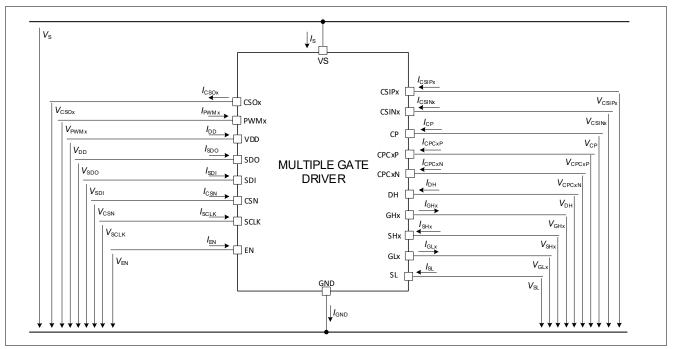


Figure 1 Block diagram


Multiple MOSFET Driver IC

Block diagram

Voltage and current definition 2.1

Figure 2 shows terms used in this datasheet, with associated convention for positive value.

Voltage and current definition Figure 2

Pin configuration

Pin configuration 3

Pin assignment 3.1

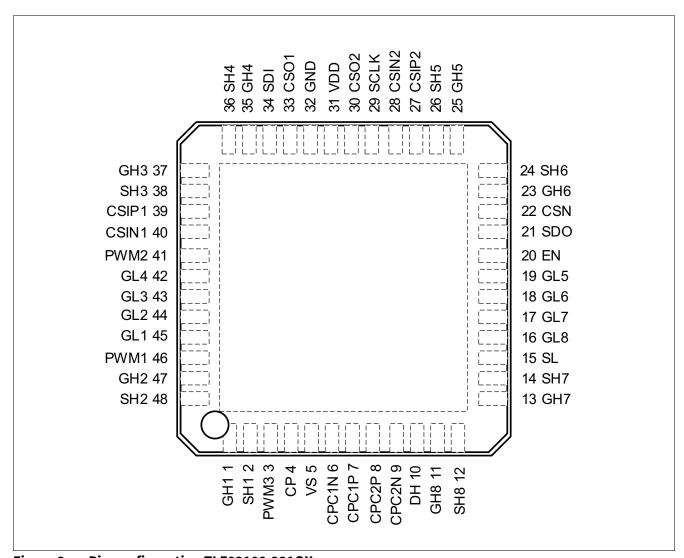


Figure 3 Pin configuration TLE92108-231QX

Pin configuration

Pin definitions and functions 3.2

Pin configuration TLE92108-231QX Table 1

Pin	Symbol	Function
1	GH1	Gate high-side 1 Analog I/O pin to turn on/off high-side MOSFET 1. Connect to the gate of high-side MOSFET 1.
2	SH1	Source high-side 1
		Connection to source of high-side MOSFET 1.
3	PWM3	PWM input 3
4	СР	Charge Pump Output
5	VS	Supply Voltage Device supply voltage. Connect this pin to the supply (battery) voltage with a reverse battery protection circuit.
6	CPC1N	Negative connection to Charge Pump Capacitor 1
7	CPC1P	Positive connection to Charge Pump Capacitor 1
8	CPC2P	Positive connection to Charge Pump Capacitor 2
9	CPC2N	Negative connection to Charge Pump Capacitor 2
10	DH	Drain input for high-sides Input for the drains of high-side MOSFETs. Refer to Chapter 7.3.
11	GH8	Gate high-side 8
12	SH8	Source high-side 8
13	GH7	Gate high-side 7
14	SH7	Source high-side 7
15	SL	Source low-side Common connection to the source of the low-side MOSFETs.
16	GL8	Gate low-side 8
17	GL7	Gate low-side 7
18	GL6	Gate low-side 6
19	GL5	Gate low-side 5
20	EN	Enable input with internal pull-down
21	SDO	Serial Data Output
22	CSN	Chip Select Not with internal pull-up
23	GH6	Gate high-side 6
24	SH6	Source high-side 6
25	GH5	Gate high-side 5
26	SH5	Source high-side 5
27	CSIP2	Non-Inverting input of the Current Sense Amplifier 2
28	CSIN2	Inverting input of the Current Sense Amplifier 2
29	SCLK	Serial Clock Input with internal pull-down
30	CSO2	Current Sense Amplifier Output 2

Pin configuration

Table 1 Pin configuration TLE92108-231QX

Pin	Symbol	Function
31	VDD	Logic supply
32	GND	Ground connection
33	CSO1	Current Sense Amplifier Output1
34	SDI	Serial Data Input with internal pull-down
35	GH4	Gate high-side 4
36	SH4	Source high-side 4
37	GH3	Gate high-side 3
38	SH3	Source high-side 3
39	CSIP1	Non-inverting input of the Current Sense Amplifier 1
40	CSIN1	Inverting input of the Current Sense Amplifier 1 . This pin can be used as reference for the high-side MOSFET drain if CSA1 is configured as high-side. Refer to Chapter 7.3
41	PWM2	PWM input 2
42	GL4	Gate low-side 4
43	GL3	Gate low-side 3
44	GL2	Gate low-side 2
45	GL1	Gate low-side 1
46	PWM1	PWM input 1
47	GH2	Gate high-side 2
48	SH2	Source high-side 2
	E.P.	Exposed pad For cooling purpose only, do not use as electrical GND ¹⁾ .

¹⁾ The exposed pad at the bottom of the package allows better power dissipation from TLE92108-231QX via the PCB. The exposed pad must be left floating or connected to GND (recommended) for best EMC and thermal performance.

Multiple MOSFET Driver IC

General product characteristics

General product characteristics 4

Absolute maximum ratings 4.1

Absolute maximum ratings1) Table 2

 $T_i = -40$ °C to 150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition		
Voltages				-				
Supply voltage	V_{S}	-0.3	_	40	V	-	P_4.1.1	
PWM input voltages (PWMx)	V_{PWMx}	-0.3	-	V _{DD} + 0.3	V	/ < 10 mA	P_4.1.2	
Logic input voltages (SDI, SCLK, CSN, EN)	$V_{\rm SDI}, V_{\rm SCLK}, \ V_{\rm CSN}, V_{\rm EN}$	-0.3	-	V _{DD} + 0.3	V	/ < 10 mA	P_4.1.3	
Voltage range and SDO	V_{SDO}	-0.3	-	V _{DD} + 0.3	V	/ < 10 mA	P_4.1.4	
Voltage range at CSIPx and CSINx	$V_{\rm CSIP}, V_{\rm CSIN}$	-8.0	-	40	V	-	P_4.1.5	
Differential input voltage range CSIPx - CSINx	V _{CSIDiff}	-8.0	-	8.0	V	-	P_4.1.21	
Voltage range at DH	V_{DH}	-0.3	_	40	V	-	P_4.1.6	
Voltage range at SL	V_{SL}	-8.0	_	6.0	V	_	P_4.1.7	
Voltage range at SHx	V_{SH}	-8.0	_	48	V	_	P_4.1.8	
Voltage range at GHx	V_{GH}	-8.0	_	48	V	_	P_4.1.9	
Voltage range at GLx	V_{GL}	-8.0	_	24	V	-	P_4.1.10	
Voltage difference between GLx and SL	$V_{\rm GS_LS}$	-0.3	-	16	V	-	P_4.1.11	
Voltage difference between GHx and SHx	V _{GS_HS}	-1.0	-	16	V	2)	P_4.1.23	
Voltage range at charge pump pins CP	V _{CP}	V _S -0.3	-	V _S +15	V	-	P_4.1.12	
Voltage range at charge pump pins CPC1N, CPC1P, CPC2N, CPC2P	V _{CPCx}	V _{CP} -0.3	-	V _{CP} +0.3	V	-	P_4.1.22	
Logic supply voltage	V_{DD}	-0.3	_	5.5	٧	-	P_4.1.13	
Voltage at CSOx	V_{CSOx}	-0.3	-	V _{DD} + 0.3	V	-	P_4.1.14	
Temperatures			1	1	1	-	1	
Junction temperature	$T_{\rm j}$	-40	_	150	°C	-		
Storage temperature	$T_{\rm stg}$	-55	-	150	°C	-	P_4.1.16	

infineon

General product characteristics

Table 2 Absolute maximum ratings¹⁾ (cont'd)

 T_j = -40°C to 150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or	Number	
		Min.	Тур.	Max.		Test Condition		
ESD susceptibility		-	1					
ESD susceptibility all pins	$V_{\rm ESDHBM1}$	-2	_	2	kV	HBM ³⁾	P_4.1.17	
ESD susceptibility of VS and DH pins versus GND	V _{ESDHBM2}	-4	-	4	kV	HBM ³⁾	P_4.1.18	
ESD susceptibility all pins	$V_{\rm ESDCDM1}$	-500	-	500	V	CDM ⁴⁾	P_4.1.19	
ESD susceptibility pin corner pins	V _{ESDCDM2}	-750	-	750	V	CDM ⁴⁾	P_4.1.20	

- 1) Not subject to production test, specified by design.
- 2) $V_{GS\ GH}$ may be between -1.0 and -0.3V only if the current injected into SHx is below 4 mA
- 3) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 k Ω , 100 pF).
- 4) ESD susceptibility, Charged Device Model "CDM" according JEDEC JESD22-C101.

Notes

- 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

4.2 Functional range

Table 3 Functional range

Parameter	Symbol		Value	S	Unit	Note or	Numbe
		Min.	Тур.	Max.		Test Condition	r
Supply voltage range for normal operation	$V_{S(nor)}$	6.0	-	28	V	-	P_4.2.1
Extended supply voltage range	$V_{S(ext)}$	5.5	-	6	V	¹⁾ Parameter deviations possible	P_4.2.7
Extended supply voltage range	$V_{S(ext)}$	28	-	V _{SOV_OFF2} (max)	V	¹⁾ Parameter deviations possible	P_4.2.2
Supply voltage transients slew rate	dV_S/dt	-10	-	10	V/µs	1)	P_4.2.3
Logic supply voltage	V_{DD}	3.0	_	5.5	V	-	P_4.2.4
SPI logic input voltage	$V_{\rm SDI}$, $V_{\rm SCLK}$, $V_{\rm CSN}$	0	-	$V_{ m DD}$	V	-	P_4.2.5
Junction temperature	T_{i}	-40	_	150	°C	_	P_4.2.6

General product characteristics

1) Not subject to production test, specified by design.

Note:

Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table.

Multiple MOSFET Driver IC

General product characteristics

Thermal resistance 4.3

This thermal data was generated in accordance with JEDEC JESD51 standards. For more Note:

information, go to www.jedec.org.

Table 4 Thermal resistance

Parameter	Symbol	Values			Unit	it Note or	Number
		Min.	Тур.	Max.		Test Condition	
Junction to case	R_{thJC}	_	4.4	_	K/W	1)	
Junction to ambient	$R_{\rm thJA}$	_	27	_	K/W	1)2)	

¹⁾ Not subject to production test, specified by design.

²⁾ Specified $R_{\rm thJA}$ value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 mm Cu, 2 × 35 mm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.

General description

5 General description

5.1 Power supply

The Multiple MOSFET Driver IC requires two power supplies: $V_{\rm S}$ and $V_{\rm DD}$.

 $V_{\rm DD}$ supplies the I/O buffers (including the SPI pins) and the internal voltage regulator for the logic. $V_{\rm DD}$ allows the flexibility of a 3.3 V or a 5.0 V logic interface.

 $V_{\rm S}$ supplies the charge pump for the MOSFET gate drivers. The $V_{\rm S}$ pin must be connected to the battery through a reverse battery protection.

Both supplies are separated so that the information stored in the logic remains intact in the event of voltage drop on V_S . V_{DD} and V_S should be decoupled with ceramic capacitors connected close to the supply and ground planes.

5.2 Operation modes

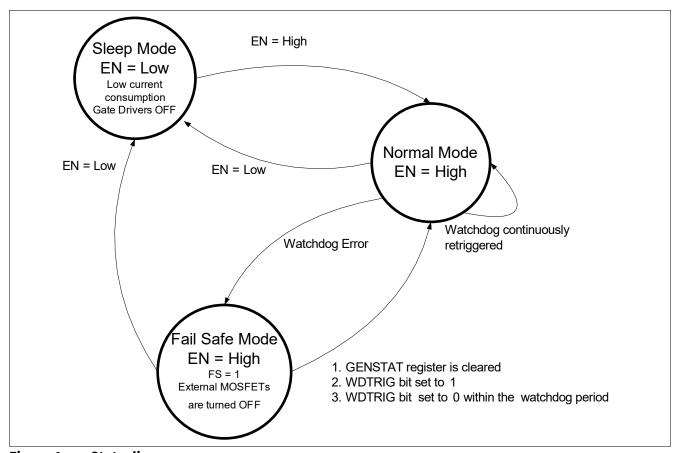


Figure 4 State diagram

Note: The state diagram is valid for V_S and V_{DD} within the nominal operating range. For V_S and V_{DD} outside of the nominal range, refer to **Chapter 7.7**, respectively **Chapter 5.2.2**.

5.2.1 Normal mode

The TLE92108-231QX enters Normal Mode by setting EN pin to High and waiting for the SPI setup time $t_{\text{SET_SPI}}$. In normal mode, the MOSFET gate drivers are enabled and can be configured through the SPI interface,

General description

provided that the voltages applied to $V_{\rm DD}$ and $V_{\rm S}$ are within the operating range. The watchdog must be retriggered correctly in order to stay in Normal Mode (see **Chapter 7.9**).

5.2.2 Sleep mode

The Multiple MOSFET Driver IC enters Sleep Mode by setting EN pin to Low. The transition to the sleep mode is delayed by $t_{DSLEEP}^{1)}$ (max tCCP of active half-bridges + 3 μ s) in order to actively turn-off the external MOSFETs. In this mode, the internal regulator and the internal circuitry are deactivated, and the SPI registers are reset.

The current consumption of V_{DD} is reduced to I_{DD_Q} . The current consumption of V_S is reduced to I_{SQ} or I_{SQ} + I_{SO} BRAKE.

The V_S current consumption is I_{SQ} if V_S never drops below V_{SLEEP_SET} after entering sleep mode.

The V_S current consumption is $I_{SQ} + I_{SQ_BRAKE}$ if V_S has recovered from a voltage below V_{SLEEP_SET} (i.e. V_S has ramped up from a voltage below V_{SLEEP_SET})

The internal resistors R_{GGND} between GHx/GLx and GND are activated to discharge the gate of the external MOSFETs.

Note:

If EN is set to Low for a duration shorter than ($t_{\text{ENL_FILT}}$, 8 μ s max.), and EN is set to High again, then device does not go in sleep mode and the registers are not reset. The half-bridges are reactivated according to the settings of the control registers when EN is High.

5.2.3 Fail Safe Mode

In case of watchdog error (see **Chapter 7.9**), the device enters Fail Safe Mode, FS bit is set (see **Global status byte**) and the external MOSFETs are actively discharged with the static discharge current (**Chapter 6.2**) during the max. configured tHBxCCP active (**Chapter 7.4.1**). Then the bridge driver is set to passive mode (the passive discharge path is activated, **Chapter 6.4**, all external MOSFETs are latched off, and the charge pump is deactivated). To resume Normal Mode the microcontroller must execute the following sequence²⁾:

- 1. Clear **GENSTAT** register.
- 2. Write WDTRIG bit to 1 (**GENCTRL1**) within the watchdog period.
- 3. Write WDTRIG bit to 0 within the watchdog period³⁾.

In fail safe mode, the control registers are frozen to their default value, at the exception of **WDTRIG**, **CCSO**, **CSA1L**, **CSA2L**. Any write command (except for WDTRIG bit) or clear command (except for GENSTAT) will be discarded in this mode and sets SPIE bit (**Global status byte**).

A clear command to **GENSTAT** in fail safe mode does not reset any failure flag reported by this status register. The control and status registers can be read in this mode before the start of the exit sequence without SPIE bit being set.

¹⁾ SPI Frames are ignored during t_{DSLEEP}.

²⁾ The exit sequence must be strictly followed to leave fail safe mode. If a SPI frame not belonging to the sequence is added, then the device stays in fail safe mode and the microcontroller must restart the complete sequence to enter normal mode.

³⁾ During Fail Safe Mode, the charge pump is deactivated and **CPUV** is set. Therefore, recovering from Fail Safe Mode, **GENSTAT** must be cleared again at the end of the Fail Safe exit sequence to re-activate of the gate drivers.

Multiple MOSFET Driver IC

General description

5.3 **Reset behavior**

The following events trigger a Power On Reset:

V_{DD} undervoltage reset:

If $V_{\rm DD} < V_{\rm DD\,PoffR}$ the digital block is deactivated and the outputs are switched off. The digital block is reset once $V_{\rm DD} > V_{\rm DD\,POR}$. Then NPOR bit (negated power-on reset bit, see **Global status byte**) is reset to 0 to report the reset condition.

Reset on EN pin:

If the EN pin is pulled low, the logic content is reset and the device enters sleep mode. Once the device enters Normal Mode (after t_{SET_SPI} with EN = high and $V_{DD} > V_{DD\ POR}$), the NPOR bit is reset to 0 to report the reset condition.

NPOR is set to 1 when **GENSTAT** is cleared.

General description

5.4 **Charge pump**

A dual-stage charge pump supplies the gate drivers for the high-side and low-side MOSFETs. It requires three external capacitors connected between CPC1N and CPC1P, CPC2N and CPC2P, VS and CP.

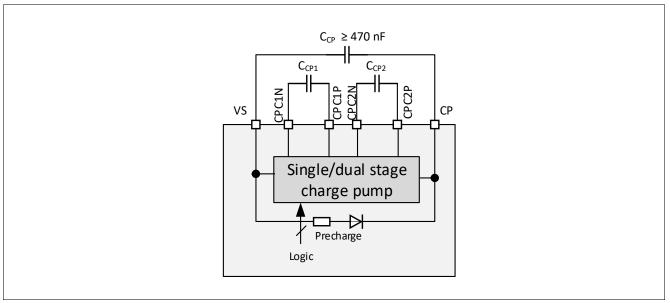


Figure 5 **Charge pump**

CPSTGA = 0 (default, see **GENCTRL2**), the device operates with the dual-stage charge pump.

If CPSTGA = 1 (GENCTRL2), the device switches automatically to single-stage or dual-stage charge pump automatically:

- If $V_S > V_{CPSO\,DS}$: the TLE92108-231QX switches from a dual-stage to a single-stage charge pump.
- If $V_S < V_{CPSO,SD}$: the TLE92108-231QX switches from single-stage to dual-stage charge pump.

The operation with the single-stage charge pump reduces the current consumption from the VS pin.

5.5 Frequency modulation

A modulation of the charge pump frequency can be activated to reduce the peak emission. The modulation frequency can be selected based on the resolution bandwidth of the peak detector during EMC testing.

The modulation frequency is set by the control bit FMODE in **GENCTRL1**

- FMODE = 0: No modulation.
- FMODE = 1: Modulation frequency = 15.6 kHz (default).

Multiple MOSFET Driver IC

General description

Electrical characteristics 5.6

Electrical characteristics: supply 5.6.1

Table 5 **Electrical characteristics: supply**

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm j}$ = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol Values		s	Unit	Note or	Number	
		Min.	Typ.	Max.		Test Condition	
Current consumption, EN =	LOW)	<u>'</u>		·	1		
Supply quiescent current	I_{SQ}	-	2	5	μΑ	$T_{\rm j}$ < 85°C, $V_{\rm S}$ = 13.5 V	P_5.5.1
Supply quiescent current	I _{SQ2}	-	5	7	μΑ	$T_{\rm j}$ < 85°C, $V_{\rm S}$ < 25 V	P_5.5.61
Additional supply quiescent current, brake enabled	I _{SQ_BRAKE}	-	5	7.5	μΑ	$T_{\rm j}$ < 85°C, $V_{\rm S}$ = 13.5 V ¹⁾	P_5.5.60
Logic Supply quiescent current	$I_{\mathrm{DD}_{-}\mathrm{Q}}$	-	1	3	μΑ	<i>T</i> _j < 85°C	P_5.5.3
Total quiescent current	$I_{DD_Q} + I_{SQ}$	-	3	8	μΑ	$T_{\rm j}$ < 85°C, $V_{\rm S}$ = 13.5 V	P_5.5.5
EN Low filter time	t _{DSLEEP}	-	-	Max. tCCP+ 3 μs	μs	²⁾³⁾ BD_PASS = 0	P_5.5.49
EN Low filter time	t _{ENL_FILT}	1	_	8	μs	2)	P_5.5.51
VS for LS1-4 setting	V _{SLEEP_SET}	-	_	5.5	V		P_5.5.63
Current consumption, EN =			<u> </u>				1
Supply current	I _{S1}	-	45	55	mA	$HBxVDSTH = 001_B,$ $BD_PASS = 0,$ $I_{CP} = 0 \text{ mA}$	P_5.5.6
Supply current	I ₅₂	-	83	100	mA	$8 \text{ V} < V_S < 28 \text{ V}$ $\text{HBxVDSTH} = 001_B$, $\text{BD_PASS} = 0$, $I_{\text{CP}} = -12 \text{ mA}$, dual stage CP	P_5.5.7
Supply current	I _{S3}	-	55	70	mA	$18 \text{ V} < V_{\text{S}} < 28 \text{ V}$ $\text{HBxVDSTH} = 001_{\text{B}},$ $\text{BD_PASS} = 0,$ $I_{\text{CP}} = -12 \text{ mA}^{2},$ single stage CP	P_5.5.56
Supply current	I _{S4}	-	55	70	mA	$V_S = 6 \text{ V},$ $HBxVDSTH = 001_B,$ $BD_PASS = 0,$ $I_{CP} = -6 \text{ mA}^{2}$	P_5.5.57
Supply current	I _{S_BD_PASS}	-	10	20	mA	HBxMODE=00 _B , BD_PASS = 1	P_5.5.54

General description

Table 5 **Electrical characteristics: supply (cont'd)**

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm j}$ = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Logic supply current	I _{DD1}	-	3	4	mA	SPI not active, CSA1 and CSA2 off, all I _{PDDiag} off, BD_PASS=0	P_5.5.8
Logic supply current	I _{DD2}	-	3	3.8	mA	⁴⁾ Additional VDD current per CSA on, VCSOx = 4.5 V, LS shunt, CCSO = 1 CSAxL = 0, I _{PDDiag} off	P_5.5.52
Logic supply current	I _{DD3}	-	2	2.8	mA	4) Additional VDD current per CSA on, CCSO = 0, VCSOx = 4.5 V, LS shunt, CSAxL = 0, I _{PDDiag} off	P_5.5.55
Logic supply current	I _{DD4}	-	6	7	mA	5) Additional VDD current per CSA on, VCSOx = 4.5 V, HS shunt, VSOVTH = 1 CSAxL = 1, IPDDiag off	P_5.5.58
Logic supply current	I_{DD5}	-	4.2	5.2	mA	5) Additional VDD current per CSA on, VSOVTH = 0, VCSOx = 4.5 V, HS shunt, CSAxL = 1, IPDDiag off	P_5.5.59
Additional logic supply current pull-down	I _{DD_PDDiag}	_	1.5	2	mA	Additional VDD current when all I_{PDDiag} are on	P_5.5.53
VS with active bridge driv	ver (BD_PASS	= 0)					1
UV switch ON voltage	V _{SUV ON}	_	_	5.5	V	V _s increasing	P_5.5.11
UV switch OFF voltage	V _{SUV OFF}	4.0	4.5	5.0	V	V _S decreasing	P_5.5.12
UV ON/OFF hysteresis	V _{SUV HY}	_	0.5	-	V	V _{SUV ON} - V _{SUV OFF} 2)	P_5.5.13
OV switch OFF voltage VSOVTH = 0	V _{SOV OFF1}	19	_	21	V	V _s increasing	P_5.5.14

General description

Table 5 Electrical characteristics: supply (cont'd)

 $V_S = 6.0 \text{ V to } 18 \text{ V if VSOVTH} = 0$, $V_S = 6.0 \text{ V to } 28 \text{ V if VSOVTH} = 1$; $V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$, $T_j = -40 ^{\circ}\text{C}$ to $150 ^{\circ}\text{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values		Values		Note or	Number
		Min.	Тур.	Max.		Test Condition	
OV switch ON voltage VSOVTH = 0	V _{SOV ON1}	18	-	20	V	V _s decreasing	P_5.5.15
OV switch OFF voltage VSOVTH = 1	V _{SOV OFF2}	29	-	31	V	$V_{\rm S}$ increasing	P_5.5.16
OV switch ON voltage VSOVTH = 1	V _{SOV ON2}	28	-	30	V	V _s decreasing	P_5.5.17
OV ON/OFF hysteresis	V _{SOV HY}	_	1	-	V	V _{SUV ON} - V _{SUV OFF} 2)	P_5.5.18
VS undervoltage filter time	t _{VSUV_FILT}	7	10	13	μs	1)	P_5.5.47
VS overvoltage filter time	t _{VSOV_FILT}	7	10	13	μs	2)	P_5.5.48
CP turn-off delay after VS overvoltage detection	t_{D_CPVSOV}	12.8	16	19.2	μs	2)	P_5.5.50
VDD	•	*			*		-
V _{DD} Power-On-Reset	$V_{\rm DD\ POR}$	2.40	2.60	2.80	V	V _{DD} increasing	P_5.5.19
$V_{\rm DD}$ Power-Off-Reset	$V_{\rm DD\ POffR}$	2.30	2.50	2.70	V	V _{DD} decreasing	P_5.5.20
$V_{\rm DD}$ Power-On-Reset Hysteresis	V _{DD POR HY}	-	0.1	_	V	$V_{\rm DDPOR}$ - $V_{\rm DDPOffR}^{2)}$	P_5.5.21

- 1) Additional quiescent current if VS drops below V_{SLEEP_SET}.
- 2) Not subject to production test, specified by design.
- 3) Max. cross-current protection time of the active half-bridges.
- 4) Parameter independent of **VSOVTH**.
- 5) Parameter independent of CCSO.

5.6.2 Electrical characteristics: logic inputs PWMx, EN

Table 6 Electrical characteristics: PWMx, EN

 $V_S = 6.0 \text{ V to } 18 \text{ V if VSOVTH} = 0$, $V_S = 6.0 \text{ V to } 28 \text{ V if VSOVTH} = 1$; $V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$, $T_j = -40 ^{\circ}\text{C}$ to $150 ^{\circ}\text{C}$, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
EN high voltage	V _{ENH}	0.7 × V _{DD}	-	-	V	-	P_5.5.22
EN low voltage	V _{ENL}	-	-	0.3 × V _{DD}	V	-	P_5.5.23
EN hysteresis	V _{ENHY}	-	0.12 × V _{DD}	-	V	1)	P_5.5.24
EN pull-down resistor	$R_{PD_{EN}}$	30	40	50	kΩ	_	P_5.5.25
PWMx high voltage	V_{PWMH}	0.7 × V _{DD}	_	-	V	-	P_5.5.26

Multiple MOSFET Driver IC

General description

Table 6 **Electrical characteristics: PWMx, EN**

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm j}$ = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol Values				Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
PWMx low voltage	V_{PWML}	-	-	0.3 × V _{DD}	V	_	P_5.5.27
PWMx hysteresis	V_{PWMHY}	-	0.12 × V _{DD}	_	V	1)	P_5.5.28
PWMx pull-down resistor	R _{PD_PWMx}	30	40	50	kΩ	-	P_5.5.29

¹⁾ Not subject to production test, specified by design.

5.6.3 **Electrical characteristics charge pump**

Table 7 **Electrical characteristics: charge pump**

 $V_{\rm S} = 6.0 \ {\rm V} \ {\rm to} \ 18 \ {\rm V} \ {\rm if} \ {\rm VSOVTH} = 0, V_{\rm S} = 6.0 \ {\rm V} \ {\rm to} \ 28 \ {\rm V} \ {\rm if} \ {\rm VSOVTH} = 1; V_{\rm DD} = 3.0 \ {\rm V} \ {\rm to} \ 5.5 \ {\rm V}, T_{\rm j} = -40 ^{\circ}{\rm C} \ {\rm to} \ 150 ^{\circ}{\rm C}, \ {\rm all} \ {\rm voltages} = 1.0 \ {\rm V} \ {\rm to} \ {\rm V} \ {\rm V} = 1.0 \ {\rm V} = 1.0 \ {\rm V} \ {$ with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol		Value	s	Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Charge Pump Frequency	$f_{\sf CP}$	_	250	_	kHz	3)	P_5.5.30
Output Voltage VCP vs. VS	V _{CPmin}	8.5	-	-	V	$V_{\rm S} = 6 \rm V$, $I_{\rm CP} = -6 \rm mA$	P_5.5.31
Regulated output voltage VCP vs. VS, CPSTGA = 0	V _{CP1}	11	15	17	V	$8 \text{ V} < V_{\text{S}} < 28 \text{ V},$ $I_{\text{CP}} = -12 \text{ mA}$	P_5.5.32
Regulated output voltage VCP vs. VS, CPSTGA = 1	V _{CP2}	12	15	17	V	$18 \text{ V} < V_{\text{S}} < 28 \text{ V},$ $I_{\text{CP}} = -12 \text{ mA}$	P_5.5.41
Turn-on time, CPSTGA = 0	t _{ON_VCP1}	10	40	80	μs	$8 \text{ V} < V_{\text{S}} < 28 \text{ V}$ (25%) ¹⁾²⁾³⁾⁴⁾	P_5.5.34
Rise time, CPSTGA = 0	t_{RISE_VCP1}	10	60	100	μs	$8 \text{ V} < V_{\text{S}} < 28 \text{ V}$ (25%-75%) ¹⁾²⁾³⁾⁴⁾	P_5.5.35
Turn-on time, CPSTGA = 1	t _{ON_VCP2}	10	40	80	μs	$18 \text{ V} < V_{\text{S}} < 28 \text{ V}$ $(25\%)^{1(2)3(5)}$	P_5.5.36
Rise time, CPSTGA = 1	t _{RISE_VCP2}	10	60	100	μs	$18 \text{ V} < V_{\text{S}} < 28 \text{ V} $ $(25\%-75\%)^{1/2/3/5}$	P_5.5.37
Charge Pump Undervoltage (referred to VS)	V _{CPUV1}	5.5	6	6.5	V	CPUVTH = 0, VCP falling	P_5.5.38
Charge Pump Undervoltage (referred to VS)	V _{CPUV2}	7	7.5	8	V	CPUVTH = 1, VCP falling	P_5.5.42
Automatic switch over dual to single stage charge pump	V _{CPSO DS}	16	17	18	V	CPSTGA = 1	P_5.5.43
Automatic switch over single to dual stage charge pump	V _{CPSO SD}	15.5	16.5	17.5	V	CPSTGA = 1	P_5.5.44
Charge pump switch over hysteresis	V _{CPSO HY}	-	0.5	-	V	³⁾ CPSTGA = 1, $V_{\text{CPSO DS}} - V_{\text{CPSO SD}}$	P_5.5.45

Multiple MOSFET Driver IC

General description

Table 7 **Electrical characteristics: charge pump**

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm j}$ = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Charge Pump Undervoltage Filter Time	t _{CPUV}	51	64	77	μs	3)	P_5.5.39
Charge pump minimum output current	I _{CPOC1}	_	-	-12	mA	$^{2)3)4)} V_S = 13.5 \text{ V};$ CPSTGA = 0	
Charge pump minimum output current	I _{CPOC2}	_	-	-12	mA	$^{2)3)5)} V_S = 18 \text{ V};$ CPSTGA = 1	

- 1) Parameter dependent on the capacitance C_{CP} .
- 2) $C_{CPC1} = C_{CPC2} = 220 \text{ nF}, C_{CP} = 470 \text{ nF}, I_{CP} = 0 \text{ mA}.$
- 3) Not subject to production test, specified by design.
- 4) Dual stage charge pump.
- 5) Single stage charge pump.

Multiple MOSFET Driver IC

Floating gate drivers

Floating gate drivers 6

The TLE92108-231QX integrates sixteen floating gate drivers capable of controlling a wide range of n-channel MOSFETs. They are configured as eight high-sides and low-sides, building eight half-bridges.

This section describes the MOSFET control by the gate drivers.

After power-on reset, the bridge driver is in passive mode (default value of BD_PASS = 1 and all HBxMODE=00_B). Refer to **Chapter 6.4** and **Chapter 6.5**.

The bridge driver is in active mode by setting BD_PASS to 0. Chapter 6.1, Chapter 6.2 and Chapter 6.3 describes the static and PWM control in active mode.

Attention: It is highly recommended to have all HBxMODE bits set to 00_B or 11_B before setting BD_PASS to 0 in order to avoid wrong drain-source overvoltage detection.

Table 8 Operating modes of the gate driver

EN	BD_PASS	HBxMODE[1:0]	Gate driver	Comment	Chapter
High	0	х	Active ¹⁾		Chapter 6.1 Chapter 6.2 Chapter 6.3
High	1	One HBxMODE = $01_{\rm B}$ or $10_{\rm B}$	Active ¹⁾	Equivalent to EN=High and BD_PASS = 0	Chapter 6.1 Chapter 6.2 Chapter 6.3
High	1	All HBxMODE=00 _B or 11 _B	Passive		Chapter 6.5
Low	х	х	Passive		Chapter 6.5

¹⁾ Provided that no VS overvoltage, VS undervoltage, CP undervoltage or overtemperature failure are detected, and TLE92108-231QX is not in Fail Safe Mode.

Floating gate drivers

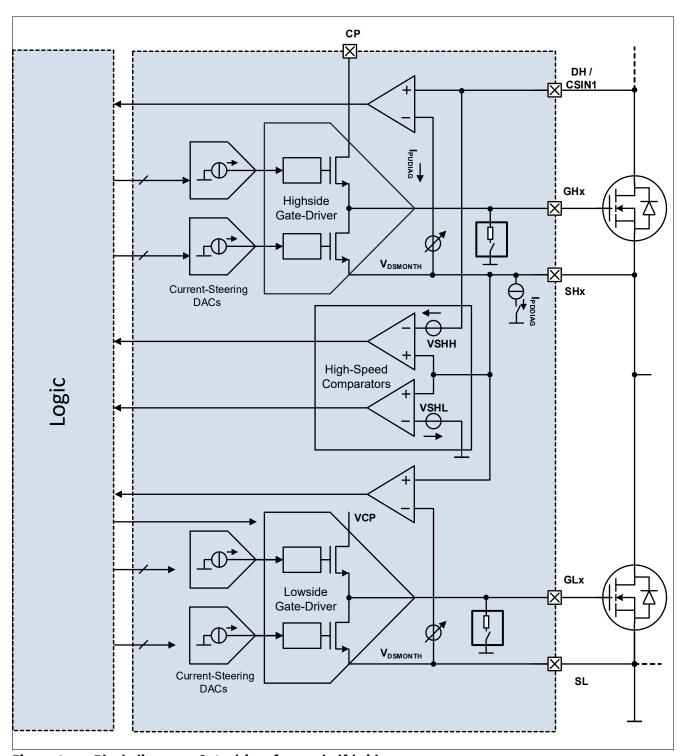


Figure 6 Block diagram - Gate driver for one half-bridge

Floating gate drivers

6.1 MOSFET control with bridge driver in active mode (BD PASS = 0 and EN = High)

Depending on the configuration bits HBxMODE[1:0] (**HBMODE**, **Table 9** and **Table 11**), each high-side and low-side MOSFETs can be:

- deactivated
- activated (statically, no PWM)
- activated in PWM mode (Chapter 6.3, PWMSET)

Table 9 Half-bridge mode selection

Configuration of HSx/LSx ¹⁾
LSx and HSx MOSFETs are actively kept OFF (default)
LSx MOSFET is ON (static or PWM, refer to Table 11), HSx MOSFET is actively kept OFF
HSx MOSFET is ON (static or PWM, refer to Table 11), LSx MOSFET is actively kept OFF
Reserved - LSx and HSx MOSFETs are actively kept OFF

¹⁾ x = 1 ... 8.

6.2 Static activation with bridge driver in active mode (BD_PASS = 0)

In this section, we consider the static activation of the high-side and low-side MOSFET of the half-bridge x, x = 1...8. Refer to **Table 11** for the setting of a high-side or low-side in the static or PWM operation.

If HBx is not mapped to any activated PWM channel, the low-side or high-side MOSFET of HBx is statically activated (no PWM) by setting HBxMODE[1:0] to respectively (0,1) or (1,0).

The configured cross-current protection and the Drain-Source overvoltage blank times for the Half-Bridge x are noted $t_{\text{HBxCCP}Active}$ and $t_{\text{HBxBLANK}Active}$ (refer to **Chapter 7.4**).

The charge and discharge currents applied to the static controlled Half-Bridge x are noted ICHGSTx (ST_ICHG).

IHARDOFF is the maximum current that the gate drivers can sink. It corresponds to the discharge current when IDCHGx[4:0] = 31_D (See **PWM_IDCHG_ACT**). This current is used to the keep a MOSFET off, when the opposite MOSFET of the same half-bridge is being turned on. This feature avoids parasitic cross-current conduction.

ICHGSTx is the current sourced, respectively sunk, by the gate driver to turn-on the high-side x or low-side x. ICHGSTx is configured in the control register **ST_ICHG**.

Table 10 Static charge and discharge currents

ICHGSTx[3:0] ¹⁾	Nom. charge current [mA] ²⁾	Nom. discharge current [mA] ³⁾	Max. deviation to typ. values
0000 _B	1.0	1.0	+/- 60%
0001 _B	2.0	2.8	+/- 60 %
0010 _B	4.5	5.7	+/- 60 %
0011 _B	8.0	9.4	+/- 38 %
0100 _B	12.5	14.2	+/- 38 %
0101 _B	17.8	19.7	+/- 38 %

Multiple MOSFET Driver IC

Floating gate drivers

Table 10 Static charge and discharge currents

ICHGSTx[3:0] ¹⁾	Nom. charge current [mA] ²⁾	Nom. discharge current [mA] ³⁾	Max. deviation to typ. values
0110 _B	23.9	26.0	+/- 38 %
0111 _B	30.0	32.0	+/- 28 %
1000 _B	37.1	39.5	+/- 28 %
1001 _B	44.3	46.8	+/- 28 %
1010 _B	52.3	54.7	+/- 28 %
1011 _B	60.2	62.5	+/- 28 %
1100 _B	68.3	70.6	+/- 28 %
1101 _B	76.8	78.5	+/- 28 %
1110 _B	86.0	87.0	+/- 28 %
1111 _B	96.0	95.0	+/- 25 %

¹⁾ Refer to ST ICHG

IHOLD is the hold current used to keep the gate of the external MOSFETs in the desired state. This parameter is configurable with the IHOLD control bit in GENCTRL2.

If IHOLD = 0:

- the MOSFETs are kept ON with the current I_{CHG8} (12.5 mA typ.)
- the MOSFETs are kept OFF with the current I_{DCHG8} (14.2 mA typ.)

If **IHOLD** = 1:

- the MOSFETs are kept ON with the current I_{CHG12} (23.9 mA typ.)
- the MOSFETs are kept with the current I_{DCHG12} (26.0 mA typ.)

The static discharge current is applied to turn off the MOSFETs when the bridge driver is in active mode when the following failures occur:

- V_S undervoltage/overvoltage
- Overtemperature
- *V*_{DS} overvoltage
- Charge pump undervoltage
- Overcurrent if OCEN = 1

6.2.1 Static activation of a high-side MOSFET

Turn-on with cross-current protection

If LSx is ON (HBxMODE[1:0] = 01_B), before the activation of HSx (HBxMODE[1:0] = 10_B) then the high-side MOSFET is turned on after a cross-current protection time (refer to **Figure 7**):

- after the CSN rising edge and for the duration $t_{\text{HBxCCP Active}}$:
 - the high-side MOSFET is kept OFF with the current -ICHGSTx
 - the gate of the low-side MOSFET is discharged with the current -ICHGSTx

²⁾ $V_S \ge 8V$ and $V_{GS} \le V_{GS(ON)1}$ if ICHGSTx $\le 7_D$, $V_S \ge 8V$ and $V_{GS} \le V_{GS(ON)2}$ if ICHGSTx $\ge 8_D$

³⁾ $V_{GS} \ge V_{GS(OFF)1}$ if $ICHGSTx \le 7_D$, $V_{GS} \ge V_{GS(OFF)2}$ if $ICHGSTx \ge 8_D$

Floating gate drivers

- at the end of $t_{\rm HBxCCP\ Active}$ and for the duration $t_{\rm HBxBLANK\ Active}$ + $t_{\rm FVDS}$:
 - the gate of the high-side MOSFET is charged with the current ICHGSTx
 - low-side MOSFET is kept OFF with the current -IHARDOFF (hard off phase)
- at the end of t_{EVDS}:
 - the drive current of the high-side MOSFET is reduced to IHOLD
 - the drive current of the low-side MOSFET is set to -IHOLD

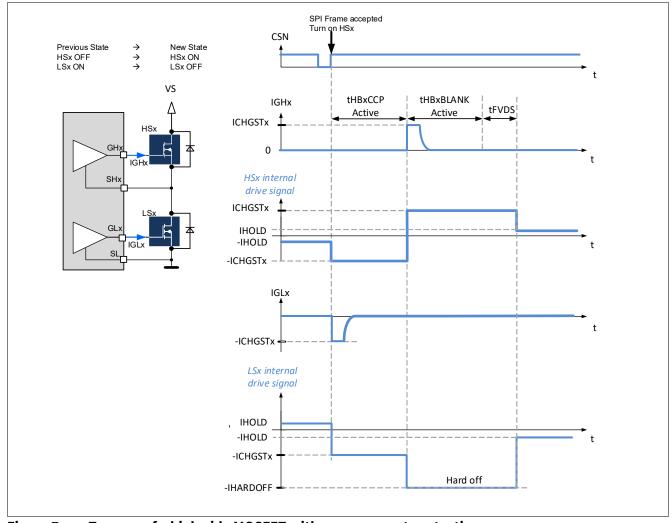


Figure 7 Turn-on of a high-side MOSFET with cross-current protection

Note: The CSN rising edge must be synchronized with the device logic. Therefore SPI commands are executed with a delay of up to 3 µs after the CSN rising edge.

Floating gate drivers

Turn-on without cross-current protection

If LSx is OFF (HBxMODE[1:0] = 00_B), before the activation of HSx (HBxMODE[1:0] = 10_B), then the high-side MOSFET is turned on without cross-current protection (refer to **Figure 8**):

- after the CSN rising edge and for a duration $t_{\text{HBxBLANK Active}} + t_{\text{FVDS}}$:
 - the gate of the high-side MOSFET is charged with the current ICHGSTx
 - the low-side MOSFET is kept OFF with the current -IHARDOFF
- at the end of t_{FVDS} :
 - the drive current of the high-side MOSFET is reduced to IHOLD
 - the drive current of the low-side MOSFET is set to -IHOLD

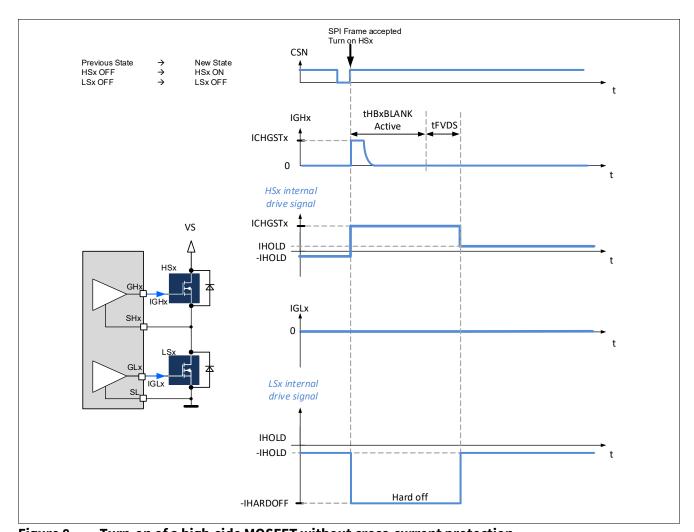


Figure 8 Turn-on of a high-side MOSFET without cross-current protection

Note: The CSN rising edge must be synchronized with the device logic. Therefore SPI commands are executed with a delay of up to 3 µs after the CSN rising edge.

infineon

Floating gate drivers

6.2.2 Static activation of a low-side MOSFET

The description of the static activation of a low-side x differs from the description of **Chapter 6.2.1** only by exchanging high-side x and low-side x.

6.2.3 Turn-off of the high-side and low-side MOSFETs of a half-bridge

When the TLE92108-231QX receives a SPI to turn-off both the high-side and low-side MOSFETs of the half-bridge x (HBxMODE[1:0] = (0,0) or (1,1)):

- the gate of HSx and LSx are discharged with the current -ICHGSTx for the duration $t_{\text{HBxCCP Active}}$ (Figure 9)
- at the end of $t_{\rm HBxCCP\ Active}$, the drive current of HSx and LSx are reduced to -IHOLD

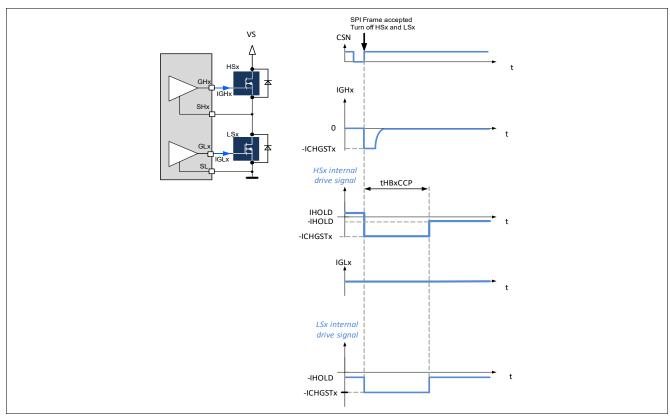


Figure 9 Turn-off of the high-side and low-side MOSFETs of a half-bridge

Note: The CSN rising edge must be synchronized with the device logic. Therefore SPI commands are executed with a delay of up to 3 µs after the CSN rising edge.

Floating gate drivers

6.3 PWM operation with bridge driver in active mode (BD_PASS = 0)

The TLE92108-231QX integrates three PWM channels. The pins PWM1,PWM2 and PWM3 provide the PWM signal for each PWM channel.

One half-bridge can be mapped to one of the PWM channels according to the settings of the control registers **HBMODE** and **PWMSET** (see **Table 11**):

- PWMxEN in PWMSET, enables or disables the PWM channel x
- The control bits PWMx_HB[2:0] in PWMSET select the half-bridge
- The control bits HBMODE[1:0] (**HBMODE**) of the half-bridge selected by PWMx_HB[2:0] configures the low-side or the high-side MOSFET in PWM mode

Example: the following bits must be set to map the low-side of HB3 to the PWM channel 2 (start sequence with PWM):

- 1. Set HB3MODE[1:0] to (0,0): HB3 is in high impedance
- 2. Set PWM2_HB[2:0] to (0,1,0) and set PWM2EN to 1 (HB3 stays in high impedance, independently from the signal present at the PWM2 pin)
- 3. Set HB3MODE[1:0] to (0,1): PWM2 is applied to the low-side of HB3

Table 11 PWM channel settings

PWMxEN ¹⁾	PWMx_HB[2:0]	HByMODE[1:0] ²⁾	PWMx channel setting ¹⁾
$\overline{0_{B}}$	don't care	don't care	no PWM operation
don't care	don't care	00 _B	no PWM operation on the selected HB
don't care	don't care	11 _B	no PWM operation on the selection HB
1 _B	000 _B	01 _B	Low-side of HB1 is mapped to PWMx
1 _B	001 _B	01 _B	Low-side of HB2 is mapped to PWMx
1 _B	010 _B	01 _B	Low-side of HB3 is mapped to PWMx
1 _B	011 _B	01 _B	Low-side of HB4 is mapped to PWMx
1 _B	100 _B	01 _B	Low-side of HB5 is mapped to PWMx
1 _B	101 _B	01 _B	Low-side of HB6 is mapped to PWMx
1 _B	110 _B	01 _B	Low-side of HB7 is mapped to PWMx
1 _B	111 _B	01 _B	Low-side of HB8 is mapped to PWMx
1 _B	000 _B	10 _B	High-side of HB1 is mapped to PWMx
1 _B	001 _B	10 _B	High-side of HB2 is mapped to PWMx
1 _B	010 _B	10 _B	High-side of HB3 is mapped to PWMx
1 _B	011 _B	10 _B	High-side of HB4 is mapped to PWMx
1 _B	100 _B	10 _B	High-side of HB5 is mapped to PWMx
1 _B	101 _B	10 _B	High-side of HB6 is mapped to PWMx
1 _B	110 _B	10 _B	High-side of HB7 is mapped to PWMx
1 _B	111 _B	10 _B	High-side of HB8 is mapped to PWMx

¹⁾ x = 1...3

²⁾ the half-bridge y is selected by the PWMx_HB[2:0] bits

Floating gate drivers

Note:

An SPI error is reported if one half-bridge is mapped to several activated PWM channels. In this case the external MOSFETs of the impacted half-bridge are turned-off and the corresponding status bit (HBxPWME) of the **HBVOUT_PWMERR** register is set.

6.3.1 Determination of the active and free-wheeling MOSFET

An active free-wheeling is automatically implemented when a half-bridge is activated in PWM mode to reduce the power dissipation of the free-wheeling (FW) MOSFET: If the active MOSFET is OFF, the opposite (free-wheeling) MOSFET of the same half-bridge is actively turned on. See **Figure 11**, **Figure 12**, **Figure 13**, **Figure 14**, .

If **EN_GEN_CHECK** = 0: the PWM MOSFET is considered as the active MOSFET and the opposite MOSFET of the same half-bridge is considered as the free-wheeling MOSFET.

If **EN_GEN_CHECK** = 1: At the end of the cross-current protection times (tHBxCCP Active, tHBxCCP FW) of each MOSFET (both MOSFETs are supposed to be off) the device detects which MOSFET of the half-bridge is the active MOSFET and which MOSFET is the FW MOSFET (**Figure 10**).

- If VSHx > V_{SHH} : The high-side MOSFET is the FW MOSFET and the low-side MOSFET is the active MOSFET
- If VSHx < $V_{\rm SHL}$: Then the low-side MOSFET is the FW MOSFET and the high-side MOSFET is the active MOSFET
- If V_{SHL} < VSHx < V_{SHH}: No clear distinction between the FW MOSFET and the active MOSFET. The MOSFET to be turned on is considered as the active MOSFET.

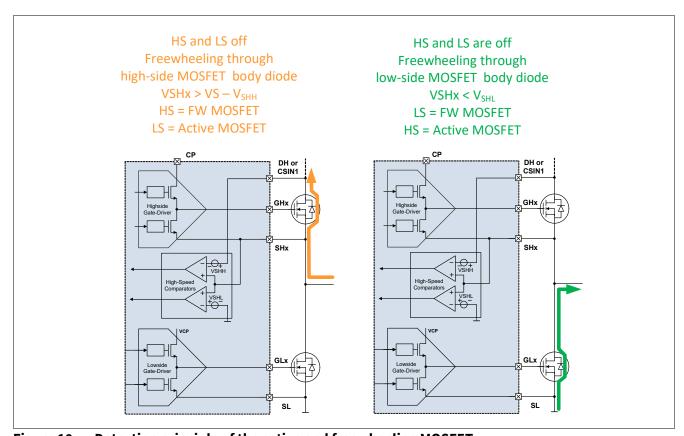


Figure 10 Detection principle of the active and freewheeling MOSFET

Floating gate drivers

Note: The PWM signal is applied to the MOSFET selected by HBxMODE[1:0], independently from the free-

wheeling and the active MOSFET.

Note: It is not possible to determine the active or FW MOSFET if the PWM on-time is shorter than tHBxCCP

FW, or if the PWM-off-time is shorter than tHBxCCP Active (Refer to **Chapter 6.3.5**). In this case, the PWM MOSFET is considered as the active MOSFET. In other words, it is assumed that the motor

operates as load.

Figure 11, Figure 12 show examples of free-wheeling and active MOSFET when the motor operates as load.

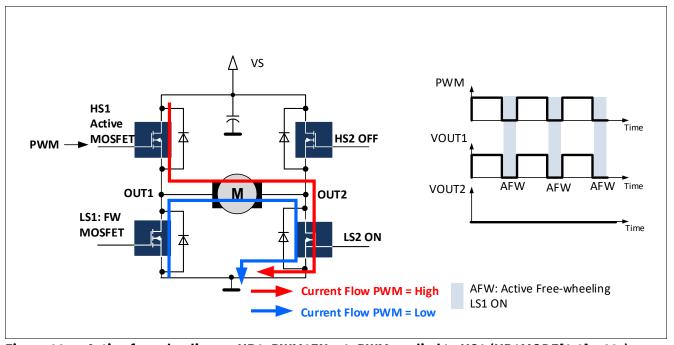


Figure 11 Active freewheeling on HB1: PWM1EN = 1. PWM applied to HS1 (HB1MODE[1:0] = 10_B). The motor operates as load: HS1 is the active MOSFET, LS1 is the FW MOSFET.

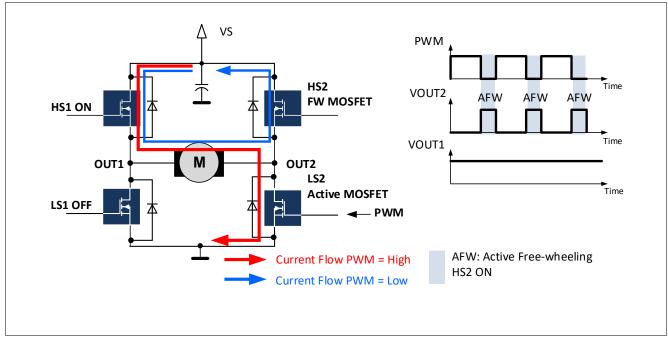


Figure 12 Active freewheeling on HB2: PWM1EN = 1. PWM applied to LS2 (HB2MODE[1:0] = 01_B).

Floating gate drivers

The motor operates as load: LS2 is the active MOSFET, HS2 is the FW MOSFET.

Figure 13 and **Figure 14** show examples of free-wheeling and active MOSFET when the motor operates as generator.

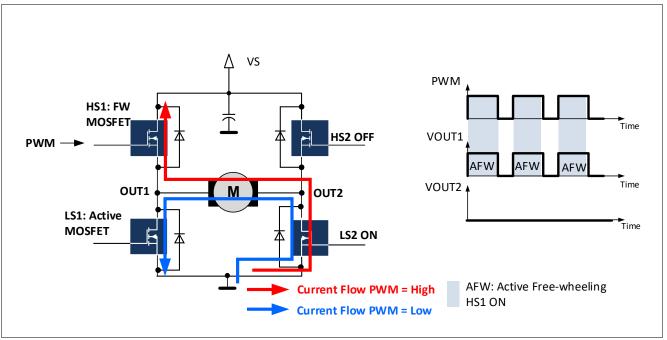


Figure 13 Active freewheeling on HB1: PWM1EN = 1. PWM applied to HS1 (HB1MODE[1:0] = 10_R). The motor operates as generator: LS1 is the active MOSFET, HS1 is the FW MOSFET.

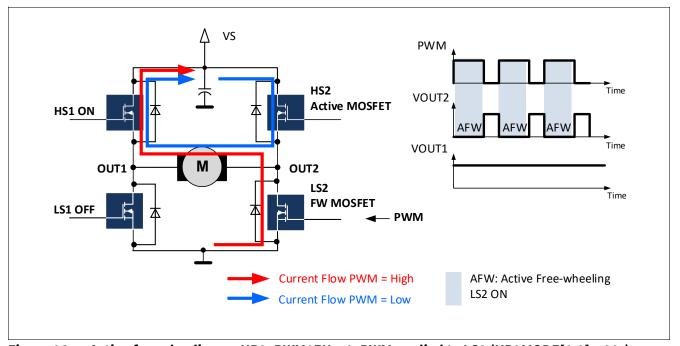


Figure 14 Active freewheeling on HB2: PWM1EN = 1. PWM applied to LS2 (HB2MODE[1:0] = 01_B). The motor operates as generator: HS2 is the active MOSFET, LS2 is the FW MOSFET.

infineon

Floating gate drivers

6.3.2 Configuration in PWM mode

The following sections describe the different control schemes in PWM mode. They differ during the pre-charge and pre-discharge phases (**Figure 15**):

- Adaptive gate control (AGC[1:0] = (1,0) or (1,1), GENCTRL2): in this mode a pre-charge current and a pre-discharge current are applied to the gate of the PWM MOSFET. These currents are used to regulate the effective turn-on and turn-off delays to the respective target values. Refer to Chapter 6.3.3.
- No adaptive gate control (AGC[1;0] = (0,0)): in this mode, the pre-charge and pre-discharge phases are deactivated. Refer to **Chapter 6.3.4.1**.
- No adaptive gate control (AGC[1;0] = (0,1)). In this mode:
 - the pre-charge phase is deactivated
 - during the pre-discharge phase, the gate of the PWM MOSFET mapped to the PWM channel x, x = 1...3, is discharged with the configured current IPCHGINIT (Refer to PWM_PCHG_INIT and Chapter 6.3.4.2)

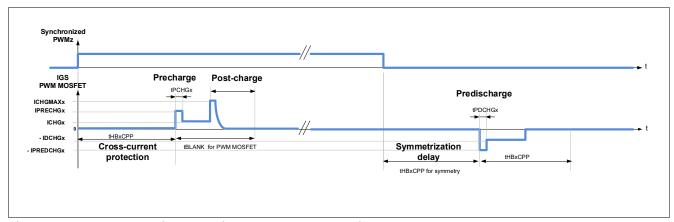


Figure 15 PWM overview showing pre-charge, pre-discharge and post charge phases, $AGC[1:0] = 10_B$ or 11_B , POCHGDIS = 1_B .

Multiple MOSFET Driver IC

Floating gate drivers

PWM operation with adaptive gate control 6.3.3

This section describes the MOSFETs control during high-side or low-side PWM operation when the adaptive gate control is enabled (AGC[1:0] = (1,0) or (1,1), **GENCTRL2**).

Note: Unless otherwise specified, the description of the regulation of the pre-charge and pre-discharge

currents are applicable for

Refer to Chapter 6.3.1 for the definition of the active and of the freewheeling MOSFET according to the setting of AGC.

Assumption: a high-side or low-side MOSFET driver is mapped to the PWM channel z, z = 1,2 or 3.

Refer to Figure 16 for high-side PWM and Figure 19 for low-side PWM for the description of the switching phase.

The TLE92108-231QX adapts the pre-charge current, respectively the pre-discharge current, in order to match the effective turn-on delay (t_{DON}) and turn-off delay (t_{DOFF}) to the configured values.

The configured turn-on and turn-off delays of the respective PWM MOSFETs are set by the registers TDON_OFF1, TDON_OFF2, TDON_OFF3.

The effective turn-on and turn-off delays of the respective active MOSFETs are read out from the status registers EFF_TDON_OFF1, EFF_TDON_OFF2, EFF_TDON_OFF3.

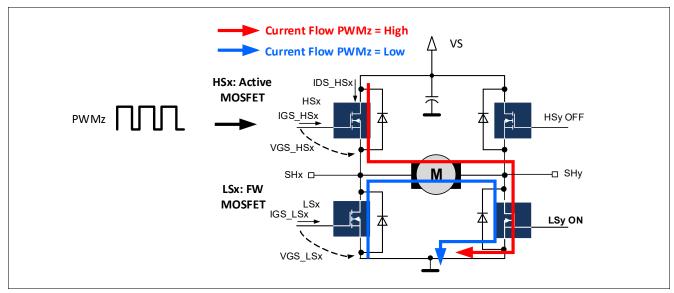
Table 12 Abbreviations for adaptive turn-on and turn-off phases in PWM configuration

Abbreviation	Definition
Suffix x	Related to the half-bridge x (x = 1 8)
Suffix z	Related to the PWM channel z (z = 1,2 or 3)
VGS_HSx	Gate-Source voltage of high-side MOSFET x
IGS_HSx	Gate current of high-side MOSFET x
	IGS_HSx is positive when the current flows out of GHx.
VGS_LSx	Gate-Source voltage of low-side MOSFET x
IGS_LSx	Gate current of low-side MOSFET x
	IGS_LSx is positive when the current flows out of GLx.
thbxccp active	Active cross-current protection time of HBx. See control registers CCP_BLK1,
	CCP_BLK2_ACT, PWM_ICHGMAX_CCP_BLK3_ACT and Chapter 7.4.
thbxblank active	Active Drain-source overvoltage blank time of HBx. See control registers CCP_BLK1, CCP_BLK2_ACT, PWM_ICHGMAX_CCP_BLK3_ACT and Chapter 7.4.
tHBxCCP FW	Freewheeling cross-current protection time of HBx. See control registers CCP_BLK1, CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW and Chapter 7.4
thbxblank fw	Freewheeling drain-source overvoltage blank time of HBx. See control registers CCP_BLK1, CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW and Chapter 7.4
PWMz	External PWM signal applied to the input pin PWMz.
ICHGMAXz	Maximum drive current of the half-bridge mapped to PWM channel z during the precharge and pre-discharge phases. See control registers PWM_ICHGMAX_CCP_BLK3_ACT and PWM_ICHGMAX_CCP_BLK3_FW ICHGMAXz is also the drive current for the post-charge phase IPRECHGz and IPREDCHGz are limited to ICHGMAXz.

Floating gate drivers

Table 12 Abbreviations for adaptive turn-on and turn-off phases in PWM configuration

Abbreviation	Definition
IPRECHGz	Pre-charge current sourced by the gate driver mapped to the PWM channel z during tPCHGz. Internal and self-adaptive parameter (if $AGC = (1,0)$ or $(1,1)$, $GENCTRL2$) IPRECHGz is clamped between I_{CHG0} and ICHGMAXz.
IPCHGINITz	Initial value of IPRECHGz. Refer to PWM_PCHG_INIT
IPREDCHGz	Pre-discharge-current sunk by the gate driver mapped to the PWM channel z during tPDCHGz. Internal and self-adaptive parameter. (AGC = $(1,0)$ or $(1,1)$, GENCTRL2) IPREDCHGz is clamped between I_{DCHG0} and IDCHGMAXz.
IPDCHGINITz	Initial value of IPREDCHGz. Refer to PWM_PDCHG_INIT
ICHGz	Current sourced by the gate driver mapped to the PWM channel z during the charge phase. See control register PWM_ICHG_ACT .
IDCHGz	Current sunk by the gate driver mapped to the PWM channel z during the discharge phase. See control register PWM_IDCHG_ACT .
ICHGFWz	Current source or sunk by the gate driver to turn on / turn off the freewheeling MOSFET of the half-bridge mapped to the PWM channel z. See PWM_ICHG_ACT .
tPCHGz	Duration of the pre-charge phase of PWM channel z. tPCHGz is configurable by SPI. See control register TPRECHG , configuration bits TPCHGz[1:0].
tPDCHGz	Duration of the pre-discharge phase of PWM channel z. tPDCHGz is configurable by SPI. See control register TPRECHG , configuration bits TPDCHGz[1:0].
tDONz	Turn-on delay of the PWM MOSFET mapped to the PWM channel z:
	 for high-side PWM: time between the end of the cross-current protection and when VSHx increases to V_{SHL} (Figure 17).
	• for low-side PWM: time between the end of the cross-current protection and when VSHx decreases to $V_{\rm SHH}$.
tDOFFz	Turn-off delay of the PWM MOSFET mapped to the PWM channel z:
	• for high-side PWM: time between the end of the symmetrization delay $(t_{\rm HBxCCP})$ and when VSHx decreases to VSHH (Figure 18).
	• for low-side PWM: time between the end of the symmetrization delay ($t_{\rm HBxCCP}$) and when VSHx increases to VSHL.
IHOLD	Hold current sourced or sunk by the gate driver to keep the MOSFET in the desired state. See IHOLD control bit in GENCTRL2 .
IHARDOFF	IHARDOFF is the maximum current that the gate drivers can sink. It corresponds to the discharge current when IDCHGx[4:0] = 31_D (100 mA typ.).
TFVDS	Drain-Source overvoltage filter time. See GENCTRL2 .
	+



Floating gate drivers

High-side PWM with adaptive gate control, motor operating as load 6.3.3.1

The following section describes the MOSFET control when the PWM signal is applied to the high-side MOSFET of one half-bridge while the motor operates .

Assumption: the PWM channel z, z = 1,2 or 3, is applied to the high-side MOSFET of the half-bridge x, x = 1...8.

PWM channel z is mapped to high-side x, motor operating as load Figure 16

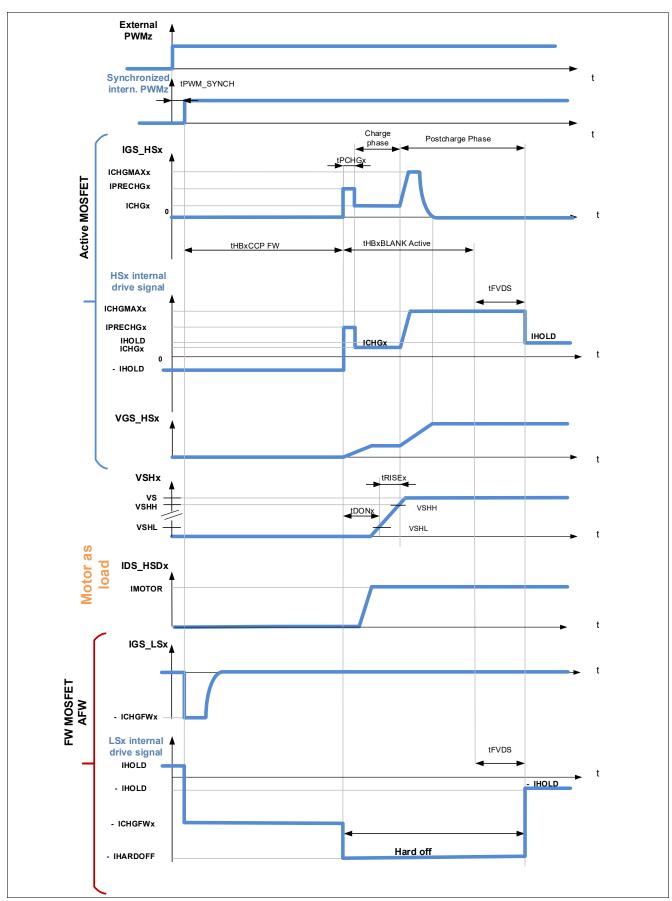


Figure 17 Adaptive turn-on, high-side PWM, AGC[1:0] = (1,0) or (1,1), motor operating as load

Floating gate drivers

Adaptive turn-on during high-side PWM

The turn-on of the high-side MOSFET is done in four phases (Refer to **Figure 17**):

- 1. **Cross-current protection phase**: The cross-current protection tHBxCCP FW starts at the rising edge of the internal PWMz signal¹⁾. During tHBxCCP FW, the low-side MOSFET x is turned off with the discharge current ICHGFWx, while the high-side MOSFET x is kept off. .
- 2. **Pre-charge:** Once tHBxCCP FW has elapsed, the gate of the high-side MOSFET x is pre-charged with the current IPRECHGz for a duration tPCHGz. IPRECHGz²⁾ is an internal parameter, which is self-adaptive (see next phase).
- 3. **Charge:** After tPCHGz, the charge current is decreased from IPRECHGz down to ICHGz. The effective tDONz³⁾ is measured and compared to the configured tDONz for the automatic adaptation of IPRECHGz (see **Adaptive control of pre-charge current**). The charge phase ends up when V_{SHx} reaches **V**_{SHH}.
- 4. **Post-charge:** After the charge phase, the control signal for the charge current of HSx is increased by one current step every 62.5 ns typ. to ICHGMAXx.

Note: The postcharge phase is deactivated by setting **POCHGDIS** to 1. Refer to **GENCTRL2**.

Adaptive control of pre-charge current

Refer to **Chapter 6.3.6** for information on the pre-discharge currents.

The pre-charge current IPRECHGz is a self-adaptive parameter if AGC[1:0] = (1,0) or (1,1) (see **GENCTRL2**). It is applied during tPCHGz (see **TPRECHG**). The TLE92108-231QX adapts IPRECHGz to match the effective tDONz to the configured value.

IPRECHGz is clamped between I_{CHG0} (1 mA typ.) and ICHGMAXz (see PWM_ICHGMAX_CCP_BLK3_ACT). IPRECHGz is initialized to min(IPCHGINITz, ICHGMAXz) (refer to PWM_PCHG_INIT) when the TLE92108-231QX receives an SPI command setting PWMz_EN to 1 (see PWMSET).

The following adaptive schemes can be selected:

AGCFILT = 0 (GENCTRL2): No filter is applied

- If the effective tDONz is longer than the configured tDONz, then IPRECHGz is increased during the next precharge phase.
- If the effective tDONz is shorter than the configured tDONz, then IPRECHGz is decreased during the next pre-charge phase.
- The pre-charge current is increased or decreased by one, respectively by two current steps (**Chapter 6.3.6**) if the control bit IPCHGADT in the control register **GENCTRL1** is set to 0 respectively 1.

AGCFILT = 1: The filter is applied

• If the effective tDONz **of the last two PWM cycles** are longer than the configured tDONz, then IPRECHGz is increased during the next pre-charge phase.

¹⁾ The external PWMz signal is synchronized with the internal device clock, resulting in the delay t_{PWM_SYNCH} between the internal and the external PWMz signals.

²⁾ IPRECHGz is clamped between ICHGMAXz and I_{CHGO} .

³⁾ The effective tDON can be read out. Refer to EFF_TDON_OFF1,EFF_TDON_OFF2, EFF_TDON_OFF3

- If the effective tDONz of the last two PWM cycles are shorter than the configured tDONz, then IPRECHGz is decreased during the next pre-charge phase.
- The pre-charge current is increased or decreased by one, respectively by two current steps (Chapter 6.3.6) if the control bit IPCHGADT in the control register **GENCTRL1** is set to 0 respectively 1.
- If none of the two cases are applicable, then IPRECHGz is unchanged during the next pre-charge phase.

Floating gate drivers

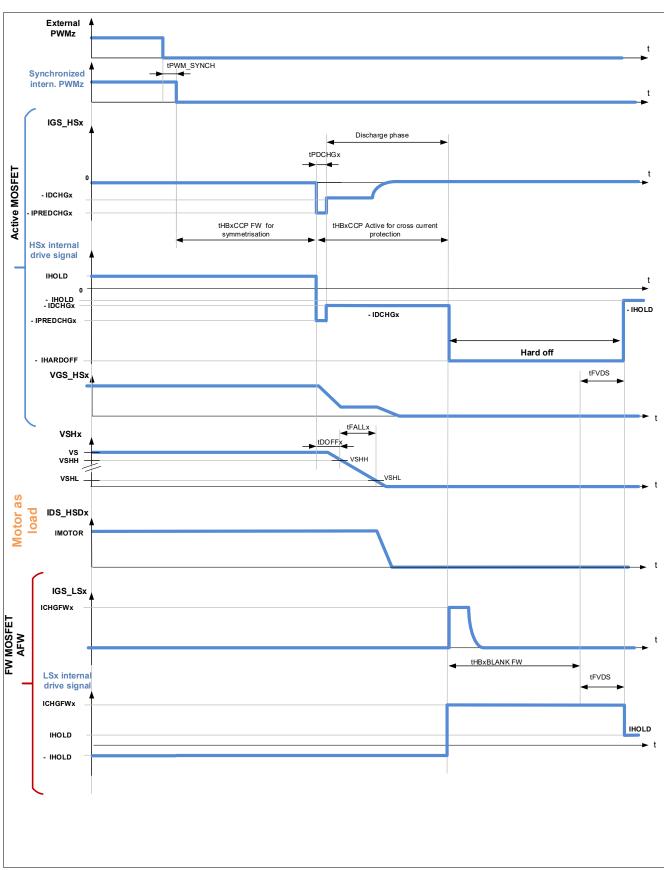


Figure 18 Adaptive turn-off, high-side PWM, AGC[1:0] = (1,0) or (1,1), motor operating as load

41

Adaptive turn-off during high-side PWM

Datasheet

Floating gate drivers

The turn-off of the high-side MOSFET is done in four phases (Refer to Figure 18):

- 1. **Turn-off delay time for symmetrization** of the PWM signal: The turn-off of HSx is delayed by tHBxCCP FW after the falling edge of the internal PWMz signal¹⁾, in order to compensate the distortion caused by the cross-current protection time at turn-on.
- 2. **Pre-discharge:** once tHBxCCP FW for symmetrization has elapsed, the gate of the high-side MOSFET x is pre-discharged with the current IPREDCHGz for a duration tDPCHGz. IPREDCHGz is a device internal parameter, which is self-adaptive (See next phase).
- 3. **Discharge:** After tPREDCHGz, the pre-discharge current is decreased in absolute value from IPREDCHGz²⁾ down to IDCHGz. The effective tDOFF³⁾ is measured and compared to the configured tDOFFz for the automatic adaptation of IPREDCHGz (see **Adaptive control of pre-discharge current**). The discharge phase ends up at expiration of tHBxCCP active for cross-current protection.
- 4. Cross-current protection phase: The cross-current protection is concurrent to the pre-discharge and discharge of the high-side MOSFET. The cross-current protection phase starts when the turn-off delay for symmetrization ends up. It has the duration tHBxCCP active. During tHBxCCP active, the low-side MOSFETx is kept OFF. When tHBxCCP active has elapsed, the gate of the low-side MOSFET x is charged with the current ICHGFWz until the end of tFVDS, provided that V_{SHx} < V_{SHL}.

Adaptive control of pre-discharge current

Refer to **Chapter 6.3.6** for information on the pre-discharge currents.

The pre-discharge current IPREDCHGz is a self-adaptive parameter if AGC[1:0] = (1,0) or (1,1) (see **GENCTRL2**). The TLE92108-231QX adapts the IPREDCHGz to match the measured t_{DOFFz} to the configured value.

IPREDCHGz is clamped between I_{DCHG0} (1 mA typ.) and ICHGMAXz (see PWM_ICHGMAX_CCP_BLK3_ACT).

IPREDCHGz is initialized to min(IPDCHGINITz, ICHGMAXz) (refer to **PWM_PDCHG_INIT**) when the TLE92108-231QX receives a SPI command setting PWMz_EN to 1 (see **PWMSET**)

The pre-discharge current is increased or decreased by one, respectively by two current steps (**Chapter 6.3.6**) if the control bit IPCHGADT in the control register **GENCTRL1** is set to 0 respectively 1.

The following adaptive schemes can be selected:

AGCFILT = 0 (GENCTRL2): No filter is applied

- If the effective tDOFFz is longer than the configured tDOFFz, then IPREDCHGz is increased during the next pre-discharge phase
- If the effective tDOFFz is shorter than the configured tDOFFz, then IPREDCHGz is decreased during the next pre-discharge phase
- The pre-charge current is increased or decreased by one, respectively by two current steps (Chapter 6.3.6) if the control bit IPCHGADT in the control register GENCTRL1 is set to 0 respectively 1.

AGCFILT = 1: The filter is applied

¹⁾ The external PWMz signal is synchronized with the internal device clock, resulting in the delay t_{PWM_SYNCH} between the internal and the external PWMz signals.

²⁾ IPREDCHGz is clamped between ICHGMAXz and I_{DCHGO}.

³⁾ The effective tDOFF can be read out. Refer to EFF_TDON_OFF1,EFF_TDON_OFF2, EFF_TDON_OFF3.

- If the effective tDOFFz of the last two PWM cycles are longer than the configured tDOFFz, then IPREDCHGz is increased during the next pre-charge phase.
- If the effective tDOFFz of the last two PWM cycles are shorter than the configured tDOFFz, then IPREDCHGz is decreased during the next pre-charge phase.
- If none of the two cases are applicable, then IPRECHGz is unchanged during the next pre-charge phase.
- The pre-charge current is increased or decreased by one, respectively by two current steps if the control bit IPCHGADT is set to 0 respectively 1.

Floating gate drivers

6.3.3.2 Low-side PWM with adaptive gate control, motor operating as load

The following section describes the MOSFET control when the PWM signal is applied to the low-side MOSFET of one half-bridge.

Assumption: the PWM channel z, z = 1,2 or 3, is applied to the low-side MOSFET of the half-bridge x, x = 1 ... 8 (**Figure 19**).

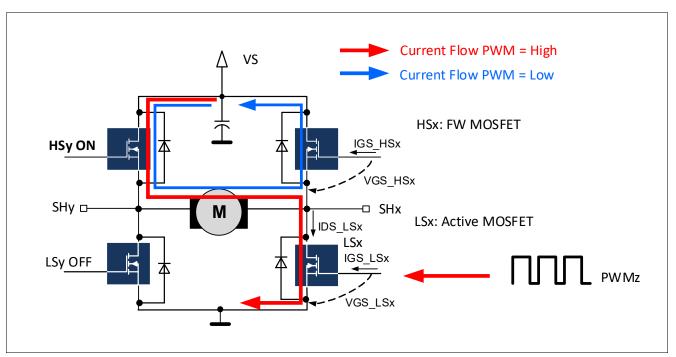


Figure 19 PWM Channel z is mapped to low-side x, motor operating as load

The description of the control of the PWM half-bridge differs from the description of **Chapter 6.3.3.1** only by exchanging high-side x and low-side x and the thresholds **V**_{SHH} and **V**_{SHL}.

Floating gate drivers

6.3.3.3 High-side PWM with adaptive gate control, motor operating as generator

The control scheme during high-side PWM in generator mode (refer to **Figure 20**) is equivalent to low-side MOSFET in load mode with the complementary signal of the external PWM input.

The turn-on, turn-off delay times and the rise and fall times are applied and measured for the active MOSFET.

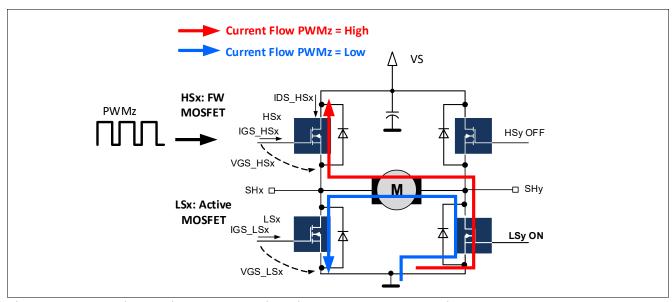


Figure 20 PWM input z is mapped to high-side x, the motor operating as generator

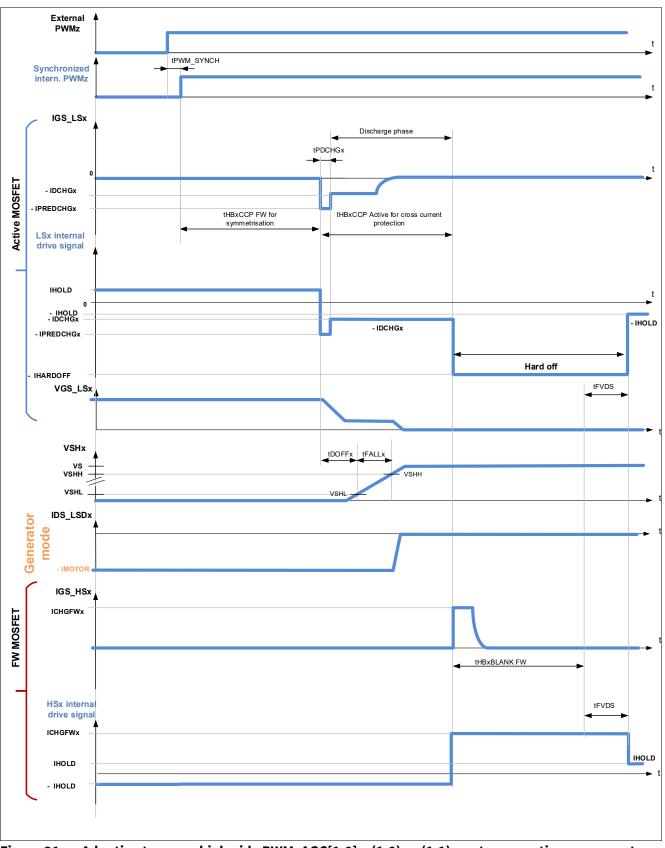


Figure 21 Adaptive turn-on, high-side PWM, AGC[1:0] = (1,0) or (1,1), motor operating as generator

Floating gate drivers

6.3.3.4 Low-side PWM with adaptive gate control, motor operating as generator

The control scheme during high-side PWM in generator mode (refer to **Figure 20**) is equivalent to low-side PWM in load mode with the complementary signal of the external PWM input.

The turn-on, turn-off delay times and the rise and fall times are applied and measured for the active MOSFET.

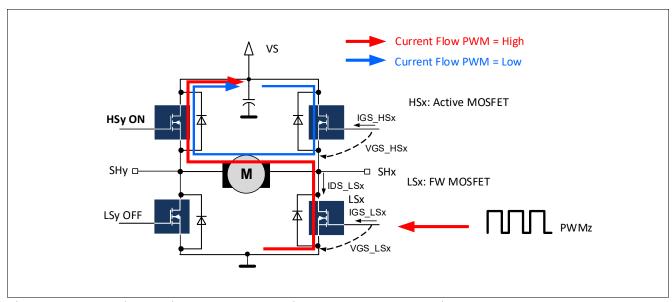


Figure 22 PWM input z is mapped to low-side x, the motor operating as generator

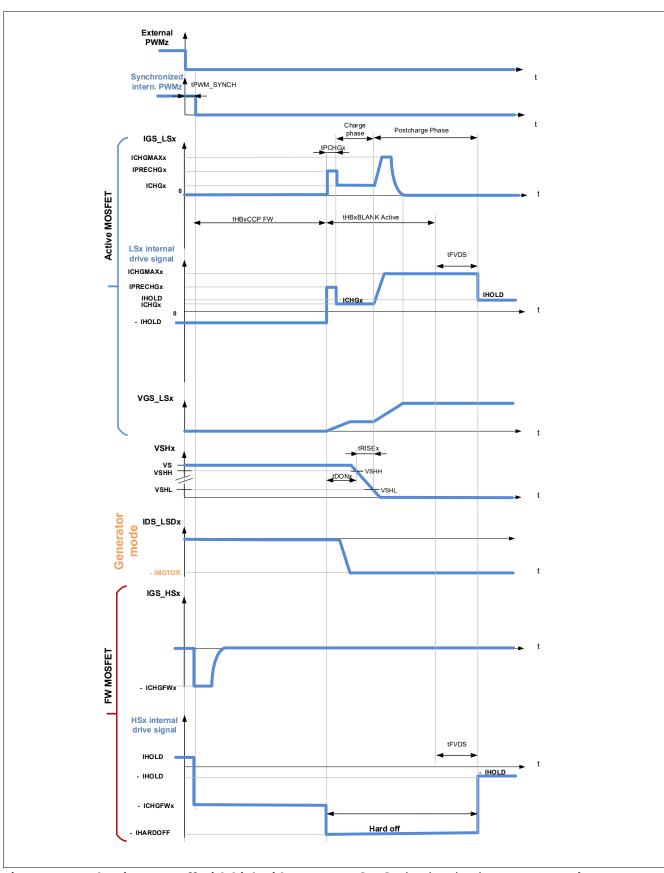


Figure 23 Adaptive turn-off with high-side PWM, AGC[1:0] = (1,0) or (1,1), motor operating as generator

infineon

Floating gate drivers

6.3.3.5 Status bits for regulation of turn-on and turn-off delay times

The control bits TDREGx (**GENSTAT**) indicate if tDONx and tDOFFx of the PWM channel x using the adaptive gate control scheme (AGC[1:0] = 10_B or 11_B) is in regulation.

The PWM channel is considered in regulation if one of the following conditions are met:

- the effective turn-on and turn-off delays are equal to the configured delays for at least eight consecutive PWM cycles
- the error between the effective and configured delay changes its sign at least three times during the last 8 PWM cycles

6.3.3.6 Precharge and predischarge phases with EN_DEEP_AD = 1

This section is valid if **EN_DEEP_AD** = 1. Enabling this feature leads to a lower granularity of the resulting precharge and and predischarge currents.

This principle is illustrated with an example during the precharge phase on **Figure 24**. The same principle is applied to the predischarge phase.

If $EN_DEEP_AD = 1$:

- The precharge phase can be divided in two parts, during which different precharge current steps are applied
- The predischarge phase can be divided in two parts, during which different predischarge current steps are applied

The device exits the "deep adaptation mode" if t_{DON} , respectively t_{DOFF} , cannot be regulated and the resolution of the precharge time cannot be further divided. Then, one single current step is applied during the precharge time (**Figure 25**).

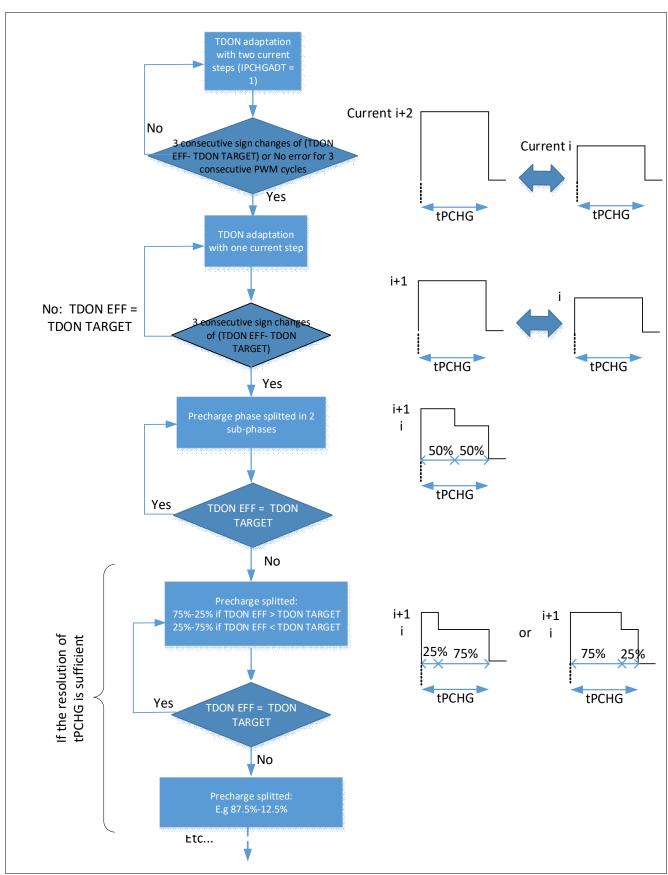
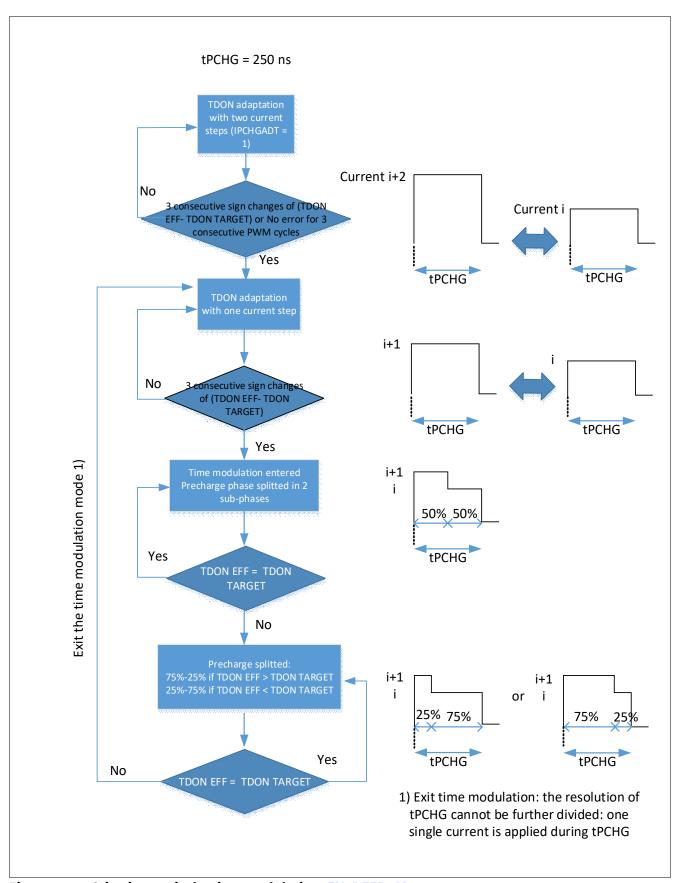



Figure 24 Example of precharge current modulation during the precharge phase, EN_DEEP_AD = 1

Criteria to exit the time modulation, EN_DEEP_AD = 1 Figure 25

Floating gate drivers

6.3.4 PWM operation without adaptive gate control

The adaptive gate control is disabled if AGC[1:0] is set to (0,0) or (0,1). The effective turn-on and turn -off delays of the PWM MOSFETs are not regulated. Two modes can be selected.

The target turn-on and turn-off delay times of PWM MOSFETs (configured in TDON OFF1, TDON_OFF2,TDON_OFF3) are no longer regulated. Nevertheless the status registers EFF_TDON_OFF1, **EFF_TDON_OFF2**, **EFF_TDON_OFF3** still report the effective turn-on and turn-off times of the PWM MOSFET.

6.3.4.1 PWM operation without adaptive gate control, AGC[1:0] = (0,0)

When AGC[1:0] = (0,0) (see GENCTRL2), the control of the gate drivers in PWM mode differs from the description of Chapter 6.3.3, PWM operation with adaptive gate control, only by the suppression of the precharge and pre-discharge phases.

Floating gate drivers

PWM operation without adaptive gate control, AGC[1:0] = (0,1) 6.3.4.2

When AGC[1:0] = (0,1) (see GENCTRL2), the control of the gate drivers in PWM mode differs from the description of Chapter 6.3.4.1, PWM operation without adaptive gate control, AGC[1:0] = (0,0), only by the addition of a pre-discharge phase. During tPDCHGz, the gate of the PWM MOSFET mapped to the PWM channel z is discharged with the current -IPDCHGINITz (Refer to PWM_PDCHG_INIT).

Refer to Figure 26 for the turn-off of the PWM MOSFET with high-side PWM.

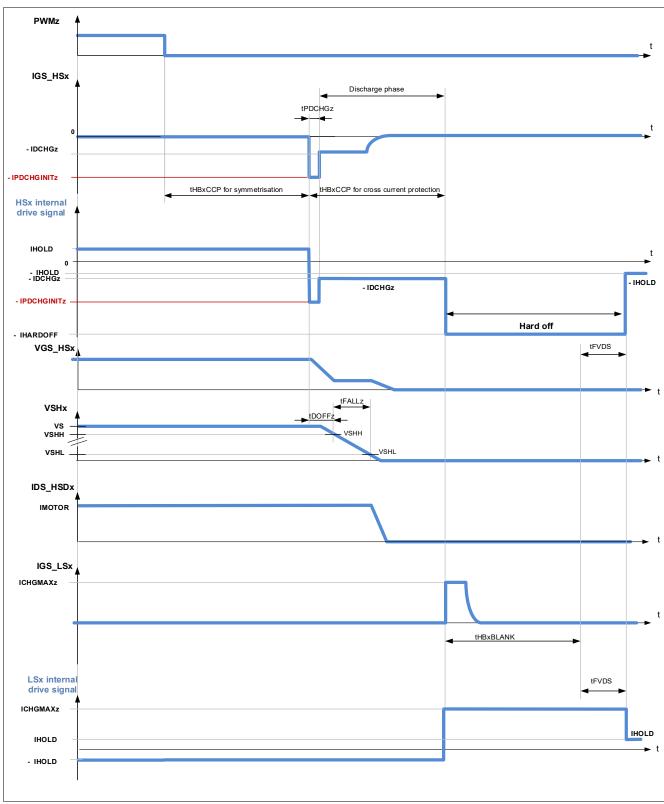


Figure 26 High-side PWM operation - turn-off without adaptive gate control, AGC[1:0] = (0,1)

Multiple MOSFET Driver IC

Floating gate drivers

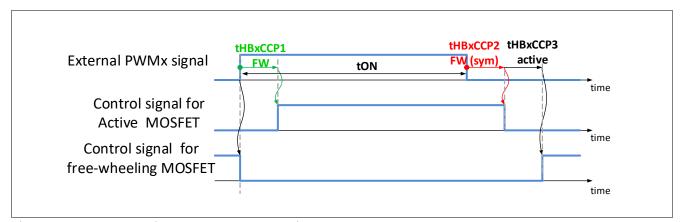
PWM operation at high and low duty cycles 6.3.5

This section describes the internal PWM signal of the active and FW MOSFET when the motor operates as load or generator. In particular, at low and high duty cycles, the active free-wheeling is disabled.

Note: It is recommended to clear **EN_GEN_CHECK** (**EN_GEN_CHECK** to 0) at very high and very low duty

> cycles: tON > tHBxCCP FW and tOFF < tHBxCCP active. Under these conditions, a generator mode cannot be correctly detected. The control scheme of the active MOSFET and of the freewheeling

MOSFET can therefore be inverted.


Note: The device cannot measure the switching times tDON, tDOFF, tRISE and tFALL at very high and very

low duty cycles: tON > tHBxCCP FW and tOFF < tHBxCCP active.

General case, motor operating as load, tON > tHBxCCP FW and tOFF > tHBxCCP active

Figure 27 shows the internal control signals of the PWM MOSFETs and the freewheeling MOSFET while the motor operates as load:

- tON is longer than the FW cross-current protection time (tHBxCCP FW)
- tOFF is longer than the active cross-current protection time (tHBxCCP Active)

Internal signals for PWM operation - General case tON > tHBxCCP FW, tOFF > tHBxCCP Figure 27 active, motor operating as load

General case, motor operating as generator, tOFF > tHBxCCP FW and tON > tHBxCCP active

Figure 28 shows the internal control signals of the PWM MOSFETs and the freewheeling MOSFET while the motor operates as generator:

- tOFF is longer than the FW cross-current protection time (tHBxCCP FW)
- tON is longer than the active cross-current protection time (tHBxCCP Active)

Multiple MOSFET Driver IC

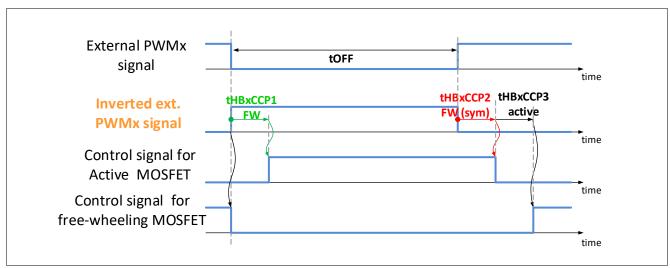


Figure 28 Internal signals for PWM operation - General case: tOFF > tHBxCCP FW, tON > tHBxCCP active, motor operating as generator

Floating gate drivers

High duty cycle: tOFF < tHBxCCP active

No distinction between active MOSFET and FW MOSFET is possible, when the OFF-time of the external PWM signal is shorter than the configured active cross-current protection time. Therefore the PWM MOSFET (selected by HBxMODE[1:0]) is controlled as the active MOSFET. In other words, it is assumed that the motor operates as load. The control signal of the PWM MOSFET is shifted by one FW cross-current protection time compared to the external PWM signal. The MOSFET opposite to the PWM MOSFET stays OFF (passive FW). Refer to Figure 29.

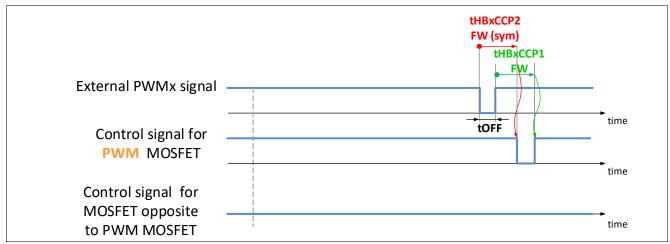


Figure 29 Internal signals for PWM operation at high duty cycle, tOFF < tHBxCCP active

Low duty cycle: tON < tHBxCCP FW

No distinction between active MOSFET and FW MOSFET is possible, when the ON-time of the external PWM signal is shorter than the configured FW cross-current protection time. Therefore the PWM MOSFET (selected by HBxMODE[1:0]) is controlled as the active MOSFET. In other words, it is assumed that the motor operates as load. The control signal of the PWM MOSFET is shifted by one cross-current protection time compared to the external PWM signal. The MOSFET opposite to the PWM MOSFET stays off (passive FW). Refer to Figure 30.

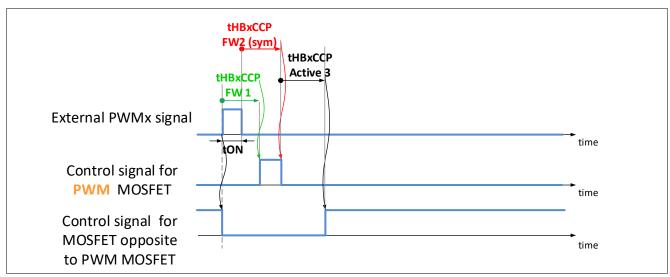


Figure 30 Internal signals for PWM operation at low duty cycle, tON < tHBxCCP FW

Floating gate drivers

Gate driver current 6.3.6

Each gate driver is able to source and sink currents from 1.0 mA to 100 mA, with 32 steps according to Figure 31 and Figure 32.

The charge and discharge currents of the active and the FW MOSFETs are configured separately by:

- The **REG_BANK** bit (**GENCTRL1**)
- The control registers PWM_ICHG_ACT, PWM_IDCHG_ACT, PWM_ICHG_FW

The charge current of the active MOSFETs are configured by PWM_ICHG_ACT (REG_BANK = 0) The discharge current of the active MOSFETs are configured by PWM_IDCHG_ACT (REG_BANK = 0) The charge and discharge current of the FW MOSFET are configured by **PWM_ICHG_FW** (**REG_BANK** = 1)

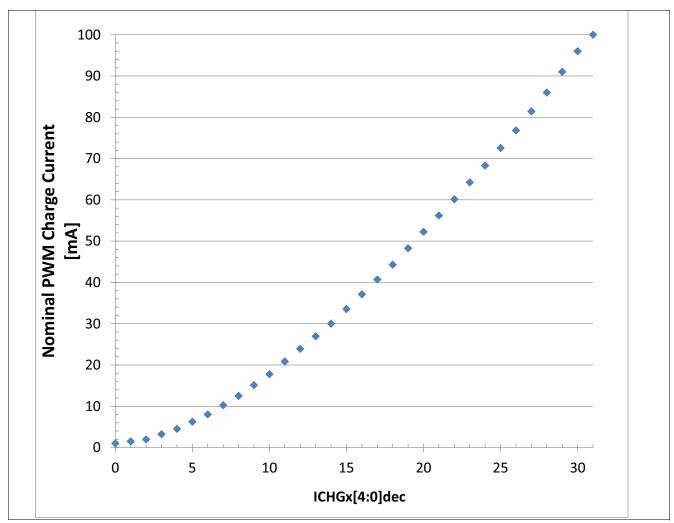


Figure 31 Configurable charge currents in PWM operation

Multiple MOSFET Driver IC

Charge currents in PWM operation Table 13

ICHGx[4:0], ICHGxFW[4:0], IPCHGINITx[4:0]	Nom. charge current [mA] ¹⁾	Max. deviation to nominal values [%]	
00000 _B	1.0	+/- 60 %	
00001 _B	1.5	+/- 60 %	
00010 _B	2.0	+/- 60 %	
00011 _B	3.2	+/- 60 %	
00100 _B	4.5	+/- 60 %	
00101 _B	6.3	+/- 60 %	
00110 _B	8.0	+/- 38 %	
00111 _B	10.3	+/- 38 %	
01000 _B	12.5	+/- 38 %	
01001 _B	15.1	+/- 38 %	
01010 _B	17.8	+/- 38 %	
01011 _B	20.8	+/- 38 %	
01100 _B	23.9	+/- 38 %	
01101 _B	27.0	+/- 38 %	
01110 _B	30.0	+/- 28 %	
01111 _B	33.5	+/- 28 %	
10000 _B	37.1	+/- 28 %	
10001 _B	40.7	+/- 28 %	
10010 _B	44.3	+/- 28 %	
10011 _B	48.3	+/- 28 %	
10100 _B	52.3	+/- 28 %	
10101 _B	56.2	+/- 28 %	
10110 _B	60.1	+/- 28 %	
10111 _B	64.2	+/- 28 %	
11000 _B	68.3	+/- 28 %	
11001 _B	72.5	+/- 28 %	
11010 _B	76.8	+/- 28 %	
11011 _B	81.4	+/- 28 %	
11100 _B	86.0	+/- 28 %	
11101 _B	91.0	+/- 28 %	
11110 _B	96.0	+/- 25 %	
11111 _B	100	+/- 25 %	

¹⁾ $V_S \ge 8V$ and $V_{GS} \le V_{GS(ON)1}$ if ICHGx/ICHGxFW $\le 14_D$, $V_S \ge 8V$ and $V_{GS} \le V_{GS(ON)2}$ if ICHGx/ICHGxFW $\ge 15_D$

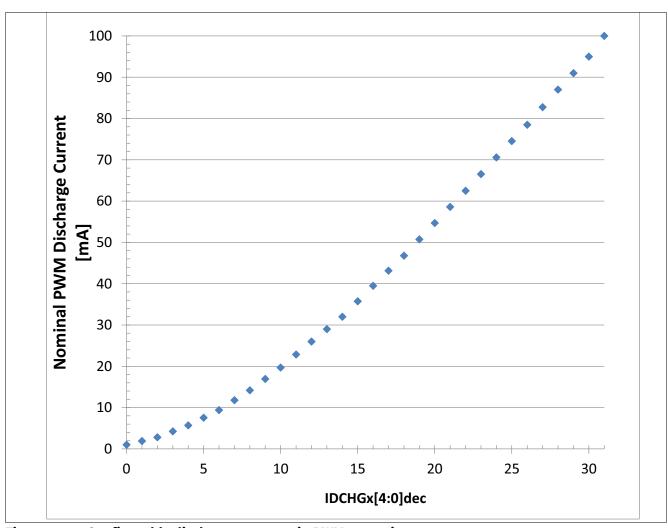


Figure 32 Configurable discharge currents in PWM operation

Multiple MOSFET Driver IC

Discharge currents in PWM operation Table 14

IDCHGx[4:0], IDCHGxFW[4:0], IPDCHGINITx[4:0]	Nom. charge current [mA] ¹⁾	Max. deviation to nominal values [%]		
00000 _B	1.0	+/- 60 %		
00001 _B	1.9	+/- 60 %		
00010 _B	2.8	+/- 60 %		
00011 _B	4.3	+/- 60 %		
00100 _B	5.7	+/- 60 %		
00101 _B	7.5	+/- 60 %		
00110 _B	9.4	+/- 38 %		
00111 _B	11.8	+/- 38 %		
01000 _B	14.2	+/- 38 %		
01001 _B	17.0	+/- 38 %		
01010 _B	19.7	+/- 38 %		
01011 _B	22.9	+/- 38 %		
01100 _B	26.0	+/- 38 %		
01101 _B	29.0	+/- 38 %		
01110 _B	32.0	+/- 28 %		
01111 _B	35.8	+/- 28 %		
10000 _B	39.5	+/- 28 %		
10001 _B	43.1	+/- 28 %		
10010 _B	46.8	+/- 28 %		
10011 _B	50.8	+/- 28 %		
10100 _B	54.7	+/- 28 %		
10101 _B	58.6	+/- 28 %		
10110 _B	62.5	+/- 28 %		
10111 _B	66.6	+/- 28 %		
11000 _B	70.6	+/- 28 %		
11001 _B	74.6	+/- 28 %		
11010 _B	78.5	+/- 28 %		
11011 _B	82.8	+/- 28 %		
11100 _B	87.0	+/- 28 %		
11101 _B	91.0	+/- 28 %		
11110 _B	95.0	+/- 25 %		
11111 _B	100	+/- 25 %		

¹⁾ $V_{\text{GS}} \ge V_{\text{GS(OFF)1}}$ if IDCHGx $\le 14_{\text{D}}$, $V_{\text{GS}} \ge V_{\text{GS(OFF)2}}$ if IDCHGxFW $\ge 15_{\text{D}}$

Multiple MOSFET Driver IC

Floating gate drivers

6.4 **Passive discharge**

Resistors (R_{GGND}) between the gate of GHx and GND, and between GLx and GND, ensure that the external MOSFETs are turned off, when EN = Low or when $V_{\rm DD} < V_{\rm DDPOffR}$.

During normal mode with BD_PASS bit reset (GENCTRL2) without failure causing the deactivation of the gate drivers, these pull-down resistors are switched off. The MOSFET are actively kept off with the discharge current IHOLD.

During normal mode with failure leading to the deactivation of the gate drivers (charge pump undervoltage, VS undervoltage and overvoltage, thermal shutdown) or in fail safe mode, R_{GGND} are activated, independently from the setting of **BD_PASS**.

Gate driver power down

The gate driver is deactivated in normal mode with BD_PASS set to 1 and all HBxMODE[1:0]=00 or 11. The current consumption of the VS input is reduced to $I_{S\ BD\ PASS}$ and R_{GGND} are activated.

6.5 Bridge driver in passive mode

The bridge driver is in passive mode:

- If **BD_PASS** = 1 in normal mode and all HBxMODE[1:0]=00_B or 11_B.
- In sleep mode (EN = Low).
- If $V_{\rm DD} < V_{\rm DD POffR}$.

All MOSFETs are in passive discharge (refer to **Passive discharge**):

- in normal mode
- in sleep mode as long as $V_S > V_{SLEEP SET}$
- if $V_{\rm DD} < V_{\rm DD\ POffR}$ as long as $V_{\rm S} > V_{\rm SOV\ PASS\ OFF}$

Note that after a recovery of $a V_S$ drops below $V_{SLEEP\ SET}$ in sleep mode or when $V_{DD} < V_{DD\ POffR}$, LS1-LS4 are activated if $V_S > V_{SOV PASS OFF}$ (overvoltage brake)

Multiple MOSFET Driver IC

Floating gate drivers

Electrical characteristics gate driver 6.6

The electrical characteristics related to the gate driver are valid for $V_{\rm CP} > V_{\rm S} + 8.5 \, \rm V$.

Table 15 **Electrical characteristics: gate drivers**

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm i}$ = -40°C to 150°C $V_{CP} > V_{S} + 8.5 \text{ V}$, all voltages with respect to ground. Positive current flowing into pin except for I_{GLx} and I_{GHx} (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Comparators							
SHx High Threshold	V_{SHH}	V _S - 2.5	_	V _S - 2.0	V		P_6.5.1
SHx Low Threshold	V_{SHL}	2	-	2.5	V	Referred to GND	P_6.5.2
SHx comparator delay	t_{SHx}	_	5	30	ns	1)	P_6.5.26
MOSFET Driver Output							
High Level Output Voltage GHx vs. SHx and GLx vs. SL, CPSTGA= 0	V _{GH1}	10	_	12	V	$V_{\rm S} > 8 \text{ V}$ $C_{\rm Load} = 10 \text{ nF}$ $I_{\rm CP} = -12 \text{ mA}^{2}$	P_6.5.3
High Level Output Voltage GHx vs. SHx and GLx vs. SL, CPSTGA= 0	V_{GH3}	7	-	-	V	$V_{\rm S} > 6.0 \text{ V}$ $C_{\rm Load} = 10 \text{ nF}$ $I_{\rm CP} = -6 \text{ mA}^{2}$	P_6.5.5
High Level Output Voltage GHx vs. SHx and GLx vs. SL, CPSTGA= 1	V_{GH4}	10	-	12	V	$^{1)}$ $V_{\rm S} > 18 \text{ V},$ $C_{\rm Load} = 10 \text{ nF } I_{\rm CP} = -12 \text{ mA}^{2)}$	P_6.5.6
Charge current	I _{CHG0}	0.4	1.0	1.6	mA	ICHG = 0_D C_{Load} = 10 nF $V_{GS} \le V_{GS(ON)1}$	P_6.5.30
Charge current	I _{CHG6}	5.0	8.0	11.0	mA	ICHG = 6_D C_{Load} = 10 nF $V_{GS} \le V_{GS(ON)1}$	P_6.5.31
Charge current	I _{CHG14}	21.6	30.0	38.4	mA	ICHG = 14_D $C_{Load} = 10 \text{ nF}$ $V_{GS} \leq V_{GS(ON)1}$	P_6.5.33
Charge current	I _{CHG30}	72	96	120	mA	ICHG = 30_D C_{Load} = 10 nF $V_{GS} \le V_{GS(ON)2}$	P_6.5.35
Discharge current	I _{DCHG0}	-1.6	-1.0	-0.4	mA	IDCHG = 0_D C_{Load} = 10 nF $V_{GS} \ge V_{GS(OFF)1}$	P_6.5.36
Discharge current	I _{DCHG6}	-13.0	-9.4	-5.8	mA	IDCHG = 6_D C_{Load} = 10 nF $V_{GS} \ge V_{GS(OFF)1}$	P_6.5.37
Discharge current	I _{DCHG14}	-41.0	-32.0	-23.0	mA	IDCHG = 14_D $C_{Load} = 10 \text{ nF}$ $V_{GS} \ge V_{GS(OFF)1}$	P_6.5.39

Floating gate drivers

Table 15 Electrical characteristics: gate drivers (cont'd)

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm j}$ = -40°C to 150°C $V_{\rm CP} > V_{\rm S}$ + 8.5 V, all voltages with respect to ground. Positive current flowing into pin except for $I_{\rm GLx}$ and $I_{\rm GHx}$ (unless otherwise specified).

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Discharge current	I _{DCHG30}	-119	-95	-71	mA	IDCHG = 30_D $C_{Load} = 10 \text{ nF}$ $V_{GS} \ge V_{GS(OFF)2}$	P_6.5.41
Passive discharge resistance between GHx/GLx and GND	R_{GGND}	10	20	30	kΩ	1)	P_6.5.11
Resistor between SHx and GND	R _{SHGND}	10	20	30	kΩ	1)	P_6.5.12
Low RDSON mode	R _{ONCCP}	-	22	40	Ω	$V_{S} = 13.5 \text{ V}$ $V_{CP} = V_{S} + 14 \text{ V}$ $I_{CHG} = I_{DCHG} = 31$ (max)	P_6.5.13
Gate Drivers Dynamic Parar	meters						
External MOSFET gate-to- source voltage - ON	V _{GS(ON)1}	9	_	-	V	$ V_{S} \ge 8V$ $ CHGx \le 14_{D}$	P_6.5.50
External MOSFET gate-to- source voltage - ON	V _{GS(ON)2}	7	-	-	V	$^{1)}$ $V_S \ge 8V$ ICHGx ≥ 15 _D	P_6.5.51
External MOSFET gate-to- source voltage - OFF	V _{GS(OFF)1}	-	-	2	V	¹⁾ IDCHGx ≤ 14 _D	P_6.5.53
External MOSFET gate-to- source voltage - OFF	V _{GS(OFF)2}	-	-	5	V	¹⁾ IDCHGx ≥ 15 _D	P_6.5.53
PWM synchronization delay	t _{PWM_SYNCH}	50	_	150	ns	1)	P_6.5.46
Pre-charge time	t_{PCHG00}	100	125	150	ns	1) TPCHG = 00 _B	P_6.5.18
Pre-charge time	t _{PCHG01}	200	250	300	ns	1) TPCHG = 01 _B	P_6.5.19
Pre-charge time	t_{PCHG10}	400	500	600	ns	1) TPCHG = 10 _B	P_6.5.20
Pre-charge time	t_{PCHG11}	800	1000	1200	ns	¹⁾ TPCHG = 11 _B	P_6.5.21
Pre-discharge time	t _{DPCHG00}	100	125	150	ns	1) TDPCHG = 00 _B	P_6.5.22
Pre-discharge time	t _{DPCHG01}	200	250	300	ns	1) TDPCHG = 01 _B	P_6.5.23
Pre-discharge time	t _{DPCHG01}	400	500	600	ns	1) TDPCHG = 10 _B	P_6.5.24
Pre-discharge time	t _{DPCHG01}	800	1000	1200	ns	1) TDPCHG = 11 _B	P_6.5.25

¹⁾ Not subject to production test, specified by design.

²⁾ ICHGx[4:0] = 11111_B (100 mA typ.)

Protections and diagnostics

7 Protections and diagnostics

7.1 Reverse polarity protection

The output of the charge pump (CP pin) can be used to supply an external n-channel MOSFET, building an active reverse polarity protection. Refer to **Figure 50**.

7.2 Safe switch (optional)

The output of the charge pump (CP pin) can be used to supply an optional external n-channel MOSFET, operating as safe switch. The safe switch can be actively turned off for example by the microcontroller or a safety logic, in order to disconnect the MOSFET supply, independently from the TLE92108-231QX. Refer to Figure 50.

7.3 Drain-source voltage monitoring with bridge driver in active mode

When EN =High and **BD_PASS** = 0 (bridge driver in active mode), voltage comparators monitor the activated MOSFETs to protect the high-side MOSFETs and low-side MOSFETs against a short circuit respectively to ground and to the battery during ON-state.

If a Drain-Source overvoltage is detected, the corresponding half-bridge is latched off.

If HBxD = 0, x = 1...8 (**VDS1** and **VDS2**): The half-bridge x is latched off if the voltage difference between DH and VSHx exceeds the threshold voltage configured by **VDS1**, and **VDS2** (see **Table 16**).

If HBxD = 1, x = 1...8 (see **VDS1** and **VDS2**): The half-bridge x is latched off if the voltage difference between CSIN1 and VSHx exceeds the threshold voltage configured by **VDS1**, and **VDS2** (see **Table 16**).

Short circuits of low-side MOSFETs to VS are detected by monitoring the voltage difference between VSHx and SL (see **Table 16**).

Table 16 Drain-Source overvoltage threshold, EN = High, BD_PASS= 0

000 _B 150 mV 001 _B 200 mV (default) 010 _B 250 mV 011 _B 300 mV 100 _B 400 mV 101 _B 500 mV	VDSTH ¹⁾ [2:0]	Drain-Source overvoltage threshold for HSx and LSx ¹⁾ (typical)
010 _B 250 mV 011 _B 300 mV 100 _B 400 mV		150 mV
011 _B 300 mV 100 _B 400 mV		200 mV (default)
011 _B 300 mV 100 _B 400 mV 101 _B 500 mV		250 mV
100 _B 400 mV 101 _B 500 mV		300 mV
101 _P 500 mV		400 mV
В		500 mV
110 _B 600 mV	i	600 mV
111 _B 2 V		2 V

1) x = 1 ... 8.

Attention: $HBxVDSTH[2:0] = 111_B$ (2 V threshold) is dedicated for the diagnostic in off-state. It is highly recommended to select another drain-source overvoltage threshold once the routine of the diagnostic in off-state has been performed to avoid additional current consumption from VS and from the charge pump.

Protections and diagnostics

Note:

The device reports a Drain-Source overvoltage error if both conditions are met:

- After expiration of the blank time.
- If the Drain-Source voltage monitoring exceeds the configured threshold for a duration longer than the configured filter time (refer to **Table 17** and **GENCTRL2** TFVDS bits).

Exception with static activated MOSFETs when the short circuit is applied before the expiration of

the blank time: the MOSFETs are turned off after the blank time + 2 x t_{FVDS}

Table 17 Drain-Source overvoltage filter time

TFVDS[1:0]	Drain-Source overvoltage filter time (typical)
00 _B	0.5 μs (default)
01 _B	1 μs
10 _B	2 μs
11 _B	3 μs

If a short circuit is detected by the Drain-Source voltage monitoring:

- The impacted half-bridge is latched off.
 - The discharge current is according to the settings of ST_ICHG, as if the MOSFET was previously statically activated.
- The corresponding bit in the status register **DSOV** is set.
- The VDSE in Global Status Register Global status byte is set.

If a Drain-Source overvoltage is detected for one of the MOSFETs, then the status register **DSOV** must be cleared in order to re-enable the faulty half-bridge.

7.4 Cross-current protection and drain-source overvoltage blank time

All gate drivers feature a cross-current protection time and a Drain-Source overvoltage blank times.

The cross-current protection avoids the simultaneous activation of the high-side and the low-side MOSFETs of the same half-bridge.

During the blank time, the drain-source overvoltage detection is disabled, to avoid a wrong fault detection during the activation phase of a MOSFET.

Notes

- 1. The setting of the cross-current protection and of the blank times may be changed by the microcontroller only if all $PWMx_EN$ bits are reset, $x = 1 \dots 3$.
- 2. Changing the Drain-Source overvoltage of a half-bridge x (HBx) in on-state (HBxMODE[1:0]=(0,1) or (1,0)) may result in a wrong VDS overvoltage detection on HBx. Therefore it is highly recommended to change this threshold when HBxMODE[1:0]=(0,0) or (1,1).

7.4.1 Cross-current protection

Four pairs of cross-current protection and blank times ((tCCPx, tBLANKx), x = 1...4) can be mapped to each half-bridge with the control register **CCP_BLK1**.

The cross-current protection time of the active MOSFET of the FW MOSFETs are set independently.

Protections and diagnostics

- The cross-current protection times of the active MOSFETs are configured by the control bits TCCPx_ACT
 (CCP_BLK2_ACT, PWM_ICHGMAX_CCP_BLK3_ACT) and CCP_BLK1
- The cross-current protection times of the free-wheeling MOSFETs are configured by the control bits TCCPx_FW (CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW) and CCP_BLK1

Table 18 Cross-current protection time

TCCPx_ACT[2:0], TCCPx_FW[2:0],x = 14	Cross-current protection time tCCPx_ACT/tCCPx_FW, x = 14 (typical)
000 _B	375 ns
001 _B	625 ns
010 _B	1 μs
011 _B	1.5 μs
100 _B	2 μs (default)
101 _B	3 μs
110 _B	4 μs
111 _B	16 μs ¹⁾

¹⁾ When applying a cross-current protection time of 16 µs to a half-bridge, the max. drive current used for this half-bridge must be set below 30 mA to avoid an overheating of the gate driver.

7.4.2 Drain-source overvoltage blank time in bridge driver active mode

A configurable blank time (refer to **Table 19**) for the Drain-Source monitoring is applied at the turn-on of the MOSFETs. During the blank time, a Drain-Source overvoltage error is masked.

The blank time of the active MOSFET of the FW MOSFETs are set independently:

- The blank times of the active MOSFETs are configured by the control bits TBLANKx_ACT (CCP_BLK2_ACT, PWM_ICHGMAX_CCP_BLK3_ACT) and CCP_BLK1
- The blank times of the free-wheeling MOSFETs are configured by the control bits TBLANKx_FW
 (CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW) and CCP_BLK1

Half-bridges in PWM mode

If the detection of the generator mode is disabled (**EN_GEN_CHECK** = 0):

- The blank time of the PWM MOSFET starts at the expiration of the cross-current protection time of the FW MOSFET (tHBxCCP FW). Refer to Figure 33.
- The blank time of the FW MOSFET starts after expiration of the cross-current protection time at turn-off of the PWM MOSFET (tHBxCCP Active). Refer to Figure 33.

Protections and diagnostics

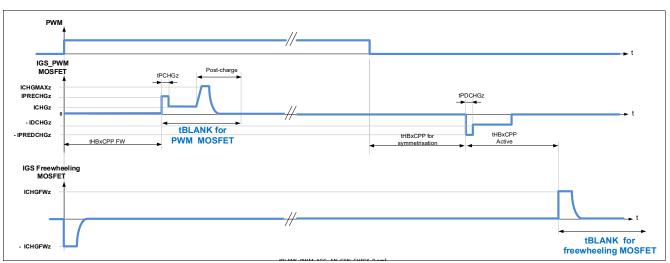


Figure 33 Blank time for half-bridges in PWM operation, detection of generator mode disabled (EN_GEN_CHECK = 0)

If the detection of the generator mode is enabled (EN_GEN_CHECK = 1):

- The blank time of the Active MOSFET starts at the expiration of the cross-current protection time of the FW MOSFET (tHBxCCP FW). Refer to **Figure 34** and **Figure 35**.
- The blank time of the FW MOSFET starts after expiration of the cross-current protection time at turn-off of the Active MOSFET (tHBxCCP Active). Refer to **Figure 34** and **Figure 35**.

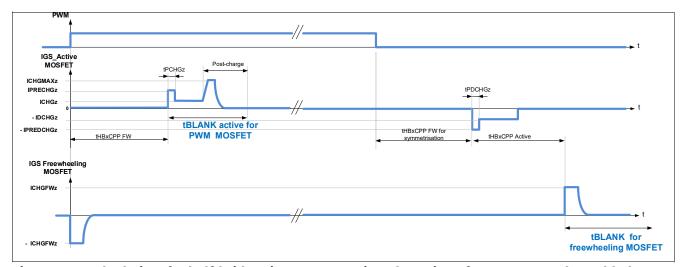
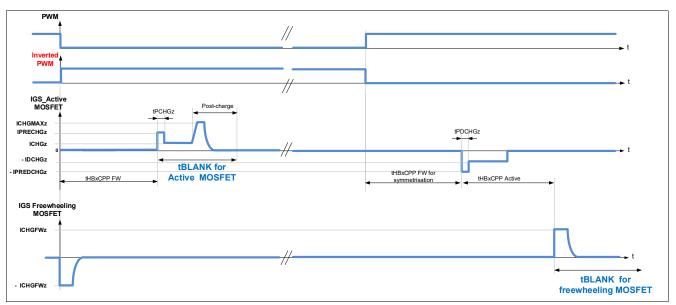



Figure 34 Blank time for half-bridges in PWM operation, detection of generator mode enabled (EN_GEN_CHECK = 1), motor operating as load

Multiple MOSFET Driver IC

Protections and diagnostics

Blank time for half-bridges in PWM operation, detection of generator mode enabled Figure 35 (EN_GEN_CHECK = 1), motor operating as generator

For statically activated half-bridges, the blank time starts:

- Case 1: At expiration of the active cross-current protection (Figure 7), if the opposite MOSFET was previously activated.
- Case 2: Right after the decoding of the SPI command to turn on a MOSFET, if the half-bridge was in high impedance (Figure 8).

configured CCP_BLK2_ACT The blank times can be with the control registers and PWM_ICHGMAX_CCP_BLK3_ACT for **MOSFETs** and CCP_BLK2_FW the active and PWM_ICHGMAX_CCP_BLK3_FW for the freewheeling MOSFETs.

Protections and diagnostics

Table 19 Drain-source overvoltage blank time

TBLANKx[2:0], x = 14	Drain-Source overvoltage blank time tBLANKx, x = 14 (typical)
000 _B	625 ns
001 _B	1 μs
010 _B	1.25 μs
011 _B	1.5 μs
100 _B	2 μs (default)
101 _B	3 μs
110 _B	4 μs
111 _B	16 μs ¹⁾

¹⁾ When applying a blank time of 16 μs to a half-bridge, the max. drive current used for this half-bridge must be set below 30 mA, to avoid an overheating of the gate driver.

Note:

The blank time is implemented at every new activation of a MOSFET, including a recovery from VS undervoltage, VS overvoltage.

7.4.3 Mapping of cross-current protection and blank times

One of the pairs of cross-current protection and blank times are mapped to each half-bridge according to **Table 20**, by configuring the control register **CCP_BLK1**.

Table 20 Mapping of tCCP and tBLANK to the half-bridges

HBxCCPBLK[1:0], x =18	tCCP and tBLANK applied to HBx
00 _B	(tCCP1,tBLANK1) are mapped to HBx1)
01 _B	(tCCP2,tBLANK2) are mapped to HBx
10 _B	(tCCP3,tBLANK3) are mapped to HBx
11 _B	(tCCP4,tBLANK4) are mapped to HBx

¹⁾ Example: (tHBxCCP, tHBxBLANK) = (tCCP1, tBLANK1), x = 1 ... 4.

7.5 OFF-state diagnostic

In order to support the off-state diagnostic, the gate driver of each MOSFET provides pull-up (450 μ A typ.) and a pull-down currents (1250 μ A typ.) at the SHx pins when the driver driver is active (**BD_PASS** = 0). Under these conditions, the pull-up current sources are active.

Attention: The off-state diagnostic is possible only when the bridge driver is active (BD_PASS=0) and the corresponding half-bridge is off (HBxMODE = 00b or 11b).

The pull-down current of each gate driver are activated by the control bits HBxIDIAG (HBIDIAG register).

During the off-state diagnostic routine performed by the microcontroller, the drain-source overvoltage threshold of the relevant half-bridges must be set to 2 V nominal. Refer to **Table 16**. Once the routine is finished, it is highly recommended to decrease the drain-source overvoltage threshold to a lower value, avoiding additional current consumption from the VS input.

The following failures can be detected:

Protections and diagnostics

- MOSFET short circuit to GND.
- MOSFET short circuit the battery.
- Open load (disconnected motor).

The status of the output voltages VOUTx, with $x = 1 \dots 8$, can be read back with status bit HBxVOUT (register **HBVOUT_PWMERR**) when the corresponding half-bridge is in off-state (HBxMODE[1:0] = 00 or 11).

HBxVOUT = 0 if the half-bridge x is not in off-state (HBxMODE[1:0] = (0,1) or (1,0)). Note:

Refer to Application information, Chapter 10 for off-state diagnostic when the shunt resistor is in the motor phase.

Protections and diagnostics

7.6 Temperature monitoring

Temperature sensors are integrated in the device. The temperature monitoring circuit compares the measured temperature to the warning and shutdown thresholds.

Temperature warning

If the temperature sensor reaches T_{jW} , then **TW** is set (see **GENSTAT**). This bit is latched and reset by clearing **GENSTAT** if the thermal warning condition has disappeared. The outputs stages however remain activated. Refer to **Figure 36**.

Temperature shutdown

If the temperature sensor reaches $T_{\rm jSD}$ all gate drivers are latched off, the charge pump is deactivated; the SUPE bit (Supply Error bit, see Global status byte), TSD (Thermal Shutdown bit) and CPUV (Charge Pump Undervoltage) are set (see GENSTAT). All outputs remain deactivated until the temperature shutdown condition has disappeared and GENSTAT is cleared. See Figure 36.

The discharge current is according to the settings of **ST_ICHG**, as if the MOSFET was previously statically activated.

To resume normal functionality of the gate drivers (in the event the overtemperature condition disappears, or to verify if the failure still exists) the microcontroller shall clear **GENSTAT**.

Protections and diagnostics

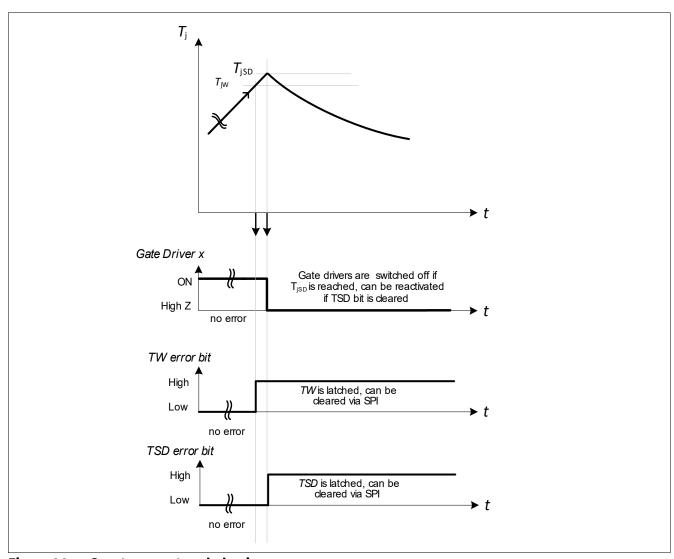


Figure 36 **Overtemperature behavior**

Multiple MOSFET Driver IC

Protections and diagnostics

7.7 V_s overvoltage and undervoltage shutdown

The power supply rails V_S and V_{DD} are monitored for supply fluctuations. The V_S supply is monitored for underand over-voltage conditions whereas the $V_{\rm DD}$ supply is monitored for under-voltage conditions.

7.7.1 V_s undervoltage

If V_S drops below $V_{SUV OFF}$, then all external MOSFETs are latched off, however, the logic information remains intact and uncorrupted provided that $V_{DD} > V_{DD POR}$.

SUPE (Supply Error bit, see Global status byte), VSUV and CPUV bits (see GENSTAT), are set and latched.

The **VSUV** bit is reset by clearing **GENSTAT** to re-enable the MOSFETs.

The **VSUV** bit is reset if the following conditions are fulfilled:

- V_S > V_{SUV ON} (See Figure 37).
- The TLE92108-231QX receives a clear command to **GENSTAT**.

V_s overvoltage with bridge driver in active mode 7.7.2

If V_S rises above the switch-off voltage ($V_{SOV OFF1}$ if VSOVTH= 0, $V_{SOV OFF2}$ if VSOVTH= 1) all external MOSFETs are latched off, and the charge pump is deactivated. SUPE bit (see Global status byte), VSOV bit (V_S over-voltage bit, see **GENSTAT**), and CPUV bit are set and latched. If V_S decreases below $V_{SOV ON}$, then the charge pump is reactivated automatically. The **VSOV** bit must be reset to re-enable the MOSFETs.

The **VSOV** bit is reset if the following conditions are fulfilled:

- V_S < V_{SOV ON} (See Figure 37).
- The TLE92108-231QX receives a clear command to **GENSTAT**.

The discharge current is according to the settings of **ST_ICHG**, as if the MOSFET was previously statically activated.

infineon

Protections and diagnostics

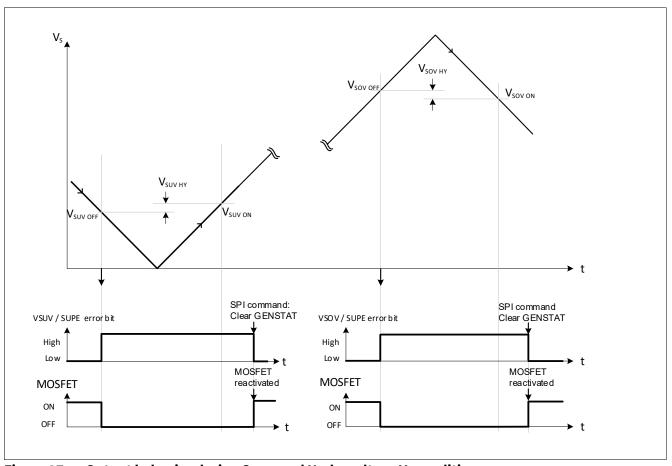


Figure 37 Output behavior during Over- and Undervoltage V_s condition

7.7.3 V_{DD} undervoltage

If the $V_{\rm DD}$ logic supply decreases below the undervoltage threshold, $V_{\rm DD\ POffR}$, the SPI interface shall no longer be functional. The digital block will be reset and the gate drivers are switched off. The undervoltage reset is released once $V_{\rm DD}$ voltage is above the undervoltage threshold, $V_{\rm DD\ POR}$.

7.7.4 Charge pump undervoltage

The voltage of the charge pump output (VCP) is monitored in order to ensure a correct control of the external MOSFETs.

If VCP falls below the configured charge pump undervoltage threshold:

- The external MOSFETs are actively discharged for the duration tHBxCCP with the current ICHGSTx, then the gate drivers are turned off.
- CPUV (GENSTAT), SUPE bits (Global status byte) and the Global Error Flag (Chapter 8.2) are set and latched.

The **CPUV** and SUPE bits are reset and the normal operation is resumed if **GENSTAT** is cleared, and VCP > VCPUV.¹⁾

¹⁾ Recovering from VS under/overoltage and thermal shutdown, CPUV bit can be cleared only after 64 µs

Protections and diagnostics

Notes

- 1. A charge pump undervoltage event is reported after a power-on reset, when the charge time of the capacitor connected to VCP exceeds \mathbf{t}_{CPUV} .
- The charge pump is is deactivated after a VS undervoltage, a VS overvoltage and a thermal shutdown, causing a charge pump undervoltage condition. Consequently CPUV and SUPE bits are set together with VSOV, VSUV or TSD bits (see GENSTAT).

7.8 Switching parameters of MOSFETs in PWM mode

The effective switching parameters of the active MOSFETs (**EN_GEN_CHECK** =1) or of the PWM MOSFET (**EN_GEN_CHECK** =0) can be read out with dedicated status registers:

- The turn-on and turn off delays, noted tDON and tDOFF, are reported by the status register
 EFF_TDON_OFF1, EFF_TDON_OFF2, EFF_TDON_OFF3.
- The rise and fall times, noted tRISE and tFALL, are reported by the status register TRISE_FALL1,
 TRISE_FALL2, TRISE_FALL3.

Refer to **Chapter 6.3** for the definition of tDON, tDOFF, tRISE and tFALL.

watchdog immediately resets the watchdog counter and starts the next cycle.

If tHBxBLANK active has elapsed in motor mode, before the measurement of the effective tDON, the device reports an effective tDON corresponding to tHBxBLANK active.

If tHBxCCP active has elapsed while **EN_GEN_CHECK** =0¹⁾, before the measurement of the effective tDOFF, the device reports an effective tDOFF corresponding to tHBxCCP active.

7.9 Timeout watchdog

An integrated timeout watchdog supervises the integrity of the communication with the microcontroller. The watchdog period is programmable by the **WDPER** bit (refer to **GENCTRL1**).

After a Power-On Reset, the watchdog timer starts and the microcontroller must invert the logic value of the **WDTRIG** bit of the control register **GENCTRL1**. The default value of **WDTRIG** is 0. A correct trigger of the

A watchdog failure is reported by the device if:

- The watchdog trigger bit is not served within the watchdog period (watchdog timeout event). See **Figure 38**²⁾.
- The microcontroller writes the WDTRIG bit with the same value. In other words, if the WDTRIG value is 0 and the microcontroller re-writes WDTRIG to 0, or the WDTRIG is 1, and the microcontroller re-writes WDTRIG to 1, then a watchdog error is reported.

If a watchdog failure is detected, then the FS bit (see Global Status Byte) is set and latched, and the control registers are frozen to their default values. Consequently all external MOSFETs are actively turned off.

In order to resume normal operation, the microcontroller must: 1. clear **GENSTAT**. 2. Set **WDTRIG** to 1 within the watchdog period, 3. Set **WDTRIG** to 0 within the watchdog period³⁾.

¹⁾ If **EN_GEN_CHECK**= 1 and tDOFF cannot be measured until the expiration of tHBxCCP, then the device considers that the motor operate as as generator

²⁾ WDMON[1:0] (GENSTAT) is not reset after a WD timeout when the WD period is configured to 50 ms

³⁾ The exit sequence must be strictly followed to leave fail safe mode. If a SPI frame not belonging to the sequence is added (incl. a read command), then the device stays in fail safe mode and the microcontroller must restart the complete sequence to enter normal mode.

Protections and diagnostics

The watchdog period is configurable by SPI to T_{WDPER1} or T_{WDPER2} (refer to WDPER).

Monitoring the watchdog timer

The status bits **WDMON**[1:0] report the relative position of the watchdog timer to the watchdog period. Refer to **Table 21** and **Figure 38**. This allows the detection of a potential latent failure associated to the watchdog timer: the microcontroller can indeed verify that the watchdog timer is running.

Table 21 Monitoring of the watchdog timer

WDMON[1:0]	Position of the watchdog timer
00 _B	watchdog timer is between [0%, 25%[of the watchdog period
01 _B	watchdog timer is between [25%, 50%[of the watchdog period
10 _B	watchdog timer is between [50%, 75%[of the watchdog period
11 _B	watchdog timer is between [75%, 100%[of the watchdog period

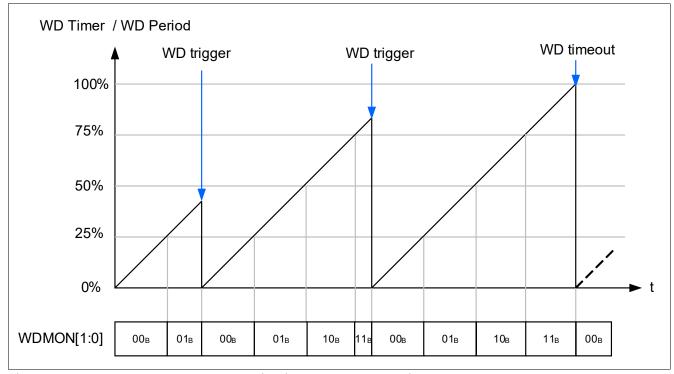


Figure 38 Example of watchdog monitoring and watchdog timeout

Disabling the watchdog

The watchdog is enabled by default.

It is disabled only if the following SPI sequence is sent:

- First frame: Set **UNLOCK** bit to '1' (**GENCTRL1**). Note: UNLOCK is automatically reset to '0' at the end of the following frame.
- Following frame: Set WDDIS bit to '1' (GENCTRL2).

The watchdog is directly re-enabled by setting WDDIS to '0'.

Multiple MOSFET Driver IC

Protections and diagnostics

Current sense amplifier 7.10

Two current sense amplifiers allow to monitor the motor currents. The differential input stage measures the voltage drop across an external shunt resistor.

The input common mode range allows current sensing in high-side, in low-side configuration or in the motor phase.

Unidirectional and bidirectional operation 7.10.1

The current sense amplifiers (CSA) can work either as unidirectional or bi-directional CSA. See CSD1 and CSD2.

Unidirectional operation CSDx = 0

In unidirectional operation, the CSAx, x = 1 or 2, is optimized to measure the current flowing through the external shunt resistor when VCSIPx ≥ VCSINx.

VCSOx = $V_{REF Unidir}$ + (VCSIPx - VCSINx + V_{OS}) x G_{DIFF} , provided that VCSOx is in the linear range^{1) 2)}.

Bidirectional operation CSDx = 1

In bidirectional operation, the CSAx, x = 1 or 2, measures the current flowing through the external shunt resistor in both directions: VCSIPx ≥ VCSINx or VCSIPx ≤ VCSINx.

The output CSOx works at half-scale range: $VCSOx = V_{REF\ Bidir} + (VCSIPx - VCSINx + V_{os}) \times G_{DIFF}$ provided that VCSOx is in the linear range 2).

When the current sense amplifiers are deactivated (VS undervoltage, VS overvoltage, CP undervoltage or Overtemperature, or CSAx_OFF = 1), CSOx is pulled Low (between GND to 150 mV)

7.10.2 **Gain configuration**

The gain of the current sense amplifier is configurable by the configuration bits CSAGx bits. Refer to Table 22 and **GENCTRL1**.

Table 22 Configuration of the current sense amplifier gain

CSAGx[1:0]	Typical current sense amplifier gain G_{DIFF}
00 _B	10 V/V
01 _B	20 V/V
10 _B	40 V/V
11 _B	80 V/V

High-side and low-side setting 7.10.3

The CSA can be used either in high-side configuration or in low-side configuration within the specified common mode range.

The control bits CSA1L and CSA2L (HBIDIAG) optimize the VDD current consumption by informing the device about the common mode voltage of the CSA inputs:

CSAxL must be set to 0 if the shunt is in low-side configuration (i.e. connected to GND or to an output with an activated low-side).

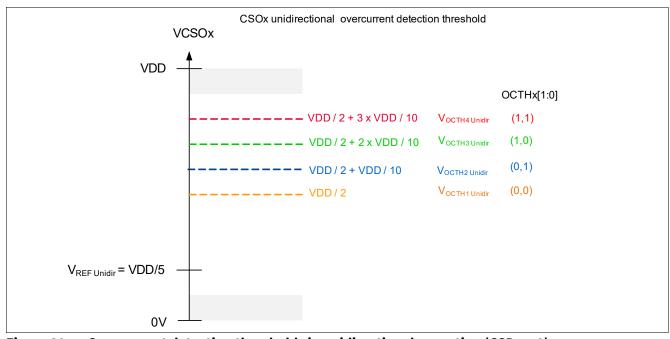
Valid if $0.5 \text{ V} \le \text{VCSOx} \le \text{VDD} - 0.5 \text{ V}$.

²⁾ VCSOx is clamped between VDD and GND.

Protections and diagnostics

CSAxL must be set to 1 if the shunt is in high-side configuration (i.e. connected to VS or to an output with an activated high-side).

Notes

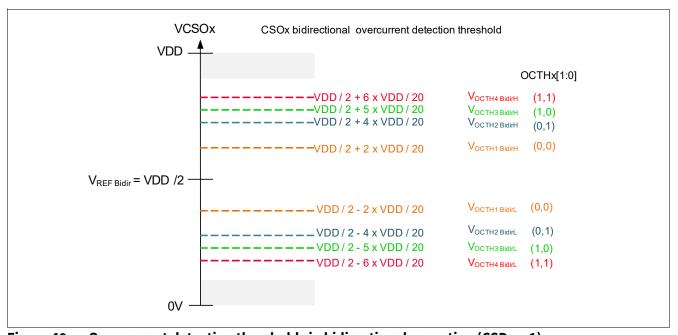

- 1. A proper information from the CSA output is not ensured if the external shunt resistor is in high-side configuration while its CSAxL bit is set to 0.
- 2. The external shunt resistor may be in low-side configuration while its CSAxL bit is set to 1. The current consumption from VDD is however higher than if CSAxL is set to 0.

7.10.4 **Overcurrent detection**

A comparator at CSOx detects overcurrent conditions. The overcurrent threshold is configurable with the OCTHx bits. Refer to Table 23 for unidirectional operation and Table 24 for bidirectional operation.

Table 23 Overcurrent detection thresholds in unidirectional operation (CSDx = 0)

OCTHx[1:0]	Typical Overcurrent Detection Threshold
00 _B	$V_{\rm CSOx} > V_{\rm DD/2}$
01 _B	$V_{\rm CSOx} > V_{\rm DD/2} + V_{\rm DD}/10$
10 _B	$V_{\rm CSOx} > V_{\rm DD/2} + 2 \times V_{\rm DD} / 10$
11 _B	$V_{\rm CSOx} > V_{\rm DD/2} + 3 \times V_{\rm DD} / 10$



Overcurrent detection thresholds in unidirectional operation (CSDx = 0) Figure 39

Protections and diagnostics

Table 24 Overcurrent detection thresholds in bidirectional operation (CSDx = 1)

OCTHx[1:0]	Typical Overcurrent Detection Threshold
00 _B	$V_{\rm CSOx} > V_{\rm DD}/2 + 2 \times V_{\rm DD}/20 \text{ or } V_{\rm CSOx} < V_{\rm DD}/2 - 2 \times V_{\rm DD}/20$
01 _B	$V_{\rm CSOx} > V_{\rm DD}/2 + 4 \text{x} V_{\rm DD}/20 \text{or} V_{\rm CSOx} < V_{\rm DD}/2 - 4 \text{x} V_{\rm DD}/20$
10 _B	$V_{\rm CSOx} > V_{\rm DD}/2 + 5 \text{ x} V_{\rm DD}/20 \text{ or } V_{\rm CSOx} < V_{\rm DD}/2 - 5 \text{ x} V_{\rm DD}/20$
11 _B	$V_{\rm CSOx} > V_{\rm DD}/2 + 6 \times V_{\rm DD}/20 \text{ or } V_{\rm CSOx} < V_{\rm DD}/2 - 6 \times V_{\rm DD}/20$

Overcurrent detection thresholds in bidirectional operation (CSDx = 1) Figure 40

It is possible to program the device behavior when an overcurrent condition is detected:

- OCEN bit = 0 (see GENCTRL1): the device only reports the overcurrent event (OC, OC1 or OC2 in GENSTAT and Global Error Flag are set), without any change of the gate driver states
 - If the overcurrent condition is not present for more than t_{FOC} , then the overcurrent status bits are automatically cleared by the device.
- OCEN bit = 1 (see **GENCTRL1**): the device reports the overcurrent event (OC, OC1 or OC2 in **GENSTAT** and Global Error Flag are set) and turns off all MOSFETs with their static discharge current.
 - The MOSFETs can be reactivated by clearing GENSTAT or by resetting the OCEN bit.
 - The overcurrent status bits are reset only if the overcurrent condition is no longer present and the microcontroller clears **GENSTAT**.

The overcurrent filter time is configurable (refer to t_{FOC}) by the control bits OCxFILT(refer to **HBIDIAG**).

 t_{FOC} refers to the output of the current sense amplifier. The CSO settling time (2 μ s max, t_{SET}) and the analog propagation delay (< 1 μs) are not taken into account by the overcurrent filter time.

7.10.5 CSO outputs capacitor

Datasheet

The capacitor directly connected to CSOx (CCSOx) must be between 10 pF and 400 pF (refer to Chapter 10).

Rev. 1.0

Protections and diagnostics

The control bit **CCSO** (see **PWM_IDCHG_ACT**, **PWM_PDCHG_INIT**) optimizes the VDD current consumption for CCSOx < 100 pF or CCSOx > 100 pF.

Protections and diagnostics

Electrical characteristics protections and diagnostics 7.11

The specified drain-source monitoring thresholds, the overcurrent thresholds and the electrical characteristics related to the current sense amplifiers are valid for $V_{CP} > V_S + 8 \text{ V}$

Table 25 **Electrical characteristics:**

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm i}$ = -40°C to 150°C $V_{\rm CP} > V_{\rm S} + 8 \, \rm V$

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Watchdog	ı			"	1		
Watchdog period 1	T_{WDPER1}	40	50	60	ms	1) WDPER = 0	P_7.11.52
Watchdog period 2	T_{WDPER2}	160	200	240	ms	1) WDPER = 1	P_7.11.53
Off-state Open load diagno:		•			•		
Pull-up diagnosis current	I _{PUDiag}	-630	-450	-270	μΑ	1)	P_7.11.1
Pull-down diagnosis current	I _{PDDiag}	900	1250	1600	μΑ	1)	P_7.11.2
Diagnosis current ratio	I _{Diag_ratio}	2.5	3.0	-		Ratio I _{PDDiag} /I _{PUDiag}	P_7.11.77
Drain source monitoring th	reshold	- 1		- "		,	1
Drain-source monitoring thresholds	V _{VDSMONTH0}	0.12	0.15	0.18	V	HBxVDSTH[2:0] = 000 _B	P_7.11.3
Drain-source monitoring thresholds	V _{VDSMONTH1}	0.16	0.20	0.24	V	HBxVDSTH[2:0] = 001 _B	P_7.11.4
Drain-source monitoring thresholds	V _{VDSMONTH2}	0.20	0.25	0.30	V	HBxVDSTH[2:0] = 010 _B	P_7.11.5
Drain-source monitoring thresholds	V _{VDSMONTH3}	0.24	0.30	0.36	V	HBxVDSTH[2:0] = 011 _B	P_7.11.6
Drain-source monitoring thresholds	V _{VDSMONTH4}	0.32	0.40	0.48	V	HBxVDSTH[2:0] = 100 _B	P_7.11.7
Drain-source monitoring thresholds	V _{VDSMONTH5}	0.40	0.50	0.62	V	HBxVDSTH[2:0] = 101 _B	P_7.11.8
Drain-source monitoring thresholds	V _{VDSMONTH6}	0.48	0.60	0.72	V	HBxVDSTH[2:0] = 110 _B	P_7.11.9
Drain-source monitoring thresholds	V _{VDSMONTH7}	1.6	2.0	2.4	V	HBxVDSTH[2:0] = 111 _B	P_7.11.54
Drain-source monitoring bl	ank time		·	T.	1		1
DS monitoring blank time	t _{DSMON_BLK0}	500	625	850	ns	TBLANKx[2:0] = 000 _B ¹⁾	P_7.11.10
DS monitoring blank time	t _{DSMON_BLK1}	0.8	1	1.2	μs	TBLANKx[2:0] = 001 _B ¹⁾	P_7.11.11
DS monitoring blank time	t _{DSMON_BLK2}	1	1.25	1.5	μs	TBLANKx[2:0] = 010 _B ¹⁾	P_7.11.12

infineon

Protections and diagnostics

Table 25 Electrical characteristics: (cont'd)

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm j}$ = -40°C to 150°C $V_{\rm CP}$ > $V_{\rm S}$ + 8 V

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
DS monitoring blank time	t _{DSMON_BLK3}	1.2	1.5	1.8	μs	TBLANKx[2:0] = 011 _B ¹⁾	P_7.11.13
DS monitoring blank time	t_{DSMON_BLK4}	1.6	2	2.4	μs	TBLANKx[2:0] = 100 _B ¹⁾	P_7.11.57
DS monitoring blank time	t _{DSMON_BLK5}	2.4	3	3.6	μs	TBLANKx[2:0] = 101 _B ¹⁾	P_7.11.58
DS monitoring blank time	$t_{\mathtt{DSMON_BLK6}}$	3.2	4	4.8	μs	TBLANKx[2:0] = 110 _B ¹⁾	P_7.11.59
DS monitoring blank time	t _{DSMON_BLK7}	12.8	16	19.2	μs	TBLANKx[2:0] = 111 _B ¹⁾	P_7.11.60
Drain-source monitoring f	ilter time		1				<u>'</u>
DS monitoring filter time	t _{DSMON_FILTO}	0.4	0.5	0.85	μs	TFVDS[1:0] = 00 _B ¹⁾	P_7.11.14
DS monitoring filter time	t _{DSMON_FILT1}	0.8	1	1.4	μs	TFVDS[1:0] = 01 _B ¹⁾	P_7.11.15
DS monitoring filter time	t _{DSMON_FILT2}	1.6	2	2.4	μs	TFVDS[1:0] = 10 _B ¹⁾	P_7.11.16
DS monitoring filter time	t _{DSMON_FILT3}	2.4	3	3.6	μs	TFVDS[1:0] = 11 _B ¹⁾	P_7.11.17
Cross-current protection t	ime		<u> </u>				
Cross current protection time	t _{HBxCCP0}	300	375	450	ns	THBxCCP[2:0] = 000 _B ¹⁾	P_7.11.18
Cross current protection time	$t_{HBxCCP1}$	500	625	750	ns	THBxCCP[2:0] = 001 _B ¹⁾	P_7.11.19
Cross current protection time	$t_{HBxCCP2}$	0.8	1	1.2	μs	THBxCCP[2:0] = 010 _B ¹⁾	P_7.11.20
Cross current protection time	$t_{HBxCCP3}$	1.2	1.5	1.8	μs	THBxCCP[2:0] = 011 _B ¹⁾	P_7.11.21
Cross current protection time	t _{HBxCCP4}	1.6	2	2.4	μs	THBxCCP[2:0] = 100 _B ¹⁾	P_7.11.22
Cross current protection time	t _{HBxCCP5}	2.4	3	3.6	μs	THBxCCP[2:0] = 101 _B ¹⁾	P_7.11.23
Cross current protection time	t _{HBxCCP6}	3.2	4	4.8	μs	THBxCCP[2:0] = 110 _B ¹⁾	P_7.11.24
Cross current protection time	t _{HBxCCP7}	12.8	16	19.2	μs	THBxCCP[2:0] = 111 _B ¹⁾	P_7.11.25
Passive V _S overvoltage	V _{SOV PASS OFF}	28	31.5	35	V	V _s increasing	P_7.11.66

Protections and diagnostics

Table 25 Electrical characteristics: (cont'd)

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm j}$ = -40°C to 150°C $V_{\rm CP}$ > $V_{\rm S}$ + 8 V

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
Current sense amplifier			•	•	•		•
Operating common mode input voltage range referred to GND (CSIPx - GND) or (CSINx - GND)	V _{CM}	-2.0	-	28	V		P_7.11.26
Common Mode Rejection Ratio	CMRR	69 75 81 81	-	-	dB	CSAG = (0,0) CSAG = (0,1) CSAG = (1,0) CSAG = (1,1) DC to 50 kHz $V_{CM} = -2 \dots 28 \text{ V}$ ¹⁾ $V_{CSIPx} = V_{CSINx}$	P_7.11.27
Settling time to 98%	t_{SET}	-	1500	2000	ns	1)	P_7.11.28
Settling time to 98% after gain change	t _{SET_GAIN}	-	-	5000	ns	1) After gain change from CSN rising edge	P_7.11.65
Input Offset voltage	Vos	-1.5	0	1.5	mV		P_7.11.29
Current Sense Amplifier DC Gain (uncalibrated)	G _{DIFF10}	9.9	10	10.1	V/V	CSAG = (0,0)	P_7.11.30
Current Sense Amplifier DC Gain (uncalibrated)	G _{DIFF20}	19.8	20	20.2	V/V	CSAG = (0,1)	P_7.11.31
Current Sense Amplifier DC Gain (uncalibrated)	G _{DIFF40}	39.6	40	40.4	V/V	CSAG = (1,0)	P_7.11.32
Current Sense Amplifier DC Gain (uncalibrated)	G _{DIFF80}	79.2	80	80.8	V/V	CSAG = (1,1)	P_7.11.33
Gain drift	G_{DRIFT}	-0.5	_	0.5	%	1) Gain drift after calibration	P_7.11.34
CSOx single ended output voltage range (linear range)	V _{CSOx}	0.5	_	V _{DD} - 0.5	V	1)	P_7.11.35
Reference voltage for unidirectional CSAx	V _{REF Unidir}	-1%	V _{DD} /5	+1%	V	$CSDx = 0$ $V_{CSIPx} = V_{CSINx}$	P_7.11.36
Reference voltage for bidirectional CSAx	V _{REF Bidir}	-1%	V _{DD} /2	+1%	V	$CSDx = 1$ $V_{CSIPx} = V_{CSINx}$	P_7.11.37
Overcurrent detection	1			1	1		1
Overcurrent filter time	t _{FOC}	4 7 40 85	6 10 50 100	8 13 60 115	μs	$\begin{aligned} &OCxFILT = 00_{B} \\ &OCxFILT = 01_{B} \\ &OCxFILT = 10_{B} \\ &OCxFILT = 11_{B} \\ &1)2) \end{aligned}$	P_7.11.38

Protections and diagnostics

Table 25 Electrical characteristics: (cont'd)

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm j}$ = -40°C to 150°C $V_{\rm CP}$ > $V_{\rm S}$ + 8 V

Parameter	Symbol		Values	· ·	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
OC threshold, unidirectional	V _{OCTH1 Unidir}	-4%	V _{DD} /2	+4%	V	CSDx = 0, OCTH[1:0]= 00 _B	P_7.11.39
OC threshold, unidirectional	V _{OCTH2 Unidir}	-4%	$V_{\rm DD}/2 + V_{\rm DD}/10$	+4%	V	$CSDx = 0,$ $OCTH[1:0] = 01_{B}$	P_7.11.40
OC threshold, unidirectional	V _{OCTH3 Unidir}	-4%	$V_{\rm DD}/2 + 2x$ $V_{\rm DD}/10$	+4%	V	CSDx = 0, OCTH[1:0]= 10 _B	P_7.11.41
OC threshold, unidirectional	V _{OCTH4 Unidir}	-4%	$V_{DD}/2 + 3x$ $V_{DD}/10$	+4%	V	CSDx = 0, OCTH[1:0]= 11 _B	P_7.11.42
High OC threshold, bidirectional	V _{OCTH1 BidirH}	-4%	$V_{DD}/2 + 2x$ $V_{DD}/20$	+4%	V	CSDx = 1, OCTH[1:0]= 00 _B	P_7.11.43
High OC threshold, bidirectional	V _{OCTH2 BidirH}	-4%	$V_{DD}/2 + 4x$ $V_{DD}/20$	+4%	V	CSDx = 1, OCTH[1:0]= 01 _B	P_7.11.44
High OC threshold, bidirectional	V _{OCTH3 BidirH}	-4%	$V_{\rm DD}/2 + 5x$ $V_{\rm DD}/20$	+4%	V	CSDx = 1, OCTH[1:0]= 10 _B	P_7.11.45
High OC threshold, bidirectional	V _{OCTH4 BidirH}	-4%	$V_{\rm DD}/2 + 6x$ $V_{\rm DD}/20$	+4%	V	CSDx = 1, OCTH[1:0]= 11 _B	P_7.11.46
Low OC threshold, bidirectional	V _{OCTH1 BidirL}	-4%	$V_{\rm DD}/2$ - 2x $V_{\rm DD}/20$	+4%	V	CSDx = 1, OCTH[1:0]= 00 _B	P_7.11.61
Low OC threshold, bidirectional	V _{OCTH2 BidirL}	-4%	$V_{DD}/2 - 4x$ $V_{DD}/20$	+4%	V	CSDx = 1, OCTH[1:0]= 01 _B	P_7.11.62
Low OC threshold, bidirectional	V _{OCTH3 BidirL}	-4%	$V_{\rm DD}/2$ - 5x $V_{\rm DD}/20$	+4%	V	CSDx = 1, OCTH[1:0]= 10 _B	P_7.11.63
Low OC threshold, bidirectional	V _{OCTH4 BidirL}	-4%	$V_{\rm DD}/2$ - 6x $V_{\rm DD}/20$	+4%	V	CSDx = 1, OCTH[1:0]= 11 _B	P_7.11.64
Thermal warning and shuto	lown						
Thermal warning junction temperature	T_{jW}	120	140	160	°C	See Figure 36 ¹⁾	P_7.11.48
Thermal shutdown junction temperature	$T_{\rm jSD}$	160	180	200	°C	See Figure 36 ¹⁾	P_7.11.49

Multiple MOSFET Driver IC

Protections and diagnostics

Table 25 **Electrical characteristics:** (cont'd)

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm i}$ = -40°C to 150°C $V_{\rm CP} > V_{\rm S} + 8 \, \rm V$

Parameter	Symbol		Value	S	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Thermal shutdown hysteresis	$T_{\rm jHYS}$	-	10	-	°C	1)	P_7.11.50
Ratio of T_{jSD} to T_{jW}	$T_{\rm jSD}/T_{\rm jW}$	_	1.20	-	_	1)	P_7.11.51
Thermal warning filter time	t _{jW_FILT}	7	10	13	μs	1)	P_7.11.55
Thermal shutdown filter time	t _{jSD_FILT}	7	10	13	μs	1)	P_7.11.56

¹⁾ Not subject to production test, specified by design.

²⁾ t_{EOC} refers to the output of the current sense amplifier. The CSO settling time (2 μ s max, t_{SET}) and the analog propagation delay ($< 1 \mu s$) are not taken into account by the overcurrent filter time.

Serial Peripheral Interface - SPI

8 Serial Peripheral Interface - SPI

The 24-bit Serial Peripheral Interface (SPI) enables the communication between the microcontroller and the TLE92108-231QX. It allows to configure and control the device, and to read out the status registers for diagnostic purpose. The MOSFET driver IC acts as a SPI-slave while the microcontroller acts as a SPI-master.

The interface has a serial data input pin (SDI) to transfer data to the device, a serial data output pin (SDO) for reading data back from the device, and a serial clock pin (SCLK) for clocking data into and out of the device. A chip select pin (CSN) enables or disables the serial interface.

The SPI frame starts with the falling edge of CSN. During the falling edge of CSN, SCLK must be low (Clock Polarity CPOL = 0). Received data on SDI are shifted in on the falling edge of SCLK. Transmitted data by SDO are shifted out on the rising edge of SCLK (Clock Phase CPHA = 1). Refer to **Figure 42**.

The Most Significant Bit (MSB, bit 23) is shifted in/out first.

Write and clear commands are executed at the rising edge of CSN.

The SPI protocol supports both independent slave selection and daisy chain configurations.

8.1 SPI protocol with independent slave selection

With individual slave selection, the microcontroller controls the CSN pin of each SPI slave individually (Figure 41).

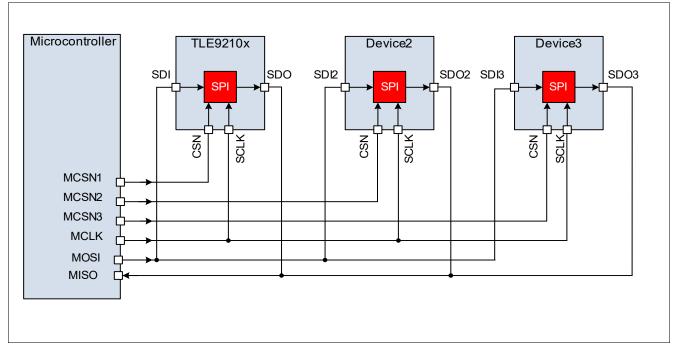


Figure 41 Individual slave selection with three slave devices

A SPI communication consists of 24-bit frame (Figure 42):

- SDI receives one address byte followed by two data bytes.
- SDO transmits the Global Error Flag and the Global Status Byte followed by two response bytes.

Multiple MOSFET Driver IC

Serial Peripheral Interface - SPI

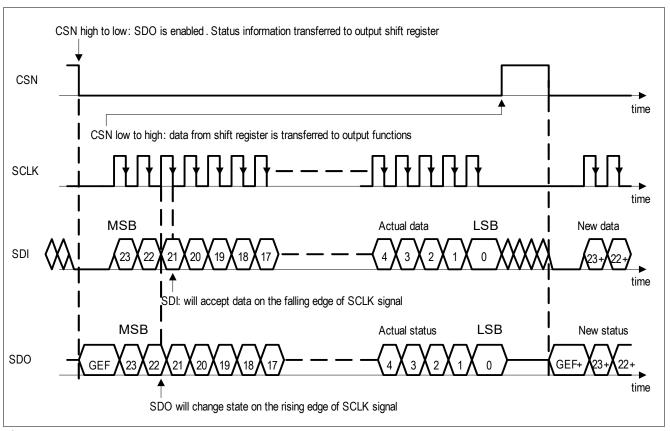
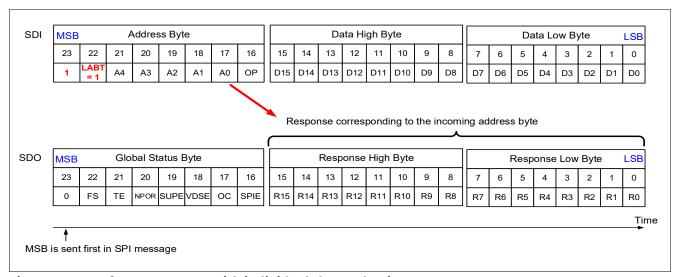


Figure 42 SPI Data Transfer

The MSB of the address byte must be set to '1'.

The address byte specifies (see **Figure 43**):

- the target register (A[4:0])
- the type of operation:
 - For control registers:
 - Read only: OP bit¹⁾ = '0'
 - Read and write: OP bit = '1'
 - · For status registers:
 - Read only: OP bit = '0'
 - Read and clear: OP bit = '1'


With individual slave selection, the Last Address Byte Token (LABT) must be set to '1'.

In-frame response

The SPI protocol incorporates an in-frame response: The content of the addressed register is shifted out by SDO within the same SPI frame. This feature reduces the SPI bus load during the read out of the control or status registers.

¹⁾ OP bit is the least significant bit of the address byte, see Figure 43

Serial Peripheral Interface - SPI

In-frame response with individual slave selection Figure 43

8.2 **Global Error Flag (GEF)**

The Global Error Flag (GEF) is reported on SDO between the CSN falling edge and the first SCLK rising edge. GEF is set if a fault condition is detected or if the device comes from a Power On Reset (POR). It is therefore possible to have a quick device diagnostic without any SPI clock pulse (Figure 44).

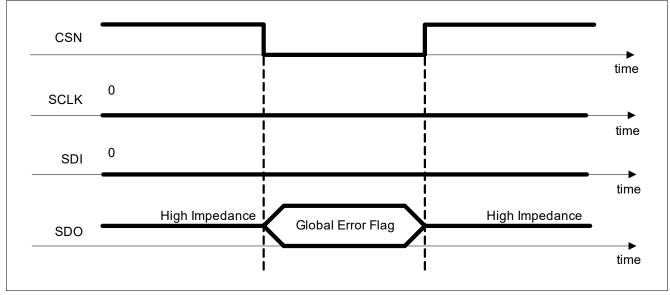


Figure 44 GEF - Diagnostic with 0-clock cycle

8.3 Global status byte

The SDO shifts out during the first eight SCLK cycles the Global Status Byte. This register provides an overview of the device status. The following error conditions are reported in this byte:

- Fail Safe (FS bit).
- Temperature error (TE bit): logical OR combination between Thermal Warning (TW) and Thermal shutdown (TSD).
- **Negated** Power ON Reset (NPOR bit, refer to **Chapter 5.3** for reset conditions).

Serial Peripheral Interface - SPI

- Supply Error (SUPE bit): logical OR combination between VS undervoltage shutdown (VSUV), VS overvoltage shutdown (VSOV) and charge pump undervoltage (CPUV).
- VDS monitoring Error (VDSE bit): logical OR combination between the bits of the **DSOV** register.
- Overcurrent (OC bit): logical OR combination between OC1 and OC2 status bits (GENSTAT register).
- SPI protocol Error (SPIE bit).

Note:

The Global Error Flag is a logic OR combination of every bit of the Global Status Byte and of TDREGx: GEF = (FS) OR (TE) OR (NOT(NPOR)) OR (SUPE) OR (VDSE) OR (OC) OR (SPIE) OR (NOT(TDREGX) AND (PWMx_EN =1) AND (NOT (MSKTDREG))), $x = 1 \dots 3$.

The following table shows how failures are reported in the Global Status Byte and the error Flag:

Table 26 Failure reported in the global status byte and global error flag

Type of Error	Failure reported in the Global Status Byte	Global Error Flag
Fail safe	FS = 1	1
Thermal error	TE = 1	1
Power ON reset	NPOR = 0	1
Supply error	SUPE = 1	1
Drain source voltage monitoring	VDSE = 1	1
Overcurrent	OC = 1	1
SPI protocol error	SPIE = 1	1
TDREGx, $x = 1 \dots 3^{1}$ (see GENSTAT)	-	1 if MSKTDREG = 0^{2} 0 if MSKTDREG = 1^{2}
No error and no power ON reset	SPIE = 0 OC = 0 VDSE = 0 SUPE= 0 NPOR = 1 TE = 0 FS = 0	0
	TDREGx = 0,	

¹⁾ See status register **GENSTAT**.

Note: The default value (after Power ON Reset) of NPOR is 0, therefore the default value of GEF is 1.

In fail safe mode, the control registers are frozen to their default value, with the exception of the WDTRIG bit (refer to Chapter 5.2.3). Any write access (except for WDTRIG bit) in fail safe mode will be discarded and the SPIE bit will set.

²⁾ See control register **GENCTRL2**.

Multiple MOSFET Driver IC

Serial Peripheral Interface - SPI

8.4 SPI error detection

The SPI incorporates an error flag in the Global Status Byte (SPIE) to supervise and preserve the data integrity. If an SPI protocol error is detected during a given frame, the SPIE bit is set in the next SPI communication.

The SPIE bit is set in the following error conditions:

- The number of SCLK clock pulses received when CSN is Low is (protocol error):
 - not zero
 - or less than 24
 - or more than 24 but not a multiple of 8
- The microcontroller sends an SPI command to an unused address (protocol error).
- A clock polarity error is detected (see **Figure 45** Case 2 and Case 3): the incoming clock signal was High during CSN rising or falling edges (protocol error).
- No address byte or no last address byte are detected (protocol error).
- In daisy chain: the microcontroller does not send in sequence the first address byte until the last address byte (i.e. with gaps between two address bytes). In this case, the SDO signal is set to '0' during the remaining part of the SPI frame¹⁾, in order to prevent other devices from executing wrong commands (protocol error).
- A clear command to address 0x1F (Device ID register, Offset address = 0x1F).
- The same half-bridge is allocated to several activated PWM channels.
- Any write or clear command received in fail safe mode and not belonging to the exit sequence (refer to Chapter 5.2.3).

Note: SPI commands to activate a half-bridge mapped to several PWM channels are ignored.

In fail safe mode, the control registers may not be accessed, except for writing WDTRIG. An invalid write command in this mode sets the SPIE bit.

For a correct SPI communication:

- SCLK must be Low for a minimum t_{BEF} before CSN falling edge and t_{lead} after CSN falling edge.
- SCLK must be Low for a minimum t_{lag} before CSN rising edge and t_{BEH} after CSN rising edge.

infineon

Serial Peripheral Interface - SPI

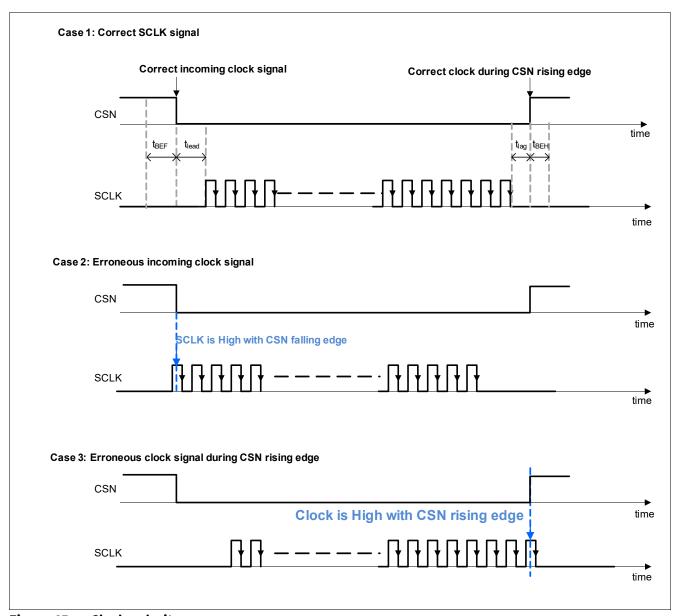


Figure 45 Clock polarity error

The reset condition of the SPIE bit depends on the cause of error:

- In normal mode:
 - The microcontroller must clear HBVOUT_PWMERR if one half-bridge has been allocated to several PWM channels.
 - The microcontroller must send a correct SPI frame for the other errors reported by SPIE.
- If SPIE has been set in fail safe mode, the device must enter normal mode first.

8.5 Daisy chain

In daisy chain configuration the master output / slave input (noted MOSI) is connected to a slave SDI. The first slave SDO is connected to the next slave SDI in the chain. The SDO of the final in the chain is connected to the master input / slave output (noted MISO). In daisy chain configuration, the microcontroller MCSN is connected to all the slave CSN inputs (Figure 46).

Multiple MOSFET Driver IC

Serial Peripheral Interface - SPI

To support daisy chain configurations, the TLE92108-231QX accepts SPI frames with more than 24 bits, provided that the number of bits is a multiple of 8, and the structure of the address byte is respected.

In daisy chain, the TLE92108-231QX works as follows:

- 1. The TLE92108-231QX operates as a 8-bit shift register until it receives the first address byte. This first received address byte is considered by the device as its own address byte.
- 2. The TLE92108-231QX copies directly SDI to SDO until the last address byte is detected.
- 3. The TLE92108-231QX shifts out the response high byte and low byte corresponding to the address byte.
- 4. After the last address byte, the TLE92108-231QX operates as a 16-bit shift register until the end of the SPI frame.

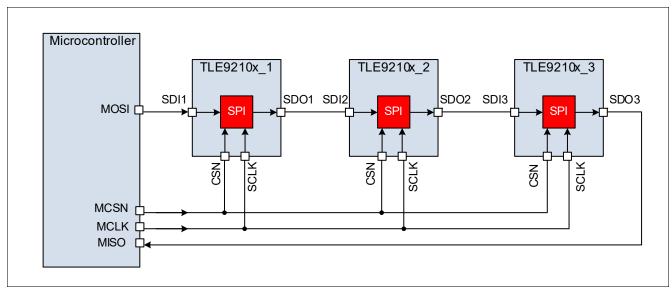


Figure 46 Daisy chain configuration with three TLE9210x devices

In daisy chain configuration (Figure 46), the microcontroller must send the address and data bytes in the following order (Figure 47):

- 1. The address bytes altogether are sent first:
 - Address byte 1 (for TLE9210x_1) is sent first, followed by address byte 2 (for TLE9210x_2), followed by address byte 3 (for TLE9210x_3).
 - The LABT bit of the last address byte must be '1', while the LABT bit of all the other address bytes must be '0'.
- 2. The data bytes are sent altogether **in reverse order** once the address bytes are transmitted:
 - The data high byte for the TLE9210x_3 is sent first followed by the data low byte for the TLE9210x_3.
 - Then the data high byte for the TLE9210x_2 is sent followed by the data low byte for the TLE9210x_2.
 - Then the data high byte for the TLE9210x_1 is sent followed by the data low byte for the TLE9210x_1.

The Master Input / Slave Output (MISO), which is connected to SDO of the last device in the daisy chain, receives:

- 1. A logic OR combination of all Global Error Flags (GEF) at the beginning of the SPI frame, between CSN falling edge and the first SCLK rising edge.
- 2. The Global Status Byte of each TLE9210x in reverse order:

Serial Peripheral Interface - SPI

- The Global Status Byte 3 (GSB3) corresponding to the TLE9210x_3 is received first, followed by GSB2 (corresponding to the TLE9210x_2), and finally the GSB1 (corresponding to the TLE9210x_1) is received.
- 3. The response of each TLE9210x in reverse order:
 - The response high byte of the TLE9210x_3 is received first followed by the response low byte of the TLE9210x_3.
 - Then the response high byte of the TLE9210x_2 is received followed by the response low byte of the TLE9210x_2.
 - Then the response high byte of the TLE9210x_1 is received followed by the response low byte of the TLE9210x_1.

(infineon

Serial Peripheral Interface - SPI

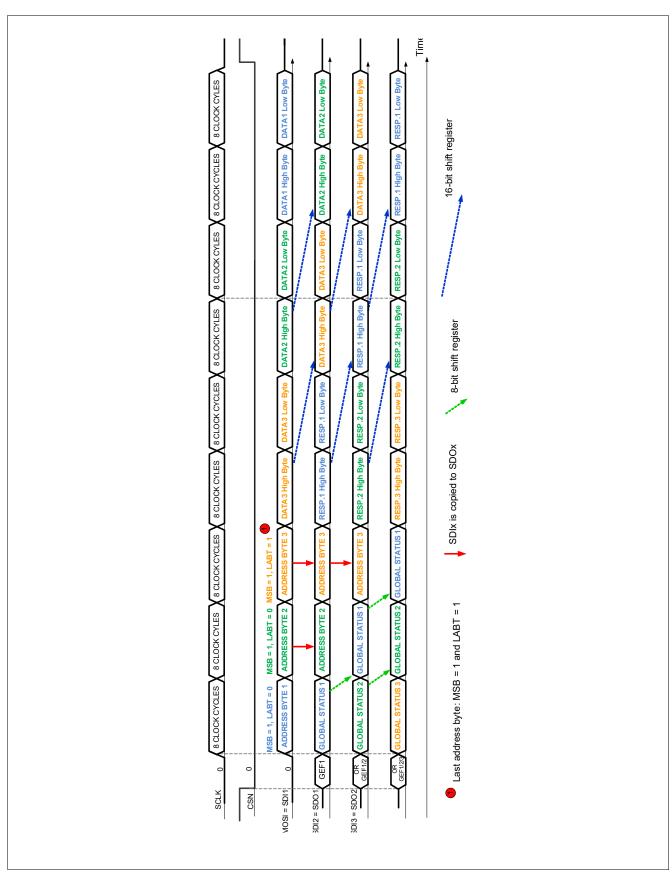


Figure 47 SPI Frame in daisy chain configuration with three TLE9210x devices

Serial Peripheral Interface - SPI

SPI electrical characteristics: timings 8.6

Table 27 **Electrical characteristics: SPI interface**

 $V_{\rm S} = 6.0 \text{ V to } 18 \text{ V if VSOVTH} = 0, V_{\rm S} = 6.0 \text{ V to } 28 \text{ V if VSOVTH} = 1; V_{\rm DD} = 3.0 \text{ V to } 5.5 \text{ V}, T_{\rm i} = -40 ^{\circ} \text{C to } 150 ^{\circ} \text{C}, \text{ all voltages}$ with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
SPI frequency							
Maximum SPI frequency	$f_{\rm SPI,max}$	-	_	4		1)	P_8.6.1
Delay from EN rising edge to		rame			•		ı
SPI interface setup time ²⁾	t_{SET_SPI}	_	_	150	μs	1)	P_8.6.32
SPI interface, logic inputs S		SN		- 11:			1
High input voltage threshold	V _{IH}	0.7 x V _{DD}	-	_	V		P_8.6.2
Low input voltage threshold	V _{IL}	-	-	0.3 x V _{DD}	V		P_8.6.3
Hysteresis of input voltage	V _{IHY}	-	0.12 x V _{DD}	_	V	1)	P_8.6.4
Pull up resistor at pin CSN	R _{PU_CSN}	20	40	80	kΩ	$V_{\rm CSN} = 0.7 \times V_{\rm DD}$	P_8.6.5
Pull down resistor at pin SDI, SCLK	R _{PD_SDI} , R _{PD_SCLK}	20	40	80	kΩ	$V_{\text{SDI}}, V_{\text{SCLK}} = 0.2 \text{ x}$ V_{DD}	P_8.6.6
Input capacitance at pin CSN, SDI or SCLK	C _I	-	10	_	pF	¹⁾ 0 V < V _{DD} < 5.5 V	P_8.6.7
Input interface, logic outpu	ts SDO				•		
H-output voltage level	V _{SDOH}	0.8 x V _{DD}	-	_	V	I _{SDOH} = -1.6 mA	P_8.6.8
L-output voltage level	V _{SDOL}	-	-	0.2 x V _{DD}	V	I _{SDOL} = 1.6 mA	P_8.6.9
Tri-state Leakage Current	I _{SDOLK}	-10	-	10	μΑ	1) $V_{CSN} = V_{DD}$; 0 V < V_{SDO} < V_{DD}	P_8.6.10
Tri-state input capacitance	C_{SDO}	_	10	15	pF	1)	P_8.6.11
Data input timing. See Figu		ı .	II.	1		•	I .
SCLK Period	t_{pCLK}	250	_	_	ns	1)	P_8.6.12
SCLK High Time	t _{SCLKH}	0.45 x t _{pCLK}	-	0.55 x t _{pCLK}	ns	1)	P_8.6.13
SCLK Low Time	t _{SCLKL}	0.45 x t _{pCLK}	-	0.55 x t_{pCLK}	ns	1)	P_8.6.14
SCLK Low before CSN Low	t_{BEF}	125	_	-	ns	1)	P_8.6.15
CSN Setup Time	$t_{\rm lead}$	250	_	_	ns	1)	P_8.6.16
SCLK Setup Time	t_{lag}	250	_	_	ns	1)	P_8.6.17
SCLK Low after CSN High	t _{BEH}	125	_	_	ns	1)	P_8.6.18
SDI Setup Time	t _{SDI_setup}	100	_	_	ns	1)	P_8.6.19

Multiple MOSFET Driver IC

Serial Peripheral Interface - SPI

Table 27 **Electrical characteristics: SPI interface** (cont'd)

 $V_{\rm S}$ = 6.0 V to 18 V if VSOVTH = 0, $V_{\rm S}$ = 6.0 V to 28 V if VSOVTH = 1; $V_{\rm DD}$ = 3.0 V to 5.5 V, $T_{\rm j}$ = -40°C to 150°C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or	Number
		Min.	Тур.	Max.		Test Condition	
SDI Hold Time	t _{SDI_hold}	50	_	_	ns	1)	P_8.6.20
Input Signal Rise Time at pin SDI, SCLK, CSN	t _{rIN}	-	-	50	ns	1)	P_8.6.21
Input Signal Fall Time at pin SDI, SCLK, CSN	t _{fIN}	-	-	50	ns	1)	P_8.6.22
Delay time from EN falling edge to standby mode	t_{DMODE}	-	-	6	μs	1)	P_8.6.23
Minimum CSN High Time	t_{CSNH}	3	_	_	μs	1)	P_8.6.24
Data output timing. See Fig	•						
SDO Rise Time	$t_{\sf rSDO}$	_	30	80	ns	¹⁾ C _{load} = 100 pF	P_8.6.25
SDO Fall Time	t_{fSDO}	_	30	80	ns	¹⁾ C _{load} = 100 pF	P_8.6.26
SDO Enable Time after CSN falling edge	t_{ENSDO}	-	-	50	ns	1) Low Impedance	P_8.6.27
SDO Disable Time after CSN rising edge	$t_{\sf DISSDO}$	-	-	50	ns	¹⁾ High Impedance	P_8.6.28
Duty cycle of incoming clock at SCLK	duty _{SCLK}	45	-	55	%	1)	P_8.6.29
SDO Valid Time for $V_{\rm DD} = 5V$	t _{VASDO5}	-	-	50	ns	$V_{\rm SDO} < 0.2 \times V_{\rm DD}$ $V_{\rm SDO} > 0.8 \times V_{\rm DD}$ $V_{\rm load} = 100 \rm pF$	P_8.6.31

¹⁾ Not subject to production test, specified by design

²⁾ Delay required between EN rising edge and the moment when the device can accept SPI commands

Serial Peripheral Interface - SPI

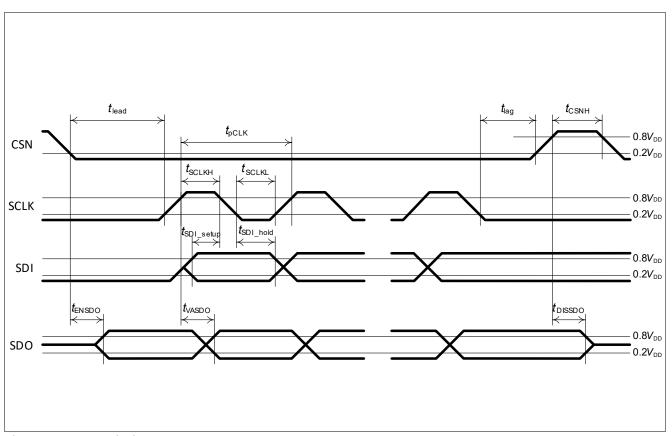
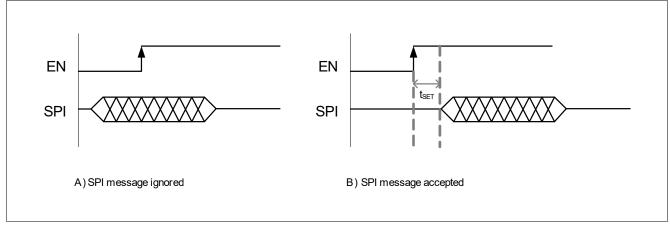



Figure 48 **SPI timing parameters**

Setup time from EN rising edge to first SPI communication Figure 49

Register specification

9 Register specification

9.1 Control registers

Table 28 Register Overview

Register Short Name	Register Long Name	Offset Address	Reset Value
GENCTRL1	General control register 1	0x00 and REG_BANK = 0 or 1	0x0026
GENCTRL2	General control register 2	0x01 and REG_BANK = 0 or 1	0x4180
VDS1	Drain-source monitoring HB1-4	0x02 and REG_BANK = 0 or 1	0x0249
VDS2	Drain-source monitoring HB5-8	0x03 and REG_BANK = 0 or 1	0x0249
CCP_BLK1	Cross current protection and blank times setting 1	0x04 and REG_BANK = 0 or 1	0x0000
CCP_BLK2_ACT	Cross current protection and blank times setting for active MOSFETs ¹⁾	0x05 and REG_BANK = 0	0x4924
CCP_BLK2_FW	Cross current protection and blank times setting for FW MOSFETs ¹⁾	0x05 and REG_BANK = 1	0x4924
HBMODE	Half-bridge mode	0x06 and REG_BANK = 0 or 1	0x0000
PWMSET	Setting of PWM channels	0x07 and REG_BANK = 0 or 1	0x6C60
TPRECHG	PWM pre-charge and pre- discharge time	0x08 and REG_BANK = 0 or 1	0x0000
HBIDIAG	Half-bridge diagnostic current control	0x09 and REG_BANK = 0 or 1	0xC000
ST_ICHG	Charge current for static half- bridges	0x0A and REG_BANK = 0	0x0044
PWM_PCHG_INIT	Precharge current initialization	0x0A and REG_BANK = 1	0x18C6
PWM_ICHG_ACT	Charge current for half-bridges in PWM (active MOSFETs ¹⁾)	0x0B and REG_BANK = 0	0x18C6
PWM_ICHG_FW	Charge current for half-bridges in PWM (FW MOSFETs ¹⁾)	0x0B and REG_BANK = 1	0x18C6
PWM_IDCHG_ACT	Discharge current of active MOSFETs ¹⁾ in PWM operation	0x0C and REG_BANK = 0	0x1CE7
PWM_PDCHG_INIT	Predischarge current initialization	0x0C and REG_BANK = 1	0x318C
PWM_ICHGMAX_CCP_ BLK3_ACT	Max. pre-charge / pre-discharge currents for half-bridges in PWM ²⁾ , tCCP and tBLANK setting for active MOSFETS ¹⁾	0x0D and REG_BANK =0	0x4900
PWM_ICHGMAX_CCP_ BLK3_FW	Max. pre-charge / pre-discharge currents for half-bridges in PWM ²⁾ , tCCP and tBLANK setting for FW MOSFETS ¹⁾	0x0D and REG_BANK =1	0x4900

Register specification

Table 28 Register Overview (cont'd)

Register Short Name	Register Long Name	Offset Address	Reset Value
TDON_OFF1	Turn-on and turn-off delays for PWM channel1	0x0E and REG_BANK = 0 or 1	0x0A0A
TDON_OFF2	Turn-on and turn-off delays for PWM channel2	0x0F and REG_BANK = 0 or 1	0x0A0A
TDON_OFF3	Turn-on and turn-off delays for PWM channel3	0x10 and REG_BANK = 0 or 1	0x0A0A

¹⁾ Refer to **Chapter 6.3.1** for the definition of the active and the free-wheeling MOSFETs, depending on the setting of **AGC**

²⁾ ICHGMAX is also the current applied to the Active MOSFET during post-discharge.

Multiple MOSFET Driver IC

Register specification

General Control Registers and Protection Settings 9.1.1

General control register 1

GENCTRL1

General Control Register 1 (0 0000_B)Reset Value: 0000 0000 0010 0110_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CSD2	CS/	AG2	CSD1	CSA	AG1	REG_ BANK	VSOV TH	UNLO CK	Reser ved	FMOD E	Reser ved	IPCHG ADT	OCEN	WDPE R	WDTR IG
rw	r	W	rw	r	W	rw	rw	rw	r	rw	r	rw	rw	rw	rw

Field	Bits	Type	Description
CSD2	15	rw	Direction of the current sense amplifier 2 0 _B The current sense is unidirectional (default) 1 _B The current sense is bidirectional
CSAG2	14:13	rw	Gain of the current sense amplifier 2 00 _B 10 V/V (default) 01 _B 20 V/V 10 _B 40 V/V 11 _B 80 V/V
CSD1	12	rw	Direction of the current sense amplifier 1 0 _B The current sense is unidirectional (default) 1 _B The current sense is bidirectional
CSAG1	11:10	rw	Gain of the current sense amplifier 1 00 _B 10 V/V (default) 01 _B 20 V/V 10 _B 40 V/V 11 _B 80 V/V
REG_BANK	9	rw	Register banking 0 _B (Default) refer to CCP_BLK2_ACT, PWM_ICHGMAX_CCP_BLK3_ACT, PWM_ICHG_ACT, ST_ICHG, PWM_IDCHG_ACT 1 _B Refer to CCP_BLK2_FW, PWM_ICHGMAX_CCP_BLK3_FW, PWM_ICHG_FW,PWM_PDCHG_INIT,PWM_PCHG_INIT
VSOVTH	8	rw	VS Overvoltage threshold $0_{B} V_{SOV OFF} = V_{SOV OFF1} \text{ (min. 19 V, default)}$ $1_{B} V_{SOV OFF} = V_{SOV OFF2} \text{ (min. 29V)}$
UNLOCK	7	rw	Unlock bit to disable the watchdog 0 _B WDDIS cannot be reset (default) 1 _B WDDIS (GENCTRL2) can be reset in the following SPI frame
Reserved	6	r	Reserved. Always read as '0'
FMODE	5	rw	Frequency modulation 0 _B No modulation 1 _B Modulation frequency 15.6 kHz (default)

Register specification

Field	Bits	Туре	Description
IPCHGADT	3	rw	Adaptation of the pre-charge and pre-discharge current 0 _B 1 current step (default) 1 _B 2 current steps
OCEN	2	rw	Overcurrent shutdown Enable 0 _B Disabled 1 _B Enabled (default)
WDPER	1	rw	
WDTRIG	0	rw	Watchdog trigger bit This bit must be inverted within a watchdog period. After power on reset, the default value is 0.

Attention: Any write access to this register must invert the WDTRIG bit. Otherwise, the device enters fail safe mode. Refer to Chapter 5.2.3.

Multiple MOSFET Driver IC

Register specification

General control register 2

GENCTRL2

General Control Register 2 (0 0001_B)Reset Value: 0100 0001 1000 0000_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
POCH GDIS	BD_P ASS	AGCFI LT	A	GC	IHOLD	WDDI S	MSKT DREG	CPUV TH	CPST GA	TF\	/DS	oc	TH2	oc.	ТН1
rw	rw	rw	r	W	rw	rw	rw	rw	rw	r	W	r	W	r	W

Field	Bits	Type	Description							
POCHGDIS	15	rw	Postcharge disable bit 0 _B The postcharge phase is enabled during PWM (default) 1 _B The postcharge phase is disabled during PWM							
BD_PASS	14	rw	Bridge driver passive mode 0 _B Bridge driver is in active mode 1 _B Bridge driver is in passive mode (Default)							
AGCFILT	13	rw	Filter for adaptive gate control Note: Refer to Adaptive control of pre-charge current and Adaptive control of pre-discharge current							
			0_B No filter applied (default)1_B Filter applied							
AGC	12:11	rw	 Adaptive gate control 00_B (default) Adaptive gate control disabled, pre-charge and predischarge disabled 01_B Adaptive gate control disabled, precharge is disabled, predischarge is enabled with IPREDCHG = IPDCHGINIT (Refer to PWM_PCHG_INIT) 10_B Adaptive gate control enabled, IPRECHG and IPREDCHG are self adapted 11_B Reserved. Adaptive gate control enabled, IPRECHG and IPREDCHG are self adapted 							
IHOLD	10	rw	Gate driver hold current IHOLD 0 _B (default) Charge: I _{CHG8} (12.5 mA typ.), discharge I _{DCHG8} (14.2 mA typ.) 1 _B Charge: I _{CHG12} (23.9 mA typ.), discharge: I _{DCHG12} (26.0 mA typ.)							
WDDIS	9	rw	Watchdog disable bit 0 _B the watchdog is enabled (default) 1 _B the watchdog is disabled if the previous SPI frame has set UNLOCK bit (GENCTRL1) Once the watchdog is disabled, it is directly re-enabled by resetting WDDIS							

Register specification

Field	Bits	Type	Description
MSKTDREG	8	rw	Masking of the turn-on/off delay error in the Global Error Flag 0 _B Turn-on/off delay error is reported in the GEF 1 _B Turn-on/off delay error is masked in the GEF (default)
CPUVTH	7	rw	Charge pump undervoltage detection threshold $0_{\rm B}$ $V_{\rm CPUV}$ (referred to VS) = 6.0V typ. $1_{\rm B}$ $V_{\rm CPUV}$ (referred to VS)= 7.5 V typ. (default)
CPSTGA	6	rw	Automatic switch-over between dual and single charge pump stage 0 _B Automatic switch over deactivated (default) 1 _B Automatic switch over activated
TFVDS	5:4	rw	Filter time of drain-source voltage monitoring 00_B $0.5~\mu s$ (default) 01_B $1~\mu s$ 10_B $2~\mu s$ 11_B $3~\mu s$
OCTH2	3:2	rw	Overcurrent detection threshold of CSO2 with CSD2 = 0 $00_{\rm B} V_{\rm CSO2} > V_{\rm DD/2}({\rm default}) \\ 01_{\rm B} V_{\rm CSO2} > V_{\rm DD/2} + V_{\rm DD}/10 \\ 10_{\rm B} V_{\rm CSO2} > V_{\rm DD/2} + 2 \times V_{\rm DD}/10 \\ 11_{\rm B} V_{\rm CSO2} > V_{\rm DD/2} + 3 \times V_{\rm DD}/10 \\ \text{Overcurrent detection threshold of CSO2 with CSD2 = 1} \\ 00_{\rm B} V_{\rm CSO2} > V_{\rm DD/2} + 2 \times V_{\rm DD}/20 \text{ or } V_{\rm CSO2} < V_{\rm DD/2} - 2 \times V_{\rm DD}/20 \text{ (default)} \\ 01_{\rm B} V_{\rm CSO2} > V_{\rm DD/2} + 4 \times V_{\rm DD}/20 \text{ or } V_{\rm CSO2} < V_{\rm DD/2} - 4 \times V_{\rm DD}/20 \\ 10_{\rm B} V_{\rm CSO2} > V_{\rm DD/2} + 5 \times V_{\rm DD}/20 \text{ or } V_{\rm CSO2} < V_{\rm DD/2} - 5 \times V_{\rm DD}/20 \\ 11_{\rm B} V_{\rm CSO2} > V_{\rm DD/2} + 6 \times V_{\rm DD}/20 \text{ or } V_{\rm CSO2} < V_{\rm DD/2} - 6 \times V_{\rm DD}/20$
остн1	1:0	rw	Overcurrent detection threshold of CSO1 with CSD1 = 0 $00_{\rm B} \ V_{\rm CSO1} > V_{\rm DD/2} \ ({\rm default})$ $01_{\rm B} \ V_{\rm CSO1} > V_{\rm DD/2} + V_{\rm DD}/10$ $10_{\rm B} \ V_{\rm CSO1} > V_{\rm DD/2} + 2 \ x \ V_{\rm DD}/10$ $11_{\rm B} \ V_{\rm CSO1} > V_{\rm DD/2} + 3 \ x \ V_{\rm DD}/10$ Overcurrent detection threshold of CSO1 with CSD1 = 1 $00_{\rm B} \ V_{\rm CSO1} > V_{\rm DD/2} + 2 \ x \ V_{\rm DD}/20 \ {\rm or} \ V_{\rm CSOx} < V_{\rm DD/2} - 2 \ x \ V_{\rm DD}/20 \ ({\rm default})$ $01_{\rm B} \ V_{\rm CSO1} > V_{\rm DD/2} + 4 \ x \ V_{\rm DD}/20 \ {\rm or} \ V_{\rm CSOx} < V_{\rm DD/2} - 4 \ x \ V_{\rm DD}/20$ $10_{\rm B} \ V_{\rm CSO1} > V_{\rm DD/2} + 5 \ x \ V_{\rm DD}/20 \ {\rm or} \ V_{\rm CSOx} < V_{\rm DD/2} - 5 \ x \ V_{\rm DD}/20$ $11_{\rm B} \ V_{\rm CSO1} > V_{\rm DD/2} + 6 \ x \ V_{\rm DD}/20 \ {\rm or} \ V_{\rm CSOx} < V_{\rm DD/2} - 6 \ x \ V_{\rm DD}/20$

Multiple MOSFET Driver IC

Register specification

Drain-source monitoring threshold HB1-4

Drain-source monitoring threshold HB1-4(0 $0010_{\rm B}$)Reset Value:0000 0010 0100 $1001_{\rm B}$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HB4D	HB3D	HB2D	HB1D	н	B4VDST	Н	н	B3VDST	Н	Н	B2VDS1	ГН	н	B1VDS	ГН
rw	rw	rw	rw		rw			rw		rw			rw		

Field	Bits	Туре	Description
HB4D	15	rw	HS4 Drain-source monitoring ¹⁾
			0 _B Drain-source monitoring: DH - VSH4 (default)
			1 _B Drain-source monitoring: CSIN1 - VSH4
HB3D	14	rw	HS3 Drain-source monitoring ¹⁾
			0 _B Drain-source monitoring: DH - VSH3 (default)
			1 _B Drain-source monitoring: CSIN1 - VSH3
HB2D	13	rw	HS2 Drain-source monitoring ¹⁾
			0 _B Drain-source monitoring: DH - VSH2 (default)
			1 _B Drain-source monitoring: CSIN1 - VSH2
HB1D	12	rw	HS1 Drain-source monitoring ¹⁾
			0 _B Drain-source monitoring: DH - VSH1 (default)
			1 _B Drain-source monitoring: CSIN1 - VSH1
HB4VDSTH	11:9	rw	HB4 drain-source overvoltage threshold
			000 _B 0.15 V
			001 _B 0.20 V (default)
			010 _B 0.25 V
			011 _B 0.30 V
			100 _B 0.40 V
			101 _B 0.50 V
			110 _B 0.60 V
			111 _B 2.0 V
HB3VDSTH	8:6	rw	HB3 drain-source overvoltage threshold
			000 _B 0.15 V
			001 _B 0.20 V (default)
			010 _B 0.25 V
			011 _B 0.30 V
			100 _B 0.40V
			101 _B 0.50 V
			110 _B 0.60 V
			111 _B 2.0 V

Register specification

Field	Bits	Туре	Description
HB2VDSTH	5:3	rw	HB2 drain-source overvoltage threshold
			000 _B 0.15 V
			001 _B 0.20 V (default)
			010 _B 0.25 V
			011 _B 0.30 V
			100 _B 0.40 V
			101 _B 0.50 V
			110 _B 0.60 V
			111 _B 2.0 V
HB1VDSTH	2:0	rw	HB1 drain-source overvoltage threshold
			000 _B 0.15 V
			001 _B 0.20 V (default)
			010 _B 0.25 V
			011 _B 0.30 V
			100 _B 0.40 V
			101 _B 0.50 V
			110 _B 0.60 V
			111 _B 2.0 V

¹⁾ Applicable for HSx. The Drain-Source overvoltage for LSx is done by monitoring VSHx - VSL.

Multiple MOSFET Driver IC

Register specification

Drain-source monitoring threshold HB5-8

Drain-source monitoring threshold HB5-8(0 0011_B)Reset Value: 0000 0010 0100 1001_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HB8D	HB7D	HB6D	HB5D	Н	HB8VDSTH		н	HB7VDSTH		HB6VDSTH			HB5VDSTH		
rw	rw	rw	rw		rw		rw		rw			rw			

Field	Bits	Туре	Description
HB8D	15	rw	HS8 Drain-source monitoring ¹⁾
			0 _B Drain-source monitoring: DH - VSH8 (default)
			1 _B Drain-source monitoring: CSIN1 - VSH8
HB7D	14	rw	HS7 Drain-source monitoring ¹⁾
			0 _B Drain-source monitoring: DH - VSH7 (default)
			1 _B Drain-source monitoring: CSIN1 - VSH7
HB6D	13	rw	HS6 Drain-source monitoring ¹⁾
			0 _B Drain-source monitoring: DH - VSH6 (default)
			1 _B Drain-source monitoring: CSIN1 - VSH6
HB5D	12	rw	HS5 Drain-source monitoring ¹⁾
			0 _B Drain-source monitoring: DH - VSH5 (default)
			1 _B Drain-source monitoring: CSIN1 - VSH5
HB8VDSTH	11:9	rw	HB8 drain-source overvoltage threshold
			000 _B 0.15 V
			001 _B 0.20 V (default)
			010 _B 0.25 V
			011 _B 0.30 V
			100 _B 0.40 V
			101 _B 0.50 V
			110 _B 0.60 V
			111 _B 2.0 V
HB7VDSTH	8:6	rw	HB7 drain-source overvoltage threshold
			000 _B 0.15 V
			001 _B 0.20 V (default)
			010 _B 0.25 V
			011 _B 0.30 V
			100 _B 0.40 V
			101 _B 0.50 V
			110 _B 0.60 V
			111 _B 2.0 V

Register specification

Field	Bits	Туре	Description
HB6VDSTH	5:3	rw	HB6 drain-source overvoltage threshold
			000 _B 0.15 V
			001 _B 0.20 V (default)
			010 _B 0.25 V
			011 _B 0.30 V
			100 _B 0.40 V
			101 _B 0.50 V
			110 _B 0.60 V
			111 _B 2.0 V
HB5VDSTH	2:0	rw	HB5 drain-source overvoltage threshold
			000 _B 0.15 V
			001 _B 0.20 V (default)
			010 _B 0.25 V
			011 _B 0.30 V
			100 _B 0.40 V
			101 _B 0.50 V
			110 _B 0.60 V
			111 _B 2.0 V

¹⁾ Applicable for HSx. The Drain-Source overvoltage for LSx is done by monitoring VSHx - VSL.

Multiple MOSFET Driver IC

Register specification

Cross current protection and blank time setting 1

CCP_BLK1 CCP and Blank times setting $1(0\ 0100_{\rm B})$ Reset Value: 0000 0000 0000 0000 $_{\rm B}$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HB80	CPBLK	НВ7С	CPBLK	НВ6С0	CPBLK	НВ5С	CPBLK	НВ4СС	PBLK	НВ3С	CPBLK	HB2C	CPBLK	HB1C	CPBLK
	1		1		1		1				I.		I.		
	rw	r	N	r	N	r١	N	r٧	V	r	W	r	W	r۱	N

Field	Bits	Туре	Description
HB8CCPBLK	15:14	rw	Cross-current protection and blank times applied to HB8 00_B (thb8CCP, thb8BLANK) = (tCCP1, tbLANK1) (default) 01_B (thb8CCP, thb8bLANK) = (tCCP2, tbLANK2) 10_B (thb8CCP, thb8bLANK) = (tCCP3, tbLANK3) 11_B (thb8CCP, thb8bLANK) = (tCCP4, tbLANK4)
HB7CCPBLK	13:12	rw	Cross-current protection and blank times applied to HB7 00_B (tHB7CCP, tHB7BLANK) = (tCCP1, tBLANK1) (default) 01_B (tHB7CCP, tHB7BLANK) = (tCCP2, tBLANK2) 10_B (tHB7CCP, tHB7BLANK) = (tCCP3, tBLANK3) 11_B (tHB7CCP, tHB7BLANK) = (tCCP4, tBLANK4)
HB6CCPBLK	11:10	rw	Cross-current protection and blank times applied to HB6 00_B (tHB6CCP, tHB6BLANK) = (tCCP1, tBLANK1) (default) 01_B (tHB6CCP, tHB6BLANK) = (tCCP2, tBLANK2) 10_B (tHB6CCP, tHB6BLANK) = (tCCP3, tBLANK3) 11_B (tHB6CCP, tHB6BLANK) = (tCCP4, tBLANK4)
HB5CCPBLK	9:8	rw	Cross-current protection and blank times applied to HB5 00_B (tHB5CCP, tHB5BLANK) = (tCCP1, tBLANK1) (default) 01_B (tHB5CCP, tHB5BLANK) = (tCCP2, tBLANK2) 10_B (tHB5CCP, tHB5BLANK) = (tCCP3, tBLANK3) 11_B (tHB5CCP, tHB5BLANK) = (tCCP4, tBLANK4)
HB4CCPBLK	7:6	rw	Cross-current protection and blank times applied to HB4 $00_{\rm B}$ (thb4CCP, thb4BLANK) = (tCCP1, tbLANK1) (default) $01_{\rm B}$ (thb4CCP, thb4bLANK) = (tCCP2, tbLANK2) $10_{\rm B}$ (thb4CCP, thb4bLANK) = (tCCP3, tbLANK3) $11_{\rm B}$ (thb4CCP, thb4bLANK) = (tCCP4, tbLANK4)
HB3CCPBLK	5:4	rw	Cross-current protection and blank times applied to HB3 $00_{\rm B}$ (thb3CCP, thb3BLANK) = (tCCP1, tbLANK1) (default) $01_{\rm B}$ (thb3CCP, thb3BLANK) = (tCCP2, tbLANK2) $10_{\rm B}$ (thb3CCP, thb3BLANK) = (tCCP3, tbLANK3) $11_{\rm B}$ (thb3CCP, thb3bLANK) = (tCCP4, tbLANK4)
HB2CCPBLK	3:2	rw	Cross-current protection and blank times applied to HB2 00_B (tHB2CCP, tHB2BLANK) = (tCCP1, tBLANK1) (default) 01_B (tHB2CCP, tHB2BLANK) = (tCCP2, tBLANK2) 10_B (tHB2CCP, tHB2BLANK) = (tCCP3, tBLANK3) 11_B (tHB2CCP, tHB2BLANK) = (tCCP4, tBLANK4)

Register specification

Field	Bits	Туре	Description						
HB1CCPBLK	1:0	rw	Cross-current protection and blank times applied to HB1						
			$00_{\rm B}$ (tHB1CCP, tHB1BLANK) = (tCCP1, tBLANK1) (default) $01_{\rm B}$ (tHB1CCP, tHB1BLANK) = (tCCP2, tBLANK2) $10_{\rm B}$ (tHB1CCP, tHB1BLANK) = (tCCP3, tBLANK3) $11_{\rm B}$ (tHB1CCP, tHB1BLANK) = (tCCP4, tBLANK4)						

Refer to CCP_BLK2_ACT, PWM_ICHGMAX_CCP_BLK3_ACT, CCP_BLK2_FW and PWM_ICHGMAX_CCP_BLK3_FW for the setting of (tCCPx, tBLANKx), x = 1 ... 4.

Multiple MOSFET Driver IC

Register specification

Cross current protection and blank time setting 2 for active MOSFETs

Attention: This register is accessed with REG_BANK = 0 and the offset adress 0 0101_B. tCCP and tBLANK are applicable to the active MOSFETs.

CCP_BLK2_ACT Active CCP and Blank times setting 2(0 0101_B)Reset Value: 0100 1001 0010 0100_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser ved	T	CCP3_A	СТ	TBL	.ANK2_	ACT	тс	CP2_A	СТ	TBL	ANK1_	ACT	т	CCP1_A	СТ
r	rw			rw			rw			rw			rw		

Field	Bits	Туре	Description	
Reserved	15	r	Reserved. Always read as '0'	
TCCP3_ACT	14:12	rw	Cross-current protection - tCCP3 Active Refer to Table 29 Default: 100 _B : typ. 2000 ns	
TBLANK2_A CT	11:9	rw	Blank time - tBLANK2 Active Refer to Table 30 Default: 100 _B : typ. 2000 ns	
TCCP2_ACT	8:6	rw	Cross-current protection - tCCP2 Active Refer to Table 29 Default: 100 _B : typ. 2000 ns	
TBLANK1_A CT	5:3	rw	Blank time - tBLANK1 Active Refer to Table 30 Default: 100 _B : typ. 2000 ns	
TCCP1_ACT	2:0	rw	Cross-current protection - tCCP1 Active Refer to Table 29 Default: 100 _B : typ. 2000 ns	

Cross-current protection time for active MOSFETs Table 29

TCCPx_ACT[2:0], x = 14	Active cross-current protection HBx, x = 14 (typical)
000 _B	375 ns
001 _B	625 ns
010	1 μs
011	1.5 μs
100	2 μs (default)
101	3 μs
110	4 μs
111	16 μs ¹⁾

¹⁾ When applying a cross-current protection time of 16 µs to a half-bridge, the max. drive current used for this halfbridge must be set below 30 mA, to avoid an overheating of the gate driver. Refer to register **ST_ICHG** for static controlled half-bridges and PWM_IDCHG_ACT for half-bridges controlled in PWM.

Multiple MOSFET Driver IC

Register specification

Drain-Source overvoltage blank time for active MOSFETs Table 30

TBLANKx_ACT[2:0], x =	Active drain-Source overvoltage blank time tBLANKx, x = 14 (typical)
14	
000 _B	625 ns
001 _B	1 μs
010 _B	1.25 μs
011 _B	1.5 μs
100 _B	2 μs (default)
101 _B	3 μs
110 _B	4 μs
111 _B	16 μs ¹⁾

¹⁾ When applying a drain-source overvoltage blank time of 16 µs to a half-bridge, the max. drive current used for this half-bridge must be set below 30 mA, to avoid an overheating of the gate driver. Refer to register **ST_ICHG** for static controlled half-bridges and PWM_ICHG_ACT for half-bridges controlled in PWM.

Refer to PWM_ICHGMAX_CCP_BLK3_ACT for the setting of tBLANK4, tCCP4 and tBLANK3 for the active MOSFETs.

Refer to **CCP_BLK1** for the mapping of (tCCPx,tBLANKx) to the half-bridges.

Multiple MOSFET Driver IC

Register specification

Cross current protection and blank time setting 2 for FW MOSFETs

Attention: This register is accessed with $REG_BANK = 1$ and the offset address 0 0101_B. tCCP and tBLANK are applicable to the FW MOSFETs.

CCP_BLK2_FW

FW CCP and Blank times setting 2(0 0101_B)Reset Value: 0100 1001 0010 0100_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser ved	TCCP3_FW TBLANK2_FW		FW	TO	CP2_F	w	ТВІ	LANK1_FW TCCP1_FW			·W				
r		rw		rw			rw		rw			rw			

Field	Bits	Туре	Description
Reserved	15	r	Reserved. Always read as '0'
TCCP3_FW	14:12	rw	Cross-current protection - tCCP3 Freewheeling Refer to Table 31 Default: 100 _B : typ. 2000 ns
TBLANK2_F W	11:9	rw	Blank time - tBLANK2 Freewheeling Refer to Table 32 Default: 100 _B : typ. 2000 ns
TCCP2_FW	8:6	rw	Cross-current protection - tCCP2 Freewheeling Refer to Table 31 Default: 100 _B : typ. 2000 ns
TBLANK1_F W	5:3	rw	Blank time - tBLANK1 Freewheeling Refer to Table 32 Default: 100 _B : typ. 2000 ns
TCCP1_FW	2:0	rw	Cross-current protection - tCCP1 Freewheeling Refer to Table 31 Default: 100 _B : typ. 2000 ns

Cross-current protection time for FW MOSFETs Table 31

TCCPx_FW[2:0], x = 14	FW cross-current protection HBx, x = 14 (typical)
000 _B	375 ns
001 _B	625 ns
010	1 μs
011	1.5 μs
100	2 μs (default)
101	3 μs
110	4 μs
111	16 μs ¹⁾

¹⁾ When applying a cross-current protection time of 16 µs to a half-bridge, the max. drive current used for this halfbridge must be set below 30 mA, to avoid an overheating of the gate driver. Refer to register **ST_ICHG** for static controlled half-bridges and PWM_ICHG_FW for half-bridges controlled in PWM.

Register specification

Table 32 Drain-Source overvoltage blank time for FW MOSFETs

TBLANKx_FW[2:0], x = 14	FW Drain-Source overvoltage blank time tBLANKx, x = 14 (typical)
000 _B	625 ns
001 _B	1 μs
010 _B	1.25 μs
011 _B	1.5 μs
100 _B	2 μs (default)
101 _B	3 μs
110 _B	4 μs
111 _B	16 μs ¹⁾

¹⁾ When applying a drain-source overvoltage blank time of 16 µs to a half-bridge, the max. drive current used for this half-bridge must be set below 30 mA, to avoid an overheating of the gate driver. Refer to register **ST_ICHG** for static controlled half-bridges and **PWM_ICHG_FW** for half-bridges controlled in PWM.

Refer to **PWM_ICHGMAX_CCP_BLK3_FW** for the setting of tBLANK4, tCCP4 and tBLANK3 for the FW MOSFETs. Refer to **CCP_BLK1** for the mapping of (tCCPx,tBLANKx) to the half-bridges.

Multiple MOSFET Driver IC

Register specification

Half-bridge control 9.1.2

Half-bridge mode

HBMODE

Half-bridge mode (0 0110_B)Reset Value: 0_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HB8I	HB8MODE		NODE	HB6N	IODE	HB5N	MODE	HB4N	IODE	нвзм	IODE	HB2N	MODE	HB1N	MODE
	I.		ı		i		1		i		ı		I.		
r	W	r	W	r	W	r	W	r	W	r	W	r	W	r	W

Field	Bits	Type	Description
HB8MODE	15:14	rw	Half-bridge output 8 mode selection 00 _B HB8 is in high impedance (default) 01 _B LS8 is ON 10 _B HS8 is ON 11 _B Reserved - HB8 is in high impedance
HB7MODE	13:12	rw	Half-bridge output 7 mode selection 00 _B HB7 is in high impedance (default) 01 _B LS7 is ON 10 _B HS7 is ON 11 _B Reserved - HB7 is in high impedance
HB6MODE	11:10	rw	Half-bridge output 6 mode selection 00 _B HB6 is in high impedance (default) 01 _B LS6 is ON 10 _B HS6 is ON 11 _B Reserved - HB6 is in high impedance
HB5MODE	9:8	rw	Half-bridge output 5 mode selection 00 _B HB5 is in high impedance (default) 01 _B LS5 is ON 10 _B HS5 is ON 11 _B Reserved - HB5 is in high impedance
HB4MODE	7:6	rw	Half-bridge output 4 mode selection 00 _B HB4 is in high impedance (default) 01 _B LS4 is ON 10 _B HS4 is ON 11 _B Reserved - HB4 is in high impedance
HB3MODE	5:4	rw	Half-bridge output 3 mode selection 00_B HB3 is in high impedance (default) 01_B LS3 is ON 10_B HS3 is ON 11_B Reserved - HB3 is in high impedance
HB2MODE	3:2	rw	Half-bridge output 2 mode selection 00 _B HB2 is in high impedance (default) 01 _B LS2 is ON 10 _B HS2 is ON 11 _B Reserved - HB2 is in high impedance

Register specification

Field	Bits	Туре	Description
HB1MODE	1:0	rw	Half-bridge output 1 mode selection
			00 _B HB1 is in high impedance (default)
			01 _B LS1 is ON
			10 _B HS1 is ON
			11 _B Reserved - HB1 is in high impedance

Multiple MOSFET Driver IC

Register specification

PWM channel settings

PWMSET

PWM channel settings $(0.0111_{\rm B})$ Reset Value: 0110 1100 0110 0000_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser ved	Reser ved	Rese	erved	P	PWM3_H	IB	PWM3 _EN	F	WM2_F	IB	PWM2 _EN	P	WM1_I	нв	PWM1 _EN
r	rw	r	W		rw		rw		rw		rw		rw	'	rw

Field	Bits	Type	Description
Reserved	15	r	Reserved. Always read as '0'
Reserved	14	rw	Reserved. Default value = 1
Reserved	13:12	rw	Reserved. Reserved. Default value = 10 _B
PWM3_HB	11:9	rw	Allocation of the PWM channel 3 000_B HB1 001_B HB2 010_B HB3 011_B HB4 100_B HB5 101_B HB6 110_B HB7 (default) 111_B HB8
PWM3_EN	8	rw	PWM channel 3 enable 0 _B PWM3 is disabled (default) 1 _B PWM3 is enabled
PWM2_HB	7:5	rw	Allocation of the PWM channel 2 000 _B HB1 001 _B HB2 010 _B HB3 011 _B HB4 (Default) 100 _B HB5 101 _B HB6 110 _B HB7 111 _B HB8
PWM2_EN	4	rw	PWM channel 2 enable 0 _B PWM2 is disabled (default) 1 _B PWM2 is enabled
PWM1_HB	3:1	rw	Allocation of the PWM channel 1 000_B HB1 (default) 001_B HB2 010_B HB3 011_B HB4 100_B HB5 101_B HB6 110_B HB7 111_B HB8

Register specification

Field	Bits	Туре	Description
PWM1_EN	0	rw	PWM channel 1 enable
			0 _B PWM1 is disabled (default) 1 _B PWM1 is enabled

If the same half-bridge is mapped to several activated PWM channels, then a SPI error is reported and the impacted half-bridge is in high-impedance.

Multiple MOSFET Driver IC

Register specification

PWM pre-charge and pre-discharge time

TPRECHG

Charg	e and p	re-cha	arge tin	ne		(0 100	0 _в) Re	set Val	ue: 0 _B						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser	FN DF	Reser	EN_GE				I		ı		ı		ı		

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EN_DE EP_AD	Reser ved	EN_GE N_CH ECK	TPD	CHG3	ТРС	HG3	TPD	CHG2	ТРС	HG2	TPD	CHG1	TPC	CHG1
					1		1		l		l		1		1
rw	rw	rw	rw	r	W	r	W	r	W	r	N	r	W	r	W

Field	Bits	Туре	Description
Reserved	15	rw	Reserved. To be programmed as '0'.
EN_DEEP_A D	14	rw	Deep adaptation enabled 0 _B Deep adaptation disabled (default) 1 _B Deep adaptation enabled. Refer to Chapter 6.3.3.6
Reserved	13	rw	Reserved. This bits must be set to '0'
EN_GEN_CH ECK	12	rw	Enable generator check 0 _B Detection of generator mode disabled (default) 1 _B Detection of generator mode enabled.
TPDCHG3	11:10	rw	Pre-discharge time of PWM channel 3 00 _B 125 ns (default) 01 _B 250 ns 10 _B 500 ns 11 _B 1000 ns
TPCHG3	9:8	rw	Pre-charge time of PWM channel 3 00 _B 125 ns (default) 01 _B 250 ns 10 _B 500 ns 11 _B 1000 ns
TPDCHG2	7:6	rw	Pre-discharge time of PWM channel 2 00 _B 125 ns (default) 01 _B 250 ns 10 _B 500 ns 11 _B 1000 ns
TPCHG2	5:4	rw	Pre-charge time of PWM channel 2 00 _B 125 ns (default) 01 _B 250 ns 10 _B 500 ns 11 _B 1000 ns
TPDCHG1	3:2	rw	Pre-discharge time of PWM channel 1 00_B 125 ns (default) 01_B 250 ns 10_B 500 ns 11_B 1000 ns

Register specification

Field	Bits	Туре	Description
TPCHG1	1:0	rw	Pre-charge time of PWM channel 1
			00 _B 125 ns (default)
			01 _B 250 ns
			10 _B 500 ns
			11 _B 1000 ns

Multiple MOSFET Driver IC

Register specification

Half-bridge diagnostic current control

HBIDIAG

 $Half-bridge\ diagnostic\ current\ control (0\ 1001_{\rm B}) Reset\ Value:\ 1100\ 0000\ 0000\ 0000_{\rm B}$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CSA2L	. CSA1L	OC2	FILT	OC1	FILT	CSA2_ OFF	CSA1_ OFF	HB8ID IAG	HB7ID IAG	HB6ID IAG	HB5ID IAG	HB4ID IAG	HB3ID IAG	HB2ID IAG	HB1ID IAG
rw	rw	r	W	r	W	rw									

Field	Bits	Type	Description
CSA2L	15	rw	Level of CSA2 0 _B CSA2 is configured as low-side 1 _B CSA2 is configured as high-side (default)
CSA1L	14	rw	Level of CSA1 0 _B CSA1 is configured as low-side 1 _B CSA1 is configured as high-side (default)
OC2FILT	13:12	rw	Overcurrent filter time for CSO2 00_B 6 μs (default) 01_B 10 μs 10_B 50 μs 11_B 100 μs
OC1FILT	11:10	rw	Overcurrent filter time for CSO1 00_B 6 μs (default) 01_B 10 μs 10_B 50 μs 11_B 100 μs
CSA2_OFF	9	rw	Disable of CSA2 0 _B CSA2 enabled(default) 1 _B CSA2 disabled
CSA1_OFF	8	rw	Disable of CSA1 0 _B CSA1 enabled (default) 1 _B CSA1 disabled
HB8IDIAG	7	rw	Control of HB8 off-state current source and current sink 0 _B Pull-down deactivated (default) 1 _B Pull-down activated
HB7IDIAG	6	rw	Control of HB7 off-state current source and current sink 0 _B Pull-down deactivated (default) 1 _B Pull-down activated
HB6IDIAG	5	rw	Control of HB6 off-state current source and current sink 0 _B Pull-down deactivated (default) 1 _B Pull-down activated
HB5IDIAG	4	rw	Control of HB5 off-state current source and current sink 0 _B Pull-down deactivated (default) 1 _B Pull-down activated

Register specification

Field	Bits	Туре	Description
HB4IDIAG	3	rw	Control of HB4 off-state current source and current sink
			0 _B Pull-down deactivated (default)
			1 _B Pull-down activated
HB3IDIAG	2	rw	Control of HB3 off-state current source and current sink
			0 _B Pull-down deactivated (default)
			1 _B Pull-down activated
HB2IDIAG	1	rw	Control of HB2 off-state current source and current sink
			0 _B Pull-down deactivated (default)
			1 _B Pull-down activated
HB1IDIAG	0	rw	Control of HB1 pull-down for off-state diagnostic
			0 _B Pull-down deactivated (default)
			1 _B Pull-down activated

Register specification

Static charge and discharge current selection

Attention: This register is accessed only if REG_BANK = 0 with the corresponding offset address.

ST_ICHG Static charge and discharge current selection(0 1010_B)Reset Value: 0000 0000 0100 0100_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	HB7IC HGST								ICHO	GST2	1		ICH	GST1	1	
rw	rw	rw	rw	rw	rw	rw	rw	rw				rw				

Field	Bits	Туре	Description
HB8ICHGST	15	rw	 HB8 Selection of charge and discharge currents 0_B The static charge/discharge current 1 is applied to the half-bridge 8 (default). 1_B The static charge/discharge current 2 is applied to the half-bridge 8.
HB7ICHGST	14	rw	 HB7 Selection of charge and discharge currents 0_B The static charge/discharge current 1 is applied to the half-bridge 7 (default). 1_B The static charge/discharge current 2 is applied to the half-bridge 7.
HB6ICHGST	13	rw	 HB6 Selection of charge and discharge currents 0_B The static charge/discharge current 1 is applied to the half-bridge 6 (default). 1_B The static charge/discharge current 2 is applied to the half-bridge 6.
HB5ICHGST	12	rw	 HB5 Selection of charge and discharge currents 0_B The static charge/discharge current 1 is applied to the half-bridge 5 (default). 1_B The static charge/discharge current 2 is applied to the half-bridge 5.
HB4ICHGST	11	rw	 HB4 Selection of charge and discharge currents 0_B The static charge/discharge current 1 is applied to the half-bridge 4 (default). 1_B The static charge/discharge current 2 is applied to the half-bridge 4.
HB3ICHGST	10	rw	 HB3 Selection of charge and discharge currents 0_B The static charge/discharge current 1 is applied to the half-bridge 3 (default). 1_B The static charge/discharge current 2 is applied to the half-bridge 3.

Register specification

Field	Bits	Туре	Description
HB2ICHGST	9	rw	 HB2 Selection of charge and discharge currents 0_B The static charge/discharge current 1 is applied to the half-bridge 2 (default). 1_B The static charge/discharge current 2 is applied to the half-bridge 2.
HB1ICHGST	8	rw	 HB1 Selection of charge and discharge currents 0_B The static charge/discharge current 1 is applied to the half-bridge 1 (default). 1_B The static charge/discharge current 2 is applied to the half-bridge 1.
ICHGST2	7:4	rw	Static gate driver charge and discharge currents 2 Refer to Table 10 Default: 0100 _B - Charge 12.5 mA typ., discharge 14.2 mA typ.
ICHGST1	3:0	rw	Static gate driver charge and discharge currents 1 Refer to Table 10 Default: 0100 _B - charge 12.5 mA typ., discharge 14.2 mA typ.

Multiple MOSFET Driver IC

Register specification

PWM Active MOSFET precharge current initialization

Attention: This register is accessed only if REG_BANK = 1 with the corresponding offset address.

PWM_PCHG_INIT

Initial PWM precharge current selection(0 1010_B)Reset Value: 0001 1000 1100 0110_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Reser ved	PCHGINIT3					PCHGINIT2						PCHGINIT1				
								l	1	1						
r	rw				rw					rw						

Field	Bits	Туре	Description
Reserved	15	r	Reserved. Always read as '0'
PCHGINIT3	14:10	rw	Initial precharge current of PWM Channel 3 Refer to Table 13 Default: 00110 _B : typ. 8.0 mA
PCHGINIT2	9:5	rw	Initial precharge current of PWM Channel 2 Refer to Table 13 Default: 00110 _B : typ. 8.0 mA
PCHGINIT1	4:0	rw	Initial precharge current of PWM Channel 1 Refer to Table 13 Default: 00110 _B : typ. 8.0 mA

Multiple MOSFET Driver IC

Register specification

PWM charge current of active MOSFETs

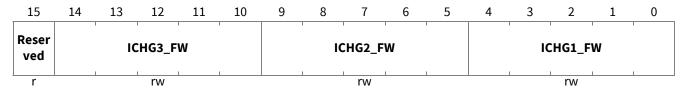
Attention: This register is accessed with $REG_BANK = 0$ and the offset address 0.1011_B . The charge currents are applied to the active MOSFET (ICHG1-3).

PWM_ICHG_ACT Active PWM charge current (0 1011_B)Reset Value:0001 1000 1100 0110_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser ved		1	ICHG3	1	1		1	ICHG2	1	1		ı	ICHG1	ı	
r	rw				rw					rw					

Field	Bits	Туре	Description
Reserved	15	r	Reserved. Always read as '0'
ICHG3	14:10	rw	Gate driver charge current of PWM Channel 3 (Active MOSFET) Refer to Table 13 Default: 00110 _B : typ. 8.0 mA
ICHG2	9:5	rw	Gate driver charge current of PWM Channel 2 (Active MOSFET) Refer to Table 13 Default: 00110 _B : typ. 8.0 mA
ICHG1	4:0	rw	Gate driver charge current of PWM Channel 1 (Active MOSFET) Refer to Table 13 Default: 00110 _B : typ. 8.0 mA

Multiple MOSFET Driver IC



Register specification

PWM charge/discharge currents of FW MOSFETs

Attention: This register is accessed with REG_BANK = 1 and the offset address 0 1011 $_{\rm B}$. The charge and discharge currents are applied to the freewheeling MOSFETs (ICHGFW1-3).

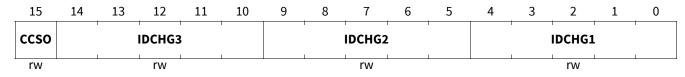
PWM_ICHG_FW FW PWM charge/discharge currents (0 1011_B) Reset Value:0001 1000 1100 0110_B

Field	Bits	Туре	Description
Reserved	15	r	Reserved. Always read as '0'
ICHG3_FW	14:10	rw	Gate driver charge and discharge currents of PWM Channel 3 (FW MOSFET) Refer to Table 13, Table 14 Default: 00110 _B . Typ. charge 8.0 mA, typ. discharge: 9.4 mA
ICHG2_FW	9:5	rw	Gate driver charge and discharge currents of PWM Channel 2 (FW MOSFET) Refer to Table 13, Table 14 Default: 00110 _B . Typ. charge 8.0 mA, typ. discharge: 9.4 mA
ICHG1_FW	4:0	rw	Gate driver charge and discharge currents of PWM Channel 1 (FW MOSFET) Refer to Table 13, Table 14 Default: 00110 _B . Typ. charge 8.0 mA, typ. discharge: 9.4 mA

127

The selected currents are applied to the turn-on and the turn-off of the FW MOSFETs. Note:

Multiple MOSFET Driver IC


Register specification

PWM discharge current for active MOSFETs

Attention: This register is accessed only if REG_BANK = 0 with the corresponding offset address.

PWM_IDCHG_ACT

PWM discharge current (0 1100_B)Reset Value: 0001 1100 1110 0111_B

Field	Bits	Type	Description
ccso	15	rw	Capacitor connected to the current sense amplifier outputs 0 _B Capacitor connected to CSO < 100 pF (default) 1 _B Capacitor connected to CSO < 400 pF
IDCHG3	14:10	rw	Discharge current for PWM Channel 3 (Active MOSFET) Refer to Table 14 Default: 00111 _B : typ. 11.8 mA
IDCHG2	9:5	rw	Discharge current for PWM Channel 2 (Active MOSFET) Refer to Table 14 Default: 00111 _B : typ. 11.8 mA
IDCHG1	4:0	rw	Discharge current of PWM Channel 1 (Active MOSFET) Refer to Table 14 Default: 00111 _B : typ. 11.8 mA

Multiple MOSFET Driver IC

Register specification

PWM Active MOSFET predischarge current initialization

Attention: This register is accessed only if REG_BANK = 1 with the corresponding offset address.

PWM_PDCHG_INIT

Initial PWM predischarge current selection(0 1100_B)Reset Value: 0011 0001 1000 1100_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ccso		PD	IT3			PD	CHGIN	IT2		PDCHGINIT1					
rw			rw					rw			rw				

Field	Bits	Туре	Description
ccso	15	rw	Capacitor connected to the current sense amplifier outputs
			0 _B Capacitor connected to CSO < 100 pF (default)
			1 _B Capacitor connected to CSO < 400 pF
PDCHGINIT	14:10	rw	Initial predischarge current of PWM Channel 3
3			Refer to Table 14
			Default: 01100 _B : typ. 26.0 mA
PDCHGINIT	9:5	rw	Initial predischarge current of PWM Channel 2
2			Refer to Table 14
			Default: 01100 _B : typ. 26.0 mA
PDCHGINIT	4:0	rw	Initial predischarge current of PWM Channel 1
1			Refer to Table 14
			Default: 01100 _B : typ. 26.0 mA

Multiple MOSFET Driver IC

Register specification

PWM maximum drive current selection and active tCCP4, tBLANK 3/4

Attention: This register is accessed with REG_BANK = 0 and the offset address 0 1101_B. tCCP and tBLANK are applicable to the active MOSFETs.

PWM_ICHGMAX_CCP_BLK3_ACT

PWM max. drive current (0 1101_B)Reset Value: 0100 1001 0000 0000_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser ved	TBLANK4_ACT		TC	CP4_A	СТ	TBL	.ANK3_	ACT	ICHG	махз	ICHG	MAX2	ICHG	MAX1	
r	rw		rw		rw		rw		rw		rw				

Field	Bits	Туре	Description
Reserved	15	r	Reserved. Always read as '0'
TBLANK4_A	14:12	rw	Blank time 1) - tBLANK4 Active
СТ			Refer to Table 30
			Default: 100 _B : typ. 2000 ns
TCCP4_ACT	11:9	rw	Cross-current protection ¹⁾ - tCCP4 Active
			Refer to Table 29
			Default: 100 _B : typ. 2000 ns
TBLANK3_A	8:6	rw	Blank time ¹⁾ - tBLANK3 Active
СТ			Refer to Table 30
			Default: 100 _B : typ. 2000 ns
ICHGMAX3	5:4	rw	Maximum drive current of half-bridge mapped to PWM channel
			3 during the pre-charge phase and pre-discharge phases ²⁾
			00 _B (default) charge: typ. 18.8 mA, discharge: typ. 19.7 mA
			01 _B charge: typ. 41mA, discharge: typ. 43 mA
			10 _B charge: typ. 77 mA, discharge: typ. 79 mA
			11 _B charge: typ. 100 mA, discharge: typ. 100 mA
ICHGMAX2	3:2	rw	Maximum drive current of half-bridge mapped to PWM channel
			2 during the pre-charge phase and pre-discharge phases ²⁾
			00 _B (default) charge: typ. 18.8 mA, discharge: typ. 19.7 mA
			01 _B charge: typ. 41 mA, discharge: typ. 43 mA
			10 _B charge: typ. 77 mA, discharge: typ. 79 mA
			11 _B charge: typ. 100 mA, discharge: typ. 100 mA
ICHGMAX1	1:0	rw	Maximum drive current of half-bridge mapped to PWM channel
			1 during the pre-charge and pre-discharge phases ²⁾
			00 _B (default) charge: typ. 18.8 mA, discharge: typ. 19.7 mA
			01 _B charge: typ. 41 mA, discharge: typ. 43 mA
			10 _B charge: typ. 77 mA, discharge: typ. 79 mA
			11 _B charge: typ. 100 mA, discharge: typ. 100 mA

¹⁾ Refer to **CCP_BLK1** for the mapping of (tCCPx,tBLANKx) to the half-bridges.

²⁾ ICHGMAX is also the current applied during the post-charge of the PWM MOSFET Refer to Table 12.

Multiple MOSFET Driver IC

Register specification

PWM maximum drive current selection and FW tCCP4, tBLANK 3/4

Attention: This register is accessed with REG_BANK = 1 and the offset address 0 1101_B. tCCP and tBLANK are applicable to the FW MOSFETs.

PWM_ICHGMAX_CCP_BLK3_FW

PWM max. drive current (0 1101_B)Reset Value: 0100 1001 0000 0000_B

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser ved	ТВ	LANK4_	_FW	T	CCP4_F	w	ТВІ	_ANK3_	.FW	ICHG	МАХЗ	ICHG	MAX2	ICHG	MAX1
r		rw			rw			rw		r	W	r	W	r	W

Field	Bits	Туре	Description		
Reserved	15	r	Reserved. Always read as '0'		
TBLANK4_F	14:12	rw	Blank time 1) - tBLANK4 Freewheeling		
N			Refer to Table 32		
			Default: 100 _B : typ. 2000 ns		
TCCP4_FW	11:9	rw	Cross-current protection ¹⁾ - tCCP4 Freewheeling		
			Refer to Table 31		
			Default: 100 _B : typ. 2000 ns		
TBLANK3_F	8:6	rw	Blank time ¹⁾ - tBLANK3 Freewheeling		
W			Refer to Table 32		
			Default: 100 _B : typ. 2000 ns		
ICHGMAX3	5:4	rw	Maximum drive current of half-bridge mapped to PWM channel		
			3 during the pre-charge phase and pre-discharge phases ²⁾		
			00 _B (default) charge: typ. 19 mA, discharge: typ. 19 mA		
			01 _B charge: typ. 41mA, discharge: typ. 43 mA		
			10 _B charge: typ. 77 mA, discharge: typ. 79 mA		
			11 _B charge: typ. 100 mA, discharge: typ. 100 mA		
ICHGMAX2	3:2	rw	Maximum drive current of half-bridge mapped to PWM channel		
			2 during the pre-charge phase and pre-discharge phases ²⁾		
			00 _B (default) charge: typ. 19 mA, discharge: typ. 19 mA		
			01 _B charge: typ. 41mA, discharge: typ. 43 mA		
			10 _B charge: typ. 77 mA, discharge: typ. 79 mA		
			11 _B charge: typ. 100 mA, discharge: typ. 100 mA		
ICHGMAX1	1:0	rw	Maximum drive current of half-bridge mapped to PWM channel		
			1 during the pre-charge and pre-discharge phases ²⁾		
			00 _B (default) charge: typ. 19 mA, discharge: typ. 19 mA		
			01 _B charge: typ. 41mA, discharge: typ. 43 mA		
			10 _B charge: typ. 77 mA, discharge: typ. 79 mA		
			11 _B charge: typ. 100 mA, discharge: typ. 100 mA		

¹⁾ Refer to **CCP_BLK1** for the mapping of (tCCPx,tBLANKx) to the half-bridges.

²⁾ ICHGMAX is also the current applied during the post-charge of the PWM MOSFET Refer to Table 12.

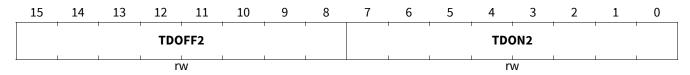
Multiple MOSFET Driver IC

Register specification

Selection MOSFET turn-on and turn-off delay for PWM channel 1

TDON_OFF1 MOSFET turn-on/off delay of PWM channel1 (0 1110_B)Reset Value:0000 1010 0000 1010_B

Field	Bits	Туре	Description	
TDOFF1	15:8	rw	Turn-off delay time of PWM Channel 1.	
			Typical TDOFF1 = $62.5 \times TDOFF1[7:0]_D$ ns	
			Default: 0000 1010 _B : 625 ns typ.	
TDON1	7:0	rw	Turn-on delay time of PWM Channel 1.	
			Typical TDON1 = $62.5 \times TDON1[7:0]_D$ ns	
			Default: 0000 1010 _B : 625 ns typ.	


Multiple MOSFET Driver IC

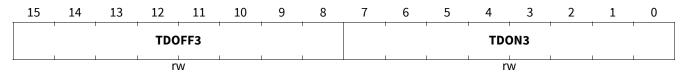
Register specification

Selection MOSFET turn-on and turn-off delay for PWM channel 2

TDON_OFF2 MOSFET turn-on/off delay of PWM channel2 (0 1111_B)Reset Value: 0000 1010 0000 1010_B

Field	Bits	Туре	Description	
TDOFF2	15:8	rw	Turn-off delay time of PWM Channel 2.	
			Typical TDOFF2 = $62.5 \times TDOFF2[7:0]_D$ ns	
			Default: 0000 1010 _B : 625 ns typ.	
TDON2	7:0	rw	Turn-on delay time of PWM Channel 2.	
			Typical TDON2 = $62.5 \times TDON2[7:0]_D$ ns	
			Default: 0000 1010 _B : 625 ns typ.	

Multiple MOSFET Driver IC



Register specification

Selection MOSFET turn-on and turn-off delay for PWM channel 3

TDON_OFF3

MOSFET turn-on/off delay of PWM channel3 (1 0000_B)Reset Value: $0000\ 1010\ 0000\ 1010_B$

Field	Bits	Туре	Description	
TDOFF3	15:8 rw		Turn-off delay time of PWM Channel 3.	
			Typical TDOFF3 = $62.5 \times TDOFF3[7:0]_D$ ns	
			Default: 0000 1010 _B : 625 ns typ.	
TDON3	7:0	rw	Turn-on delay time of PWM Channel 3.	
			Typical TDON3 = $62.5 \times TDON3[7:0]_D$ ns	
			Default: 0000 1010 _B : 625 ns typ.	

Multiple MOSFET Driver IC

Register specification

9.2 **Status register**

Register Overview Table 33

Register Short Name	Register Long Name	Offset Address	Reset Value	
GENSTAT	General status register	11 _H	0 _H	
DSOV	Drain-source overvoltage	12 _H	0 _H	
HBVOUT_PWMERR	Half-Bridge output voltage	13 _H	0 _H	
EFF_TDON_OFF1	Effective MOSFET turn-on and turn-off delays for PWM Channel 1	14 _H	0 _H	
EFF_TDON_OFF2	Effective MOSFET turn-on and turn-off delays for PWM Channel 2	15 _H	0 _H	
EFF_TDON_OFF3	Effective MOSFET turn-on and turn-off delays for PWM Channel 3	16 _H	0 _H	
TRISE_FALL1	Effective MOSFET rise and fall times for PWM Channel 1	17 _H	0 _H	
TRISE_FALL2	Effective MOSFET rise and fall times for PWM Channel 2	18 _H	0 _H	
TRISE_FALL3	Effective MOSFET rise and fall times for PWM Channel 3	19 _H	0 _H	
DEVID	Device identifier	1F _H	03 _H	

Multiple MOSFET Driver IC

Register specification

9.2.1 **General status register**

General status register

GENSTAT

General Status Register	(1 0001 _B)Reset Value: 0 _B
•	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reser ved	WDI	MON	PWM3 STAT	PWM2 STAT	PWM1 STAT	TDRE G3	TDRE G2	TDRE G1	TSD	TW	OC2	OC1	vsov	vsuv	CPUV
r		r	r	r	r	rc	rc	rc	rc	rc	rc	rc	rc	rc	rc

Field	Bits	Туре	Description				
Reserved	15	r	Reserved. Always read as '0'				
WDMON	14:13	r	Watchdog Monitoring 00 _B WD Timer is between [0%;25%[of the WD period (default) 01 _B WD Timer is between [25%;50%[of the WD period 10 _B WD Timer is between [50%;75%[of the WD period 11 _B WD Timer is between [75%;100 %[of the WD period				
PWM3STAT	12	r	Status of PWM3 input 0 _B PWM3 is low (default) 1 _B PWM3 is high				
PWM2STAT	11	r	Status of PWM2 input 0 _B PWM2 is low (default) 1 _B PWM2 is high				
PWM1STAT	10	r	Status of PWM1 input 0 _B PWM1 is low (default) 1 _B PWM1 is high				
TDREG3	9	rc	PWM channel 3 - Regulation of turn-on and turn-off delays 0 _B the turn-on delay or the turn-off delay are not in regulation (default) 1 _B the turn-on and turn-off delays are in regulation				
TDREG2	8	rc	PWM channel 2 - Regulation of turn-on and turn-off delays 0 _B the turn-on delay or the turn-off delay are not in regulation (default) 1 _B the turn-on and turn-off delays are in regulation				
TDREG1	7	rc	PWM channel 1 - Regulation of turn-on and turn-off delays 0 _B the turn-on delay or the turn-off delay are not in regulation (default) 1 _B the turn-on and turn-off delays are in regulation				
TSD	6	rc	Thermal Shutdown 0 _B No thermal shutdown is detected (default) 1 _B A thermal shutdown is detected ²⁾				
TW	5	rc	Thermal Warning 0 _B No thermal warning is detected (default) 1 _B A thermal warning is detected				

Register specification

Field	Bits	Type	Description
OC2	4	rc	Overcurrent detection of CSO2 0 _B No overcurrent detection on CSO2 (default) 1 _B Overcurrent detected on CSO2 ¹⁾
OC1	3	rc	Overcurrent detection of CSO1 0 _B No overcurrent detection on CSO1 (default) 1 _B Overcurrent detected on CSO1 ¹⁾
vsov	2	rc	VS Overvoltage 0_B No overvoltage on V_S detected (default value) 1_B Overvoltage on V_S detected ²⁾
VSUV	1	rc	$\begin{array}{ll} \textbf{VS Undervoltage} \\ \textbf{0}_{\text{B}} & \text{No undervoltage on } V_{\text{S}} \text{ detected (default value)} \\ \textbf{1}_{\text{B}} & \text{Undervoltage on } V_{\text{S}} \text{ detected}^{2)} \end{array}$
CPUV	0	rc	Charge Pump Undervoltage 0 _B No charge pump undervoltage (default) 1 _B A charge pump undervoltage is detected ²⁾

¹⁾ The state of the external MOSFETs depends on the setting of OCEN bit (see **GENCTRL1**).

²⁾ The error is latched and the external MOSFETs are turned off.

Multiple MOSFET Driver IC

Register specification

Drain-Source Overvoltage 1

DSOV

Drain-Source Overvoltage	(1 0010 _B)Reset Value: 0 _B
--------------------------	---

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LS8DS OV	HS8D SOV	LS7DS OV	HS7D SOV	LS6DS OV	HS6D SOV	LS5DS OV	HS5D SOV	LS4DS OV	HS4D SOV	LS3DS OV	HS3D SOV	LS2DS OV	HS2D SOV	LS1DS OV	HS1D SOV
rc															

Field	Bits	Type	Description
LS8DSOV	15	rc	Drain-Source overvoltage on low-side 8 0 _B No overvoltage on drain-source of low-side 8 (default) 1 _B Overvoltage on drain-source of low-side 8 detected.
HS8DSOV	14	rc	Drain-Source overvoltage on high-side 8 0 _B No overvoltage on drain-source of high-side 8 (default) 1 _B Overvoltage on drain-source of high-side 8 detected.
LS7DSOV	13	rc	Drain-Source overvoltage on low-side 7 0 _B No overvoltage on drain-source of low-side 7(default) 1 _B Overvoltage on drain-source of low-side 7detected.
HS7DSOV	12	rc	Drain-Source overvoltage on high-side 7 0 _B No overvoltage on drain-source of high-side 7 (default) 1 _B Overvoltage on drain-source of high-side 7 detected.
LS6DSOV	11	rc	Drain-Source overvoltage on low-side 6 0 _B No overvoltage on drain-source of low-side 6 (default) 1 _B Overvoltage on drain-source of low-side 6 detected.
HS6DSOV	10	rc	Drain-Source overvoltage on high-side 6 0 _B No overvoltage on drain-source of high-side 6 (default) 1 _B Overvoltage on drain-source of high-side 6 detected.
LS5DSOV	9	rc	Drain-Source overvoltage on low-side 5 0 _B No overvoltage on drain-source of low-side 5 (default) 1 _B Overvoltage on drain-source of low-side 5 detected.
HS5DSOV	8	rc	Drain-Source overvoltage on high-side 5 0 _B No overvoltage on drain-source of high-side 5 (default) 1 _B Overvoltage on drain-source of high-side 5 detected.
LS4DSOV	7	rc	Drain-Source overvoltage on low-side 4 0 _B No overvoltage on drain-source of low-side 4 (default) 1 _B Overvoltage on drain-source of low-side 4 detected.
HS4DSOV	6	rc	Drain-Source overvoltage on high-side 4 0 _B No overvoltage on drain-source of high-side 4 (default) 1 _B Overvoltage on drain-source of high-side 4 detected.
LS3DSOV	5	rc	Drain-Source overvoltage on low-side 3 O _B No overvoltage on drain-source of low-side 3 (default) 1 _B Overvoltage on drain-source of low-side 3 detected.

Register specification

Field	Bits	Type	Description
HS3DSOV	4	rc	Drain-Source overvoltage on high-side 3
			0 _B No overvoltage on drain-source of high-side 3 (default)
			1 _B Overvoltage on drain-source of high-side 3 detected.
LS2DSOV	3	rc	Drain-Source overvoltage on low-side 2
			0 _B No overvoltage on drain-source of low-side 2 (default)
			1 _B Overvoltage on drain-source of low-side 2 detected.
HS2DSOV	2	rc	Drain-Source overvoltage on high-side 2
			0 _B No overvoltage on drain-source of high-side 2 (default)
			1 _B Overvoltage on drain-source of high-side 2 detected.
LS1DSOV	1	rc	Drain-Source overvoltage on low-side 1
			0 _B No overvoltage on drain-source of low-side 1 (default)
			1 _B Overvoltage on drain-source of low-side 1 detected.
HS1DSOV	0	rc	Drain-Source overvoltage on high-side 1
			0 _B No overvoltage on drain-source of high-side 1 (default)
			1 _B Overvoltage on drain-source of high-side 1 detected.

Note: The impacted MOSFET is latched off if a Drain-Source overvoltage is detected.

Multiple MOSFET Driver IC

Register specification

Half-bridge Output Voltage Status

HBVOUT_PWMERR

Half-bridge output voltage and PWM $Error(1\ 0011_B)Reset\ Value:\ O_B$

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	НВ7Р														
WME	WME	WME	WME	WME	WME	WME	WME	OUT							
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Field	Bits	Туре	Description
HB8PWME	15	r	PWM Error on HB8
			O _B No PWM error (default)
			1 _B More than one activated PWM channels is mapped to HB8 ¹⁾
HB7PWME	14	r	PWM Error on HB7
			0 _B No PWM error (default)
			1 _B More than one activated PWM channels is mapped to HB7 ¹⁾
HB6PWME	13	r	PWM Error on HB6
			0 _B No PWM error (default)
			1 _B More than one activated PWM channels is mapped to HB6 ¹⁾
HB5PWME	12	r	PWM Error on HB5
			0 _B No PWM error (default)
			1 _B More than one activated PWM channels is mapped to HB5 ¹⁾
HB4PWME	11	r	PWM Error on HB4
			0 _B No PWM error (default)
			1 _B More than one activated PWM channels is mapped to HB4 ¹⁾
HB3PWME	10	r	PWM Error on HB3
			0 _B No PWM error (default)
			1 _B More than one activated PWM channels is mapped to HB3 ¹⁾
HB2PWME	9	r	PWM Error on HB2
			0 _B No PWM error (default)
			1 _B More than one activated PWM channels is mapped to HB2 ¹⁾
HB1PWME	8	r	PWM Error on HB1
			0 _B No PWM error (default)
			1 _B More than one activated PWM channels is mapped to HB1 ¹⁾
HB8VOUT	7	r	Voltage level at SH8 when HB8MODE[1:0] = (0,0) or (1,1):
			$0_{\rm B}$ Low: $ VDH - VSH8 > V_{VDSMONTHx}^{2}$ if HB8D = 0
			$ VCSIN1 - VSH8 > V_{VDSMONTHx}$ if HB8D = 1
			1_B High: VDH - VSH8 $< V_{VDSMONTHx}$ if HB8D = 0;
			$ VCSIN1 - VSH8 < V_{VDSMONTHx}$ if HB8D = 1
			Note: $HB8VOUT = 0$ if $HB8MODE[1:0] = (0,1)$ or $(1,0)$

Register specification

Field	Bits	Туре	Description
HB7VOUT	6	r	Voltage level at SH7 when HB7MODE[1:0] = (0,0) or (1,1): 0_B Low: $ VDH - VSH7 > V_{VDSMONTHx}^{2}$ if HB7D = 0 $ VCSIN1 - VSH7 > V_{VDSMONTHx}$ if HB7D = 1 1_B High: $ VDH - VSH7 < V_{VDSMONTHx}$ if HB7D = 0; $ VCSIN1 - VSH7 < V_{VDSMONTHx}$ if HB7D = 1 Note: $ VCSIN1 - VSH7 < V_{VDSMONTHx}$ if HB7D = 1
HB6VOUT	5	r	Voltage level at SH6 when HB6MODE[1:0] = (0,0) or (1,1): 0 _B Low: VDH - VSH6 >V _{VDSMONTHx} ²⁾ if HB6D = 0
HB5VOUT	4	r	Voltage level at SH5 when HB5MODE[1:0] = (0,0) or (1,1): 0 _B Low: VDH - VSH5 > V _{VDSMONTHx} ²) if HB5D = 0 VCSIN1 - VSH5 > V _{VDSMONTHx} if HB5D = 1 1 _B High: VDH - VSH5 < V _{VDSMONTHx} if HB5D = 0; VCSIN1 - VSH5 < V _{VDSMONTHx} if HB5D = 1 Note: HB5VOUT = 0 if HB5MODE[1:0] = (0,1) or (1,0)
HB4VOUT	3	r	Voltage level at SH4 when HB4MODE[1:0] = (0,0) or (1,1): 0_B Low: VDH - VSH4 > $V_{\text{VDSMONTHx}}^{2}$ if HB4D = 0 VCSIN1 - VSH4 > $V_{\text{VDSMONTHx}}$ if HB4D = 1 1_B High: VDH - VSH4 < $V_{\text{VDSMONTHx}}$ if HB4D = 0; VCSIN1 - VSH4 < $V_{\text{VDSMONTHx}}$ if HB4D = 1 Note: HB4VOUT = 0 if HB4MODE[1:0]= (0,1) or (1,0)
HB3VOUT	2	r	Voltage level at SH3 when HB3MODE[1:0] = (0,0) or (1,1): O_B Low: $ VDH - VSH3 > V_{VDSMONTHx}^{2}$ if HB3D = 0 $ VCSIN1 - VSH3 > V_{VDSMONTHx}$ if HB3D = 1 O_B High: $ VDH - VSH3 < V_{VDSMONTHx}$ if HB3D = 0; $ VCSIN1 - VSH3 < V_{VDSMONTHx}$ if HB3D = 1 Note: $ VCSIN1 - VSH3 < V_{VDSMONTHx}$ if HB3D = 1
HB2VOUT	1	r	Voltage level at SH2 when HB2MODE[1:0] = (0,0) or (1,1): 0 _B Low: VDH - VSH2 > V _{VDSMONTHX} ² if HB2D = 0 VCSIN1 - VSH2 > V _{VDSMONTHX} if HB2D = 1 1 _B High: VDH - VSH2 < V _{VDSMONTHX} if HB2D = 0; VCSIN1 - VSH2 < V _{VDSMONTHX} if HB2D = 1 Note: HB2VOUT = 0 if HB2MODE[1:0] = (0,1) or (1,0)

Register specification

Field	Bits	Туре	Description				
HB1VOUT	0	r	Voltage level at SH1 when HB1MODE[1:0] = (0,0) or (1,1): 0 _B Low: VDH - VSH1 > V_{VDSMONTHX}^{2)} if HB1D = 0; VCSIN1 - VSH1 > V_{VDSMONTHX} if HB1D = 1 1 _B High: VDH - VSH1 < V_{VDSMONTHX} if HB1D = 0; VCSIN1 - VSH1 < V_{VDSMONTHX} if HB1D = 1 Note: HB1VOUT = 0 if HB1MODE[1:0] = (0,1) or (1,0)				

¹⁾ The bit is reset only if one PWM channel or no PWM channel is mapped to the half-bridge (refer to **PWMSET**).

²⁾ $V_{\text{VDSMONTHx}}$ is the drain-source monitoring threshold selected for the corresponding half-bridge.

Multiple MOSFET Driver IC



Register specification

Effective MOSFET turn-on and turn-off delay of PWM1

EFF_TDON_OFF1

Effective MOSFET turn-on/off delay PWM1(10100 $_{\rm B}$)Reset Value: 0 $_{\rm B}$

Field	Bits	Туре	Description
TDOFF1EFF	15:8	r	Effective MOSFET turn-off delay of PWM Channel 1 Effective turn-off delay = $62.5 \times TDOFF1EFF[7:0]_D$ ns Default: 0_B
TDON1EFF	7:0	r	Effective MOSFET turn-on delay of PWM Channel 1 Effective turn-on delay = $62.5 \times TDON1EFF[7:0]_D$ ns Default: 0_B

Multiple MOSFET Driver IC

Register specification

Effective MOSFET turn-on and turn-off delay of PWM2

EFF_TDON_OFF2

Effective MOSFET turn-on/off delay PWM2(10101_B)Reset Value: 0_B

Field	Bits	Туре	Description
TDOFF2EFF	15:8	r	Effective MOSFET turn-off delay of PWM Channel 2 Effective turn-off delay = $62.5 \times TDOFF2EFF[7:0]_D$ ns Default: 0_B
TDON2EFF	7:0	r	Effective MOSFET turn-on delay of PWM Channel 2 Effective turn-on delay = $62.5 \times TDON2EFF[7:0]_D$ ns Default: 0_B

Multiple MOSFET Driver IC



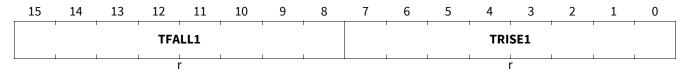
Register specification

Effective MOSFET turn-on and turn-off delay of PWM3

EFF_TDON_OFF3

Effective MOSFET turn-on/off delay PWM3(10110 $_{\rm B}$)Reset Value: 0 $_{\rm B}$

Field	Bits	Туре	Description
TDOFF3EFF	15:8	r	Effective MOSFET turn-off delay of PWM Channel 3 Effective turn-off delay = $62.5 \times TDOFF3EFF[7:0]_D$ ns Default: 0_B
TDON3EFF	7:0	r	Effective MOSFET turn-on delay of PWM Channel 3 Effective turn-on delay = $62.5 \times TDON3EFF[7:0]_D$ ns Default: 0_B


Multiple MOSFET Driver IC

Register specification

Effective MOSFET rise and fall times of PWM channel 1

TRISE_FALL1 Effective PWM MOSFET rise and fall times PWM1 (1 0111 $_{\rm B}$)Reset Value: 0 $_{\rm B}$

Field	Bits	Туре	Description	
TFALL1	15:8	r	MOSFET fall time of PWM Channel 1	
			MOSFET fall time = $62.5 \times TFALL1[7:0]_D$ ns	
			Default: 0 _B	
TRISE1	7:0	r	MOSFET rise time of PWM Channel 1	
			MOSFET rise time = $62.5 \times TRISE1[7:0]_D$ ns	
			Default: 0 _B	

Multiple MOSFET Driver IC

Register specification

Effective MOSFET rise and fall times of PWM channel 2

TRISE_FALL2 Effective PWM MOSFET rise and fall times PWM2 (1 1000_B)Reset Value: 0_B

Field	Bits	Туре	Description	
TFALL2	15:8	r	MOSFET fall time of PWM Channel 2	
			MOSFET fall time = $62.5 \times TFALL2[7:0]_D$ ns	
			Default: 0 _B	
TRISE2	7:0	r	MOSFET rise time of PWM Channel 2	
			MOSFET rise time = $62.5 \times TRISE2[7:0]_D$ ns	
			Default: 0 _B	

Multiple MOSFET Driver IC

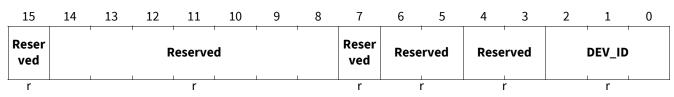
Register specification

Effective MOSFET rise and fall times of PWM channel 3

TRISE_FALL3 Effective PWM MOSFET rise and fall times PWM3 (1 1001_B)Reset Value: 0_B

Field	Bits	Туре	Description	
TFALL3	15:8	r	MOSFET fall time of PWM Channel 3	
			MOSFET fall time = $62.5 \times TFALL3[7:0]_D$ ns	
			Default: 0 _B	
TRISE3	7:0	r	MOSFET rise time of PWM Channel 3	
			MOSFET rise time = $62.5 \times TRISE3[7:0]_D$ ns	
			Default: 0 _B	

Multiple MOSFET Driver IC



Register specification

Device Identifier

DEVID

(1 1111_B)Reset Value: 0000 0011_B **Device Identifier**

Field	Bits	Type	Description
Reserved	15	r	Reserved. Always read as '0'
Reserved	14:8	r	Reserved. Always read as '0'
Reserved	7	r	Reserved. Always read as '0'.
Reserved	6:5	r	Reserved.
Reserved	4:3	r	Reserved.
DEV_ID	2:0	r	Device derivative identifier 000 _B Reserved 001 _B TLE92108-232 010 _B Reserved 011 _B TLE92108-231 100 _B Reserved 101 _B Reserved 111 _B Reserved 111 _B Reserved

infineon

Application information

10 Application information

Note:

The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

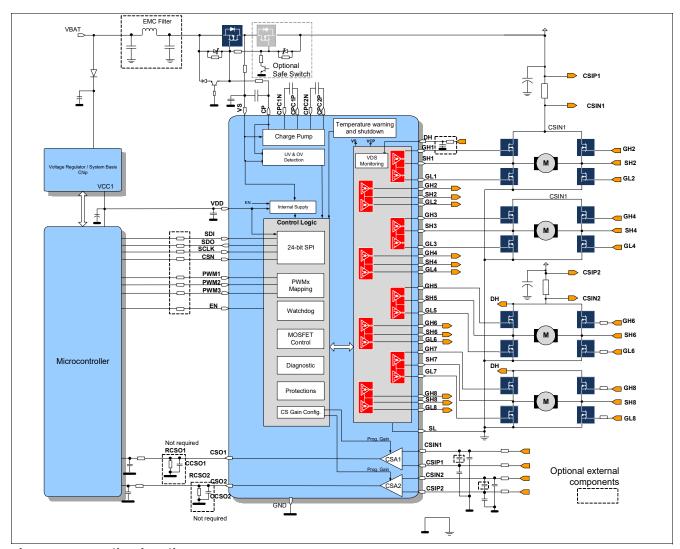


Figure 50 Application diagram TLE92108-231QX

Note: This is a simplified example of an application circuit. The function must be verified in the real application.

The charge pump buffer capacitor between VS and CP must have a capacitance equal or higher than 470 nF for a stable operation. A higher capacitance can be used to reduce the voltage ripples caused by the charge of the gate of the external MOSFETs during PWM operation.

The flying capacitors between CPC1N/CPC1P and CPC2N/CPC2P must be as close as possible to the TLE92108-231QX.

The decoupling capacitors between VS/GND and VDD/GND must be as close as possible to the TLE92108-231QX and short PCB tracks to the GND plane.

A resistor (RCSOx) and a capacitor (CCSOx) can be placed (not mandatory) at the output of the current sense amplifiers.

Application information

The device does not need any resistor at the output of the current sense amplifiers. However, if a resistor is used by the application, RCSOx must be higher than 1 k Ω . This resistor causes additional current consumption from VDD, which is not taken into account in the electrical characteristics of the datasheet.

CCSOx must be between 10 pF and 400 pF. For a fast reaction time of the CSA output, it is recommended to keep CCSOx to 10 pF.

If a filter is used at the inputs of the current sense amplifier, the serial resistor may not exceed 5 Ω .

It is possible that the MOSFET gate voltage goes below the source voltage during the commutation of a half-bridge. This depends on the stray inductances at the drain and the source of the MOSFET, the speed of the commutation and the ratio between the MOSFET Gate-Source and Gate-Drain capacitances.

If V_{GATE} - V_{SOURCE} < -0.6 V, a series resistor (e.g. 4.7 Ω) in series to GHx and GLx are recommended to limit current delivered by the gate driver during the commutation.

Shunt resistor in the motor phase

When the shunt resistor is placed in the motor phase, it is highly recommended to apply the PWM to the half-bridge which is not connected to the shunt resistor (**Figure 51**). This avoids a high common mode swing at the inputs of the current sense amplifier.

The drain-source monitoring of the monitoring of the drain-source overvoltage of the high-side MOSFETs must be set to DH - VSHx. Refer to **VDS1**, **VDS2**, HBxD bits.

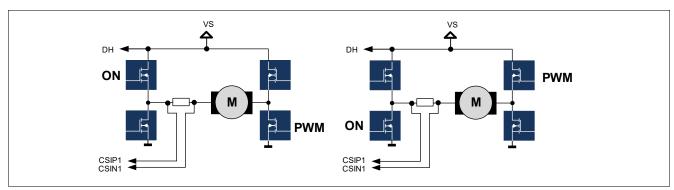


Figure 51 PWM with Shunt resistance in the motor phase

For a proper off-state diagnostic for with the shunt resistor in the motor phase, the corresponding current sense amplifier (CSA) must be deactivated. Otherwise, the activated CSA draws current from its inputs, preventing the internal pull-up source to set the SHx pin to high.

Package outlines

Package outlines 11

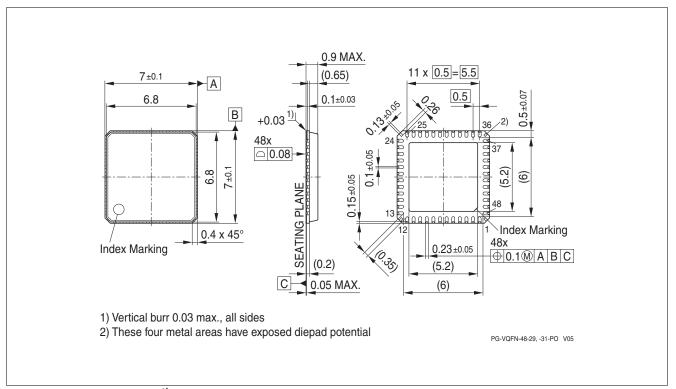


Figure 52 PG-VQFN-48¹⁾

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Multiple MOSFET Driver IC

Revision History

Revision History 12

Revision	Date	Changes
1.0	2019-08-29	First release

Trademarks

Edition 2019-08-29 Published by Infineon Technologies AG 81726 Munich, Germany

© 2019 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.