Features

- High-performance, Low-power AVR[®] 8-bit Microcontroller
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single-clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 16 MIPS Throughput at 16 MHz
 - On-chip 2-cycle Multiplier
- Non-volatile Program and Data Memories
 - 16K Bytes of In-System Self-programmable Flash Endurance: 1,000 Write/Erase Cycles
 Endurance: 10.000 Write/Erase Cycles for ATmega162U
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program
 - True Read-While-Write Operation
 - 512 Bytes EEPROM Endurance: 100,000 Write/Erase Cycles
 - 1K Bytes Internal SRAM
 - Up to 64K Bytes Optional External Memory Space
 - Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 Compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
 - Two 16-bit Timer/Counters with Separate Prescalers, Compare Modes, and Capture Modes
 - Real Time Counter with Separate Oscillator
 - Six PWM Channels
 - Dual Programmable Serial USARTs
 - Master/Slave SPI Serial Interface
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated RC Oscillator
 - External and Internal Interrupt Sources
 - Five Sleep Modes: Idle, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
 - 35 Programmable I/O Lines
 - 40-pin PDIP, 44-lead TQFP, and 44-pad MLF
- Operating Voltages
 - 1.8 3.6V for ATmega162V
 - 2.4 4.0V for ATmega162U
 - 2.7 5.5V for ATmega162L
 - 4.5 5.5V for ATmega162
- Speed Grades
 - 0 1 MHz for ATmega162V
 - 0 8 MHz for ATmega162L/U
 - 0 16 MHz for ATmega162

ATmega162 ATmega162V ATmega162U ATmega162L

Advance Information

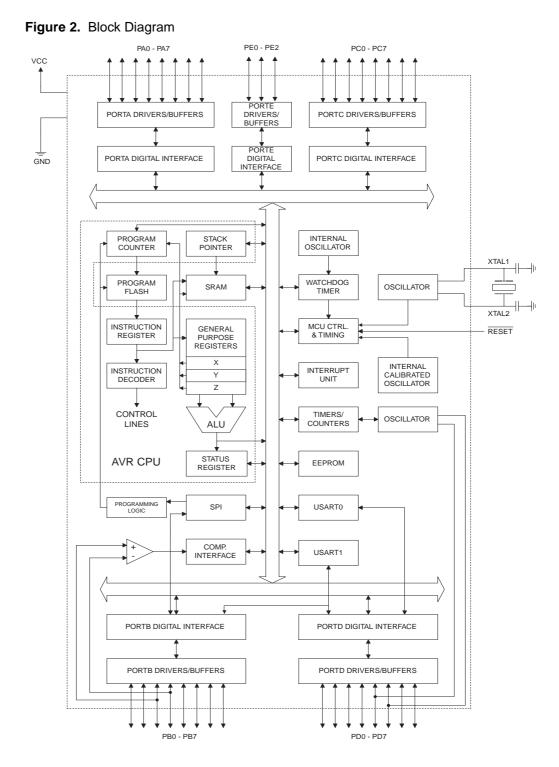
Summary



Rev. 2513CS-AVR-09/02

Pin Configurations

Figure 1. Pinout ATmega162


Disclaimer

Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

Overview

Block Diagram

The ATmega162 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega162 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega162 provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1K bytes SRAM, an external memory interface, 35 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, four flexible Timer/Counters with compare modes, internal and external interrupts, two serial programmable USARTs, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot Program running on the AVR core. The Boot Program can use any interface to download the Application Program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega162 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega162 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators, and evaluation kits.

ATmega161 and The ATmeg ATmega162 supersedes Compatibility ward compa the same lo Extended I/ space). The instructions

The ATmega162 is a highly complex microcontroller where the number of I/O locations supersedes the 64 I/O locations reserved in the AVR instruction set. To ensure backward compatibility with the ATmega161, all I/O locations present in ATmega161 have the same locations in ATmega162. Some additional I/O locations are added in an Extended I/O space starting from 0x60 to 0xFF, (i.e., in the ATmega162 internal RAM space). These locations can be reached by using LD/LDS/LDD and ST/STS/STD instructions only, not by using IN and OUT instructions. The relocation of the internal RAM space may still be a problem for ATmega161 users. Also, the increased number of Interrupt Vectors might be a problem if the code uses absolute addresses. To solve these problems, an ATmega161 compatibility mode can be selected by programming the fuse M161C. In this mode, none of the functions in the Extended I/O space are in use, so the internal RAM is located as in ATmega161. Also, the Extended Interrupt Vectors are removed. The ATmega162 is 100% pin compatible with ATmega161, and can replace the ATmega161 on current Printed Circuit Boards. However, the location of Fuse bits and the electrical characteristics differs between the two devices.

ATmega161 Compatibility Mode	 Programming the M161C will change the following functionality: The extended I/O map will be configured as internal RAM once the M161C Fuse is
	 programmed. The timed sequence for changing the Watchdog Time-out period is disabled. See "Timed Sequences for Changing the Configuration of the Watchdog Timer" on page 55 for details.
	 The double buffering of the USART Receive Registers is disabled. See "AVR USART vs. AVR UART – Compatibility" on page 166 for details.
	 Pin change interrupts are not supported (Contol Registers are located in Extended I/O).
	• One 16 bits Timer/Counter (Timer/Counter1) only. Timer/Counter3 is not accessible.
	Note that the shared UBRRHI Register in ATmega161 is split into two separate registers in ATmega162, UBRR0H and UBRR1H. The location of these registers will not be affected by the ATmega161 compatibility fuse.
Pin Descriptions	
vcc	Digital supply voltage
GND	Ground
Port A (PA7PA0)	Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.
	Port A also serves the functions of various special features of the ATmega162 as listed on page 71.
Port B (PB7PB0)	Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
	Port B also serves the functions of various special features of the ATmega162 as listed on page 71.
Port C (PC7PC0)	Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PC7(TDI), PC5(TMS) and PC4(TCK) will be activated even if a Reset occurs.
	Port C also serves the functions of the JTAG interface and other special features of the ATmega162 as listed on page 74.

Port D (PD7PD0)	Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
	Port D also serves the functions of various special features of the ATmega162 as listed on page 77.
Port E(PE2PE0)	Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.
	Port E also serves the functions of various special features of the ATmega162 as listed on page 80.
RESET	Reset input. A low level on this pin for longer than the minimum pulse length will gener- ate a Reset, even if the clock is not running. The minimum pulse length is given in Table 18 on page 47. Shorter pulses are not guaranteed to generate a reset.
XTAL1	Input to the Inverting Oscillator amplifier and input to the internal clock operating circuit.
XTAL2	Output from the Inverting Oscillator amplifier.
About Code Examples	This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

AIMEL

ATmega162 Typical Characteristics – Preliminary Data

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with railto-rail output is used as clock source. The CKSEL Fuses are programmed to select external clock.

The power consumption in Power-down mode is independent of clock selection.

The current consumption is a function of several factors such as: Operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as $C_L^*V_{CC}^*f$ where C_L = load capacitance, V_{CC} = operating voltage and f = average switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	_	_	_	_	_	_	_	
	Reserved	_	_	_	_	_	_	_	_	
(0x9E)	Reserved	-	-	-	-			-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-			-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	_	_	_	_	_	_	_	_	
(0x8E)	Reserved	_	_	_	_	_	_	_	_	
(0x8D)	Reserved	_	_	_	_	_	_	_	_	
(0x8C)	Reserved	_							_	
(0x8C) (0x8B)	TCCR3A	COM3A1	COM3A0	COM3B1	COM3B0	FOC3A	FOC3B	- WGM31	- WGM30	130
						WGM32				
(0x8A)	TCCR3B	ICNC3	ICES3		WGM33		CS32	CS31	CS30	127
(0x89)	TCNT3H					unter Register Hig				132
(0x88)	TCNT3L					unter Register Lo				132
(0x87)	OCR3AH					ompare Register	0)			132
(0x86)	OCR3AL					Compare Register				132
(0x85)	OCR3BH					ompare Register				132
(0x84)	OCR3BL			Timer/Co	unter3 – Output C	compare Register	B Low Byte			132
(0x83)	Reserved	-	_	-	_	-	-	-	-	
(0x82)	Reserved	-	-	-	-	-	-	-	-	
(0x81)	ICR3H			Timer/C	Counter3 – Input (Capture Register	High Byte			133
(0x80)	ICR3L			Timer/0	Counter3 – Input	Capture Register	Low Byte			133
(0x7F)	Reserved	-	-	-	-	-	-	-	-	
(0x7E)	Reserved	-	-	-	-	-	-	-	-	
(0x7D)	ETIMSK	-	-	TICIE3	OCIE3A	OCIE3B	TOIE3	-	-	134
(0x7C)	ETIFR	-	-	ICF3	OCF3A	OCF3B	TOV3	-	-	135
(0x7B)	Reserved	-	-	-	-	-	-	-	-	
(0x7A)	Reserved	_	_	_	_	_	_	_	_	
(0x79)	Reserved	-	-	_	-	_	_	-	-	
(0x78)	Reserved	_	_	_	_	_	_	_	_	
(0x77)	Reserved	_	-	_	_	_	_	_	_	
(0x76)	Reserved									
(0x76) (0x75)	Reserved		_		_	_	_	_		
(0x75) (0x74)	Reserved	_	_	_	_	_	_	_	_	
· · · · · ·		_	_		_	_	_	_	_	
(0x73)	Reserved	-	-	-	-	-	-	-	-	
(0x72)	Reserved									
(0x71)	Reserved	-	-	-	_	-	-	-	-	
(0x70)	Reserved	-	-	-	-	-	-	-	-	
(0x6F)	Reserved	-	-	-	-	-	-	-	-	
(0x6E)	Reserved	-	-	-	-	-	-	-	-	
(0x6D)	Reserved	-	-	-	-	-	-	-	-	
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	87
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	87
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	Reserved	-	-	-	-	-	-	-	-	
(0x68)	Reserved	-	-	-	-	-	-	-	-	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	Reserved	-	-	-	-	-	-	-	-	
(0x65)	Reserved	-	-	-	-	-	-	-	-	
(0x64)	Reserved	-	-	-	-	-	-	-	-	ĺ
(0x63)	Reserved	_	_	_	_	_	_	_	_	[
(0x62)	Reserved	_	_	_	_	_	_	_	_	
(0x61)	CLKPR	CLKPCE	_	_	_	CLKPS3	CLKPS2	CLKPS1	CLKPS0	40
(0,01)		OLIVI OL				02101 000	OLIVI OZ	OLIVI OT	5LN 50	

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x60)	Reserved	-	-	-	-	-	-	-	-	
0x3F (0x5F)	SREG	I	Т	Н	S	V	Ν	Z	С	8
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	11
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	11
0x3C ⁽²⁾ (0x5C) ⁽²⁾	UBRR1H	URSEL1					UBRI	R1[11:8]		188
	UCSR1C	URSEL1	UMSEL1	UPM11	UPM10	USBS1	UCSZ11	UCSZ10	UCPOL1	187
0x3B (0x5B)	GICR	INT1	INT0	INT2	PCIE1	PCIE0	-	IVSEL	IVCE	60, 85
0x3A (0x5A)	GIFR	INTF1	INTF0	INTF2	PCIF1	PCIF0	-	-	-	86
0x39 (0x59)	TIMSK	TOIE1	OCIE1A	OCIE1B	OCIE2	TICIE1	TOIE2	TOIE0	OCIE0	101, 133, 153
0x38 (0x58)	TIFR	TOV1	OCF1A	OCF1B	OCF2	ICF1	TOV2	TOV0	OCF0	102, 135, 154
0x37 (0x57)	SPMCR	SPMIE	RWWSB	-	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	219
0x36 (0x56)	EMCUCR	SM0	SRL2	SRL1	SRL0	SRW01	SRW00	SRW11	ISC2	28,43,84
0x35 (0x55)	MCUCR	SRE	SRW10	SE	SM1	ISC11	ISC10	ISC01	ISC00	28,42,83
0x34 (0x54)	MCUCSR	JTD	-	SM2	JTRF	WDRF	BORF	EXTRF	PORF	42,50,205
0x33 (0x53)	TCCR0	FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00	99
0x32 (0x52)	TCNT0					inter0 (8 Bits)	• .			101
0x31 (0x51)	OCR0	7014	VADV		mer/Counter0 Out	i		2020	505040	101
0x30 (0x50)	SFIOR	TSM	XMBK	XMM2	XMM1	XMM0	PUD	PSR2	PSR310	31,69,104,155
0x2F (0x4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10	127
0x2E (0x4E)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	130
0x2D (0x4D)	TCNT1H				er/Counter1 – Co					132
0x2C (0x4C) 0x2B (0x4B)	TCNT1L OCR1AH				er/Counter1 – Co unter1 – Output C		•			132 132
0x2A (0x4A)	OCR1AL				unter1 – Output C					132
0x2A (0x4A) 0x29 (0x49)	OCR1AL OCR1BH				unter1 – Output C					132
0x29 (0x49) 0x28 (0x48)	OCR1BL				unter1 – Output C unter1 – Output C	1 0	0)			132
0x27 (0x47)	TCCR2	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	148
0x26 (0x46)	ASSR	-	-	-	-	AS2	TCON2UB	OCR2UB	TCR2UB	151
0x25 (0x45)	ICR1H	_	_		Counter1 – Input (OCINZOB	TCR20B	133
0x24 (0x44)	ICR1L				Counter1 - Input		* '			133
0x23 (0x43)	TCNT2			Timer/		inter2 (8 Bits)	Low Dyte			150
0x22 (0x42)	OCR2			Ti	mer/Counter2 Out	. ,	aister			150
0x21 (0x41)	WDTCR	_	-	_	WDCE	WDE	WDP2	WDP1	WDP0	52
	UBRR0H	URSEL0	_	_	_			R0[11:8]		188
0x20 ⁽²⁾ (0x40) ⁽²⁾	UCSR0C	URSEL0	UMSEL0	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOL0	187
0x1F (0x3F)	EEARH	_	_	_	-	_	_	_	EEAR8	18
0x1E (0x3E)	EEARL				EEPROM Addres	s Register Low B	vte			18
0x1D (0x3D)	EEDR					Data Register				19
0x1C (0x3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	19
0x1B (0x3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	81
0x1A (0x3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	81
0x19 (0x39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	81
0x18 (0x38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	81
0x17 (0x37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	81
0x16 (0x36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	81
0x15 (0x35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	81
0x14 (0x34)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	81
0x13 (0x33)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	82
0x12 (0x32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	82
0x11 (0x31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	82
0x10 (0x30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	82
0x0F (0x2F)	SPDR				SPI Da	ta Register				162
0x0E (0x2E)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	162
0x0D (0x2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	160
0x0C (0x2C)	UDR0				USART0 I/C	Data Register				184
0x0B (0x2B)	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	184
0x0A (0x2A)	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	185
0x09 (0x29)	UBRR0L		I		USART0 Baud Ra	te Register Low		I		188
0x08 (0x28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	193
0x07 (0x27)	PORTE	-	-	-	-	-	PORTE2	PORTE1	PORTE0	82
0x06 (0x26)	DDRE	-	-	-	-	-	DDE2	DDE1	DDE0	82
0x05 (0x25)	PINE	-	-	-	-	-	PINE2	PINE1	PINE0	82
x04 ⁽¹⁾ (0x24) ⁽¹⁾	OSCCAL				Oscillator Cal	ibration Register				38
(UX24)`'	OCDR				On-chip De	ebug Register				200
	UDR1	1			USART1 I/C	Data Register				184
0x03 (0x23)	UDRI	RXC1	TXC1	UDRE1			UPE1	U2X1		184

			-	-		-		-	-	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x01 (0x21)	UCSR1B	RXCIE1	TXCIE1	UDRIE1	RXEN1	TXEN1	UCSZ12	RXB81	TXB81	185
0x00 (0x20)	UBRR1L			L	JSART1 Baud Ra	te Register Low E	Byte			188

Notes: 1. When the OCDEN Fuse is unprogrammed, the OSCCAL Register is always accessed on this address. Refer to the debugger specific documentation for details on how to use the OCDR Register.

2. Refer to the USART description for details on how to access UBRRH and UCSRC.

3. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

4. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.

Instruction Set Summary

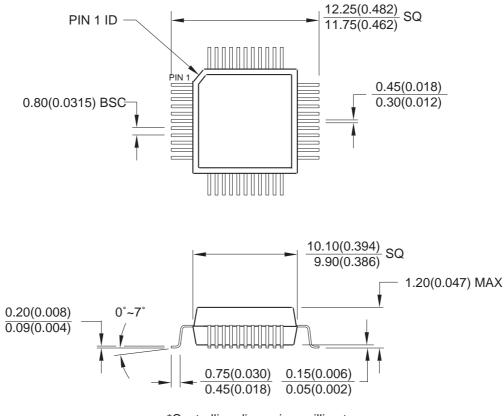
Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTION	8			
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \gets Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	$Rdh:\!Rdl \gets Rdh:\!Rdl + K$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$Rd \leftarrow Rd - Rr$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \gets Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \gets Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \gets Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd v Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	$Rd \leftarrow 0x00 - Rd$	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR INC	Rd,K Rd	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$ $Rd \leftarrow Rd + 1$	Z,N,V Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \bullet Rd$ $Rd \leftarrow Rd \oplus Rd$	Z,N,V Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd x Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd x Rr) << 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd x Rr) << 1$	Z,C	2
BRANCH INSTRUC		The solution and the solution of the solution		2,0	-
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
JMP	k	Direct Jump	$PC \leftarrow k$	None	3
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
CALL	k	Direct Subroutine Call	$PC \leftarrow k$	None	4
RET		Subroutine Return	$PC \gets STACK$	None	4
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if (Rr(b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then $PC \leftarrow PC+k+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then $PC \leftarrow PC+k+1$	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then PC \leftarrow PC + k + 1 if $(C = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRCS	k k	Branch if Carry Set Branch if Carry Cleared	if (C = 1) then PC \leftarrow PC + k + 1 if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k		if (C = 0) then PC \leftarrow PC + k + 1 if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH BRLO	k k	Branch if Same or Higher Branch if Lower	if (C = 0) then PC \leftarrow PC + k + 1 if (C = 1) then PC \leftarrow PC + k + 1	None None	1/2 1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1 if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRUT	k	Branch if Less Than Zero, Signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
	, ···				

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
DATA TRANSFER	RINSTRUCTIONS	1			
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+ Rd, - X	Load Indirect and Post-Inc. Load Indirect and Pre-Dec.	$Rd \leftarrow (X), X \leftarrow X + 1$ $X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$\begin{array}{c} \land \leftarrow \land - 1, \ Ku \leftarrow (\land) \\ Rd \leftarrow (Y) \end{array}$	None None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST ST	Y+, Rr - Y, Rr	Store Indirect and Post-Inc. Store Indirect and Pre-Dec.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None None	2
STD	Y+q,Rr	Store Indirect with Displacement	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Y + q) \leftarrow Rr$ $(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
IN	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push Register on Stack		None	2
POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
_		Set Dit in I/O Descistor		Neza	2
SBI CBI	P,b P,b	Set Bit in I/O Register Clear Bit in I/O Register	$I/O(P,b) \leftarrow 1$ $I/O(P,b) \leftarrow 0$	None None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC SEN		Clear Carry Set Negative Flag	$C \leftarrow 0$	C N	1
			$N \leftarrow 1$	N	
CLN SEZ		Clear Negative Flag Set Zero Flag	$N \leftarrow 0$ $Z \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	1 ← 1	-	1
CLI		Global Interrupt Disable	1 ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
01 T		Clear T in SREG	$T \leftarrow 0$	Т	1
CLT SEH		Set Half Carry Flag in SREG	H ← 1	Н	1

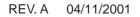
Mnemonics	Operands	Description	Operation	Flags	#Clocks
CLH		Clear Half Carry Flag in SREG	$H \leftarrow 0$	Н	1
MCU CONTROL IN	ISTRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/Timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
1	1.8 - 3.6V	ATmega162V-1AC ATmega162V-1PC ATmega162V-1MC	44A 40P6 44M1	Commercial (0°C to 70°C)
8	2.4 - 4.0V	ATmega162U-8AC ATmega162U-8PC ATmega162U-8MC	44A 40P6 44M1	Commercial (0°C to 70°C)
8	2.7 - 5.5V	ATmega162L-8AC ATmega162L-8PC ATmega162L-8MC	44A 40P6 44M1	Commercial (0°C to 70°C)
		ATmega162L-8AI ATmega162L-8PI ATmega162L-8MI	44A 40P6 44M1	Industrial (-40°C to 85°C)
16	4.5 - 5.5V	ATmega162-16AC ATmega162-16PC ATmega162-16MC	44A 40P6 44M1	Commercial (0°C to 70°C)
		ATmega162-16AI ATmega162-16PI ATmega162-16MI	44A 40P6 44M1	Industrial (-40°C to 85°C)


Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

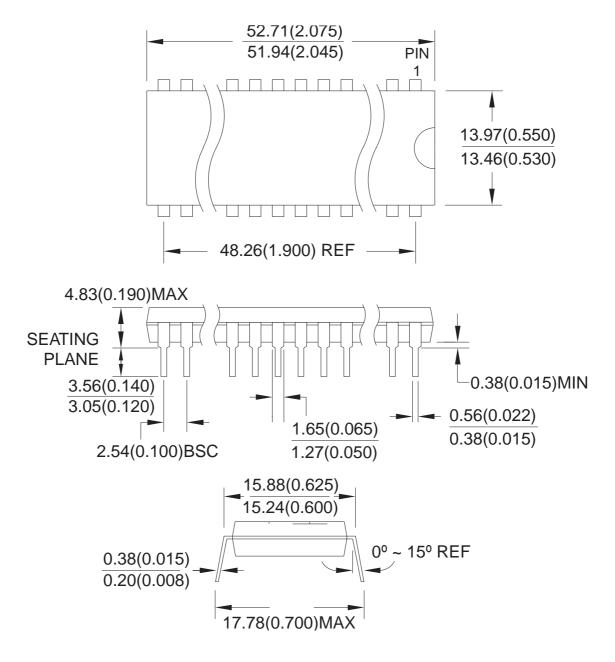
	Package Type
44A	44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
40P6	40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)
44M1	44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Micro Lead Frame Package (MLF)


Packaging Information

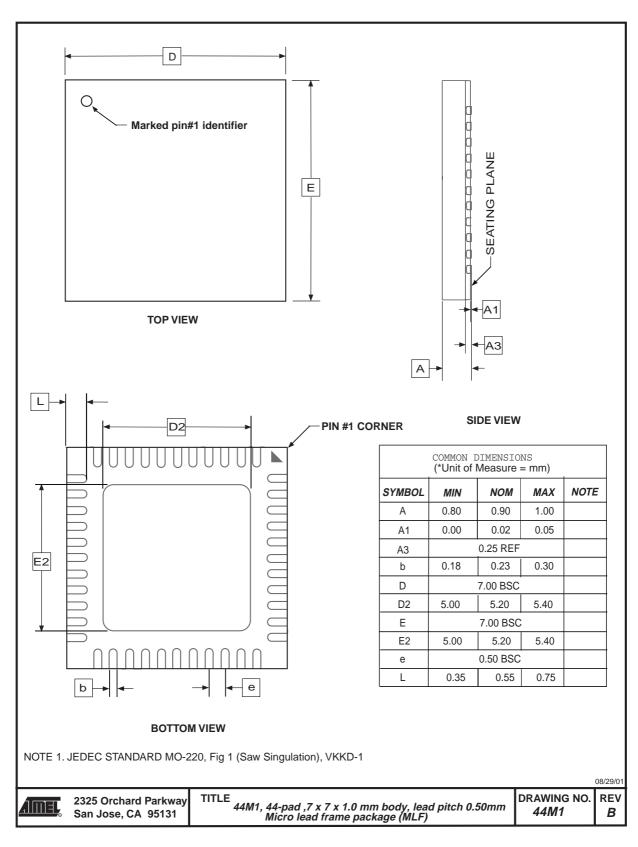
44A

44-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP), 10x10mm body, 2.0mm footprint, 0.8mm pitch. Dimension in Millimeters and (Inches)* JEDEC STANDARD MS-026 ACB

*Controlling dimension: millimeter



40P6


40-lead, Plastic Dual Inline Package (PDIP), 0.600" wide Dimension in Millimeters and (Inches)* JEDEC STANDARD MS-011 AC

*Controlling dimension: Inches

REV. A 04/11/2001

Data Sheet Change Log for ATmega162

Changes from Rev. 2513A-05/02 to Rev. 2513B-09/02

Changes from Rev. 2513B-09/02 to Rev. 2513C-09/02 Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

1. Added information for ATmega162U.

Information about ATmega162U included in "Features" on page 1, Table 19, "BODLEVEL Fuse Coding," on page 49, and "Ordering Information" on page 14.

1. Canged the Endurance on the Flash to 10,000 Write/Erase Cycles.

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

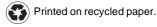
Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743 **RF**/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail literature@atmel.com


Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL®, AVR®, and AVR Studio® are the registered trademarks of Atmel.

Microsoft[®], Windows[®], and Windows NT[®] are trademarks of Microsoft Corporation.

Other terms and product names may be the trademarks of others.

0M