
DIP16 is the NRND product as of February,2023

DUAL 4-CHANNEL MULTIPLEXER

-New Japan Radio Co., Ltd.

INH	В	A	On Switch		
0	0	0	Yo	Xo	
0	0	1	Y ₁	X1	
0	1	0	Y ₂	X2	
0	1	1	Ŷз	Хз	
1	х	x	None		

x: Don't Care

JRC

6

NJU4052B

JRC

DIP16 is the NRND product as of February,2023 NJU4052B

ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD} - V _{EE}	- 0.5 ~ + 20	۷
Input Voltage(Control Signal)	VIN	V_{ss} -0.5 ~ V_{DD} +0.5	۷
Input Voltage(Analog Signal)	Vsig	$V_{\rm EE}$ -0.5 ~ $V_{\rm DD}$ +0.5	۷
Input Current	IIN	± 10	mA
Output Current	ουτ	± 10	mA
Power Dissipation	Po	500 (DIP) 200 (DMP) 300 (SSOP)	mW
Operating Temperature Range	Topr	- 40 ~ + 85	C.
Storage Temperature Range	Tstg	- 65 ~ + 150	Ĉ

ELECTRICAL CHARACTERISTICS

• DC Characteristics

				Vdd	Ta=-40℃	Ta=25℃		Ta=85℃		шит
PARAMETER SYM		CONDITIONS		(V)	MIN MAX	MIN TYP	MAX	MIN	MAX	UNIT
Quiescent Current	מס	No signal Per Package		5 10 15 20	5 10 20 100		5 10 20 100		150 300 300 300	μA
On-State Resistance	Ron	0≦V _{is} ≦V _{DD} V _{EE} =V _{SS} =0V		5 10 15	500 210 140	220 100 60	250		300 300 200	Ω
On-State Resistance Deviation	ΔRon	Between 2 channels V _{EE} =V _{SS} =0V		5 10 15		15 10 5)			Ω
Off-Channel Leakage Current		Each channel V _{EE} =V <i>ss</i> =0V		18	±1000	±10) ±100	ť	1000	nA
Input Capacitance	CIN	V _{ı№} =OV Control Inhibit Switch				5.(1(pF
Low Level Input Voltage	Vil	R⊥=10kΩ	Vo=1.0V Vo=1.0V Vo=1.5V	5 10 15	1.5 3.0 4.0		1.5 3.0 4.0		1.5 3.0 4.0	V
High Level Input Voltage	VIH	SW=V _{dd} V _{ee} =V _{ss}	Vo=4.0V Vo=9.0V Vo=13.5V	5 10 15	3.5 7.0 11.0	3.5 7.0 11.0		3.5 7.0 11.0		۷
Input Current	±11N	V _{1N} =0 or 18V		18	±0.1		±0.1		± 1	μA

(Vss=0V)

6

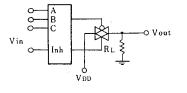
6

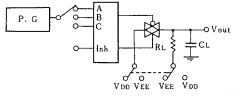
DIP16 is the NRND product as of February,2023

NJU4052B

SWITCHING CHARACTERISTICS

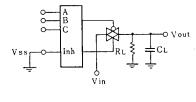
(Ta=25°C, CL=50pF)


PARAMETER		SYMBOL	CONDITIONS	$V_{DD}(V)$	MIN TYP MAX	UNIT
Propagation Delay Time	SW Input to Output	tplh		5 10 15	15 45 8 30 5 20	
		tphl	Rι=10kΩ	5 10 15	15 45 8 30 5 20	- ns
	CONT Input to Output	tphl	11-10632	5 10 15	450 1000 200 500 150 400	ns
		tрzн tpzl		5 10 15	450 1000 200 500 150 400	
Output Enable Time		tрнz tplz	R⊾=10kΩ	5 10 15	600 1400 250 700 200 500	ns
Output Disable Time			11-1022	5 10 15	600 1400 250 700 200 500	ns
Sine-Wave Distortion			$R_{\text{L}}\text{=}10k\Omega$, f=1kHz, $V_{\text{IS}}\text{=}5V_{\text{P-P}}$. 10	0.05	%
Feedthrough (all-ch. off)			$R_{L}=1k\Omega$, 20log ₁₀ V ₀₅ /V ₁₅ =-50dB	10	4.5	MHz
Crosstalk	SW A to B		$R_L=1k\Omega$, $V_{1s}=1/2(V_{DD}-V_{SS})_{P-P}$	10	3.0	MHz
	Control-Out		$R_1=1k\Omega$, $R_1=10k\Omega$, $tr=tf=20ns$ CONTROL/INHIBIT	10	30	mV

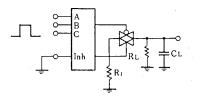

MEASUREMENT CIRCUITS

JRC

1. Noise Margin


2. Propagation Delay

3. Feedthrough


4. Crosstalk (Switch A and B)

 $\frac{V_{DD} - V_{EE}}{2} \rightarrow \frac{V_{in}}{2}$

5. Crosstalk (Control and Out)

IN he specificatio s o this databoo are o y i e fori for atio , ithout a y uara tee as re ards either ista es oro issio s he appicatio circuits i this databoo are described o y to sho represe tati e usa es of the product a d oti te ded for the uara tee or per issio of a y ri ht i cudi the i dustria ri hts