

NPN Silicon High-Frequency Transistor

Qualified per MIL-PRF-19500/398

DESCRIPTION

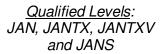
This 2N3866(A) silicon VHF-UHF amplifier transistor is military qualified up to the JANS level for high-reliability applications. It is also available in a low profile UB package.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N3866 number
- JAN, JANTX, JANTXV and JANS qualifications also available per MIL-PRF-19500/398
- RoHS compliant

APPLICATIONS / BENEFITS


- Short leaded TO-205AD package
- Lightweight
- Military and other high-reliability applications

MAXIMUM RATINGS @ $T_A = +25$ °C unless otherwise noted

Parameters / Test Conditions	Symbol	Value	Unit	
Junction & Storage Temperature		T _J , T _{stg}	-65 to +200	°C
Thermal Resistance Junction-to-Ca	ase	R _{eJC}	60	⁰C/W
Thermal Resistance Junction-to-Ar	nbient	R _{OJA}	175	ºC/W
Collector – Emitter Voltage		V _{CEO}	30	V
Collector – Base Voltage		V _{CBO}	60	V
Emitter - Base Voltage		V_{EBO}	3.5	V
Total Power Dissipation ⁽¹⁾	@ $T_A = +25 \ {}^{\circ}C \ {}^{(1)}$ @ $T_C = +25 \ {}^{\circ}C \ {}^{(2)}$	Р⊤	1.0	w
	@ T _C = +25 °C ⁽²⁾	ГŢ	2.9	vv
Collector Current		I _C	0.4	Α

Notes: 1. Derated linearly 5.71 mW/°C for T_A > +25 °C

2. Derated at 16.6 mW/°C for $T_{C} > +25$ °C

TO-205AD (formerly TO-39) Package

Also available in:

UB package (surface mount) 2N3866(A)UB

MSC – Lawrence

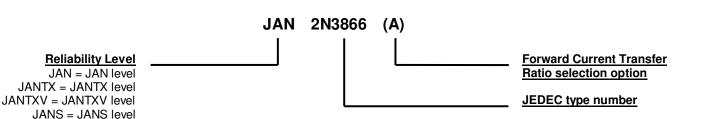
6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com



MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap
- TERMINALS: Gold plate, solder dip (Sn63/Pb37) available upon request. NOTE: Solder dip will eliminate RoHS compliance.
- MARKING: Part number, date code, manufacturer's ID and serial number
- POLARITY: NPN
- WEIGHT: Approximately 1.064 grams
- See <u>Package Dimensions</u> on last page.

Blank = Commercial

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
Ι _Β	Base current: The value of the dc current into the base terminal.				
Ic	Collector current: The value of the dc current into the collector terminal.				
V _{BE}	Base-emitter voltage: The dc voltage between the base and the emitter.				
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.				
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.				
V_{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.				
V_{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.				
V _{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.				
V_{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.				

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

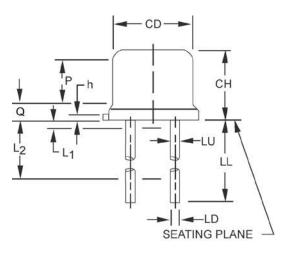
Characteristics	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage				
$I_{\rm C} = 5 \rm{mA}$	$V_{(BR)CEO}$	30		V
Collector-Base Breakdown Voltage				
$I_{\rm C} = 100 \ \mu {\rm A}$	$V_{(BR)CBO}$	60		V
Emitter-Base Breakdown Voltage				
I _E = 100 μA	$V_{(BR)EBO}$	3.5		V
Collector-Emitter Cutoff Current	I		20	
$V_{CE} = 28 V$	I _{CEO}		20	μA
Collector-Emitter Cutoff Current	I		100	•
$V_{CE} = 55 V$	I _{CES1}		100	μA

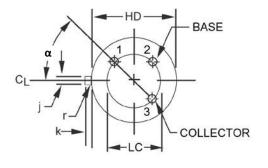
ON CHARACTERISTICS (1)

Forward-Current Transfer Ratio $I_C = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_C = 360 \text{ mA}, V_{CE} = 5.0 \text{ V}$	2N3866 2N3866A 2N3866 2N3866A 2N3866A	h _{FE}	15 25 5 8	200 200	
Collector-Emitter Saturation Voltage $I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA}$		$V_{CE(sat)}$		1.0	V
Collector-Emitter Cutoff Current – High Te $V_{CE} = 55 \text{ V}, T_A = +150 ^{\circ}\text{C}$	emp Operation	I _{CES2}		2.0	mA
Forward-Current Transfer Ratio – Low Temperature Operation $V_{CE} = 5.0 \text{ V}, I_C = 50 \text{ mA}, T_A = -55 ^{\circ}\text{C}$	2N3866 2N3866A	h _{FE3}	7 12		

DYNAMIC CHARACTERISTICS

Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_{C} = 50 \text{ mA}, V_{CE} = 15 \text{ V}, f = 200 \text{ MHz}$	2N3866 2N3866A	h _{FE}	2.5 4.0	8.0 7.5	
Output Capacitance $V_{CB} = 28 \text{ V}, I_E = 0, 100 \text{ kHz} \le f \le 1.0 \text{ MHz}$		C_{obo}		3.5	pF


POWER OUTPUT CHARACTERISTICS


$\label{eq:VCC} \begin{array}{ c c c } \hline Power \ Output \\ V_{CC} = 28 \ V; \ P_{in} = 0.15 \ W; \ f = 400 \ MHz \ * \\ V_{CC} = 28 \ V; \ P_{in} = 0.075 \ W; \ f = 400 \ MHz \ * \\ \hline * \ See \ Figure \ 4 \ on \ MIL-PRF-19500/398 \end{array}$	P _{1out} P _{2out}	1.0 0.5	2.0	w
Collector Efficiency $V_{CC} = 28 \text{ V}; P_{in} = 0.15 \text{ W}; f = 400 \text{ MHz}$ $V_{CC} = 28 \text{ V}; P_{in} = 0.075 \text{ W}; f = 400 \text{ MHz}$	n1 n2	45 40		%
Clamp Inductive Collector-Emitter Breakdown Voltage $V_{BE} = -1.5 \text{ V}, I_{C} = 40 \text{ mA}$	V _{(BR)CEX}	55		V

(1) Pulse Test: pulse width = 300 $\mu s,$ duty cycle $\leq 2.0\%$

PACKAGE DIMENSIONS

	Dimensions					
Ltr	Inc	ch	Millimeters		Notes	
	Min	Max	Min	Max		
CD	0.305	0.335	7.75	8.51		
СН	0.240	0.260	6.10	6.60		
HD	0.335	0.370	8.51	9.40		
h	0.009	0.041	0.23	1.04		
j	0.028	0.034	0.71	0.86	3	
k	0.029	0.045	0.74	1.14	3, 4	
LD	0.016	0.021	0.41	0.53	8, 9	
LL	0.500	0.750	12.7	19.05		
LC	0.200	0.200 TP		5.08 TP		
LU	0.016	0.019	0.41	0.48	8, 9	
L1	-	0.050	-	1.27	8, 9	
L2	0.250	-	6.35	-	8, 9	
Р	0.100	-	2.54	-	7	
Q	-	0.030	-	0.76	5	
r	-	0.010	-	0.25	10	
α	45°	45° TP		45° TP		

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only.
- 3. Beyond r (radius) maximum, TL shall be held for a minimum length of 0.011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- Leads at gauge plane 0.054 +0.001 -0.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within 0.007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 8. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 9. All three leads.
- 10. The collector shall be internally connected to the case.
- 11. Dimension r (radius) applies to both inside corners of tab.
- 12. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.