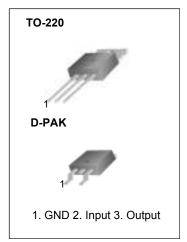
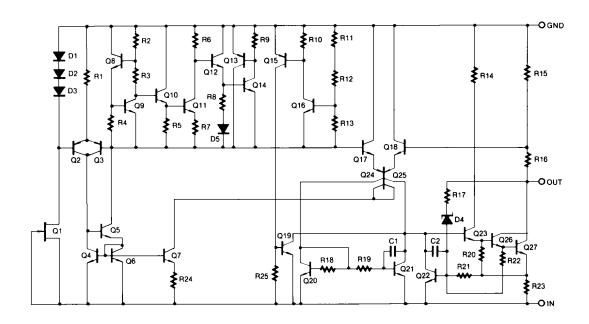
KA79MXX/LM79M05


3-Terminal 0.5A Negative Voltage Regulator

Features


- No external components required
- Output current in excess of 0.5A
- · Internal thermal overload
- Internal short circuit current limiting
- Output transistor safe area compensation
- Output voltages of -5V,-6V,-8V, -12V,-15V,-18V,-24V

Description

The KA79MXX series and LM79M05 are of 3-Terminal medium current negative voltage regulators are monolithic integrated circuits designed as fixed voltage regulators. These regulators employ internal current limiting, thermal shutdown and safe area compensation making them essentially indestructible.

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage(for VO = -5V to -18V)	VI	-35	V
(for VO = -24V)	VI	-40	V
Thermal Resistance Junction-Cases	RθJC	5	°C /W
Thermal Resistance Junction-Air	RθJA	65	°C /W
Operating Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +125	°C

Electrical Characteristics

(KA79M05/KA79M05R/LM79M05)

(Refer to test circuit, 0 $^{\circ}C \leq T_{J \leq +125} \circ C$, IO =350mA, VI =-10V,unless otherwise specified, CI =0.33 \propto F,CO=0.1 \propto F)

Parameter	Symbol	Con	ditions	Min.	Тур.	Max.	Unit		
		TJ= +25 °C		TJ= +25 °C		-4.8	-5	-5.2	
Output Voltage	Vo		IO = 5mA to 350mA VI = -V7 to -25V		-5	-5.25	V		
Line Regulation (Note1)	ΔVΟ	TJ =+25°C	VI= -7V to -25V	-	7.0	50	mV		
Line Regulation (Note 1)	1 200	13 = 123 0	VI= -8V to -25V	-	2.0	30	1110		
Load Regulation (Note1)	ΔVΟ	IO = 5mA to 500mA TJ = +25 °C		-	30	100	mV		
Quiescent Current	IQ	TJ= +25 °C-			3. 0	6. 0	mA		
		IO = 5mA to 35	50mA	-	-	0.4			
Quiescent Current Change	ΔIQ	IO = 200mA VI = -8V to -25V		0		.4	mA		
Output Voltage Drift	ΔVο/ΔΤΙΟ	= 5mA		-	-0.2	-	mV/ °C		
Output Noise Voltage	VN	f = 10Hz, 100k TA = +25 °C	f = 10Hz, 100KHz TA = +25 °C		0- ∝	V			
Ripple Rejection	RR	f = 120Hz VJ= -8Vto -18V		54	60	-	dB		
Dropout Voltage	VD	TJ =+25 °C, IO = 500mA		-	1.1	-	V		
Short Circuit Current	ISC	TJ= +25 °C, VI = -35V		-	140	-	mA		
Peak Current	IPK	TJ= +25 °C		-	650	-	mA		

Note:

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

Electrical Characteristics (KA79M06)

(Refer to test circuit, 0 $\,^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125\,^{\circ}\text{C}$, IO =350mA, VI = -11V,unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit		
		TJ= +25 °C		TJ= +25 °C		- 5.75	- 6.0	- 6.25	
Output Voltage	Vo	IO = 5mA to 3					V		
		VI = -8.0V to	-25V	- 5.7	- 6.0	- 6.3			
Line Regulation (Note1)	ΔVΟ	TJ =+25°C	VI = -8Vto -25V	-	7.0	60	mV		
Line regulation (Note 1)	1	13 = +25 C	VI = -9V to -19V	-	2.0	40	IIIV		
Load Regulation (Note1)	ΔVΟ	TJ= +25 °CIC	= 5.0mA to 500mA	-	30	120	mV		
Quiescent Current	IQ	TJ= +25 °C-			3	6	mA		
Quiescent Current Change	ΔIQ	IO = 5mA to 350mA		-	-	0.4			
Quiescent Current Change	Ді	VI = -8V to -2	25V	-	-	0.4	mA		
Output Voltage Drift	ΔVΟ/ΔΤΙ) = 5mA		-	0.4	-	mV/ °C		
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,TA = +25 °C-5		0-∞	V			
Ripple Rejection	RR	f = 120Hz,VI = -9V to -19V		54	60	-	dB		
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C-			1.1	-	V		
Short Circuit Current	ISC	VI = -35V, TJ = +25 °C		-	140	-	mA		
Peak Current	IPK	TJ= +25 °C		-	650	-	mA		

Note:

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

Electrical Characteristics (KA79M08/KA79M08R)

(Refer to test circuit, 0 $\,^{\circ}$ C \leq T $_{J} \leq$ +125 $\,^{\circ}$ C, IO =350mA, VI = -14V,unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit	
		TJ= +25 °C		- 7.7	- 8.0	- 8.3		
Output Voltage	Vo	IO = 5mA to 3	350mA				V	
		VI = -10.5V to	o -25V	- 7.6	- 8.0	- 8.4		
Line Regulation (Note1)	ΔVΟ	TJ =+25°C	VI = -10.5V to -25V	-	7.0	80	m\/	
Line Regulation (Note 1)	400	13 = 123 C	VI = -11V to -21V	-	2.0	50	mV	
Load Regulation (Note1)	ΔVΟ	TJ= +25 °CIC	= 5.0mA to 500mA	-	30	160	mV	
Quiescent Current	IQ	TJ= +25 °C-			3	6	mA	
Quiescent Current Change	ΔIQ	IO = 5mA to 3	350mA	-	-	0.4		
Quiescent Current Change	Ді	VI = -8V to -2	25V	-	-	0.4	mA	
Output Voltage Drift	ΔVΟ/ΔΤΙ) = 5mA		-	-0.6	-	mV/ °C	
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,TA = +25 °C-6		0-∞	V		
Ripple Rejection	RR	f = 120Hz,VI = -9V to -19V		54	59	-	dB	
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C-			1.1	-	V	
Short Circuit Current	ISC	VI = -35V, TJ = +25 °C		-	140	-	mA	
Peak Current	IPK	TJ = +25 °C		-	650	-	mA	

Note:

1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

Electrical Characteristics (KA79M12)

(Refer to test circuit, 0 $\,^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125\,^{\circ}\text{C}$, IO =350mA, VI = -19V,unless otherwise specified)

Parameter	Symbol	C	onditions	Min.	Тур.	Max.	Unit		
		TJ= +25 °C		TJ= +25 °C		-11.5	-12	-12.5	
Output Voltage	Vo	IO = 5mA to 3					V		
		VI = -14.5V to	o -30V	-11.4	-12	-12.6			
Line Regulation (Note1)	ΔVΟ	TJ =+25°C	VI = -14.5V to -30V	-	8.0	80	mV		
Line regulation (Note 1)	1	13 = +25 C	VI = -15V to -25V	-	3.0	50	1117		
Load Regulation (Note1)	ΔVΟ	TJ= +25 °CIC	= 5.0mA to 500mA	-	30	240	mV		
Quiescent Current	IQ	TJ= +25 °C-			3	6	mA		
Quiescent Current Change	ΔIQ	IO = 5mA to 350mA		-	-	0.4			
Quiescent Current Change	ДіQ	VI = -14.5V to	o -30V	-	-	0.4	mA		
Output Voltage Drift	ΔVΟ/ΔΤΙ) = 5mA		-	-0.8	-	mV/ °C		
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,TA =+25 °C-7		5-∞	V			
Ripple Rejection	RR	f = 120Hz,VI = -15V to -25V		54	60	-	dB		
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C-			1.1	-	V		
Short Circuit Current	ISC	VI = -35V, TJ = +25 °C		-	140	-	mA		
Peak Current	IPK	TJ= +25 °C		-	650	-	mA		

Note:

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

Electrical Characteristics (KA79M15)

(Refer to test circuit, 0 $\,^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125\,^{\circ}\text{C}$, IO =350mA, VI = -23V,unless otherwise specified)

Parameter	Symbol	C	onditions	Min.	Тур.	Max.	Unit
		TJ= +25 °C		- 14.4	- 15	- 15.6	
Output Voltage	Vo		IO = 5mA to 350mA VI = -17.5V to -30V		- 15	-15.75	V
Line Regulation (Note1)	ΔVΟ	TJ =+25°C	VI = -17.5Vto -30V	-	9.0	80	mV
Line Regulation (Note 1)	AVO	13 = 123 C	VI = -18V to -28V	-	5.0	50	1110
Load Regulation (Note1)	ΔVΟ	TJ= +25 °CIC	= 5.0mA to 500mA	-	30	240	mV
Quiescent Current	IQ	TJ= +25 °C-			3	6	mA
Quiescent Current Change	ΔIQ	IO = 5mA to 3	350mA	-	-	0.4	
Quiescent Current Change	ДIQ	VI = -17.5V to	o -28V	-	-	0.4	mA
Output Voltage Drift	ΔVΟ/ΔΤΙ) = 5mA		-	-1.0	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,TA = +25 °C-9		0-∞'	/	
Ripple Rejection	RR	f = 120Hz,VI	= -18.5V to -28.5V	54	59	-	dB
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C-			1.1	-	V
Short Circuit Current	ISC	VI = -35V, TJ = +25 °C		-	140	-	mA
Peak Current	IPK	TJ= +25 °C		-	650	-	mA

Note:

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

Electrical Characteristics (KA79M18)

(Refer to test circuit, 0 $^{\circ}$ C $^{\leq}$ T $_{J} \leq$ +125 $^{\circ}$ C, IO =350mA, VI = -27V,unless otherwise specified)

Parameter	Symbol	C	Conditions		Тур.	Max.	Unit
		TJ= +25 °C		- 17.3	- 18	- 18.7	
Output Voltage	Vo	IO = 5mA to 3 VI = -21V to -		- 17.1	- 18	- 18.9	V
Line Regulation (Note1)	ΔVΟ	TJ =+25°C	VI = -21V to -33V	-	9.0	80	mV
Line Negulation (Note I)	AVO	13 = 123 C	VI = -24V to -30V	-	5.0	80	IIIV
Load Regulation (Note1)	ΔVΟ	TJ= +25 °CIC	= 5.0mA to 500mA	-	30	360	mV
Quiescent Current	IQ	TJ= +25 °C-			3	6	mA
Quiescent Current Change	ΔIQ	IO = 5mA to 350mA		-	-	0.4	
Quiescent Current Change	ΔIQ	VI = -21V to -	-33V	-	-	0.4	mA
Output Voltage Drift	ΔVΟ/ΔΤΙ) = 5mA		-	-1.0	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,TA = +25 °C-1		10-∝	V	
Ripple Rejection	RR	f = 120Hz,VI	f = 120Hz,VI = -22V to -32V		59	-	dB
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C-			1.1	-	V
Short Circuit Current	ISC	VI = -35V, TJ = +25 °C		-	140	-	mA
Peak Current	IPK	TJ= +25 °C		-	650	-	mA

Note;

^{1.} Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

Electrical Characteristics (KA79M24)

(Refer to test circuit, 0 $\,^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq +125\,^{\circ}\text{C}$, IO =350mA, VI = -33V,unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Unit		
		TJ= +25 °C		TJ= +25 °C		- 23	- 24	- 25	
Output Voltage	Vo		IO = 5mA to 350mA VI = -27V to -38V		- 24	- 25.2	V		
Line Regulation (Note1)	ΔVΟ	TJ =+25°C	VI = -27V to -38V	-	9.0	80	mV		
Line Regulation (Note I)	400	13 = 123 C	VI = -30V to -36V	-	5.0	70	IIIV		
Load Regulation (Note1)	ΔVΟ	TJ= +25 °CIC	= 5.0mA to 500mA	-	30	300	mV		
Quiescent Current	IQ	TJ= +25 °C-			3	6	mA		
Quiescent Current Change	ΔIQ	IO = 5mA to 3	350mA	-	-	0.4			
Quiescent Current Change	ΔIQ	VI = -27V to	-38V	-	-	0.4	mA		
Output Voltage Drift	ΔVΟ/ΔΤΙ) = 5mA		-	-1.0	-	mV/ °C		
Output Noise Voltage	VN	f = 10Hz to 1	00KHz,TA = +25 °C	-	180	-	ωV		
Ripple Rejection	RR	f = 120Hz,VI = -28V to -38V		54	58	-	dB		
Dropout Voltage	VD	IO = 500mA, TJ = +25 °C-			1.1	-	V		
Short Circuit Current	ISC	VI = -35V, TJ = +25 °C		-	140	-	mA		
Peak Current	IPK	TJ= +25 °C		-	650	-	mA		

Note:

1. Load and line regulation are specified at constant junction temperature. Change in VO due to heating effects must be taken

Typical Applications

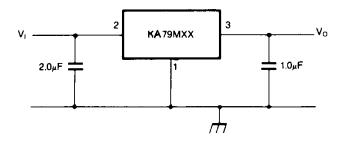


Figure 1. Fixed Output Regulator

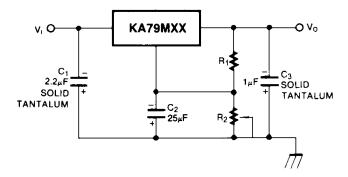
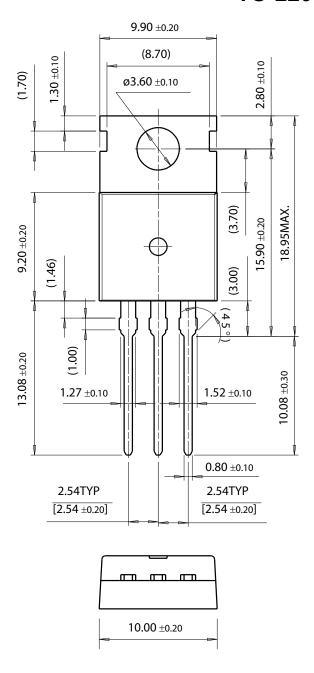
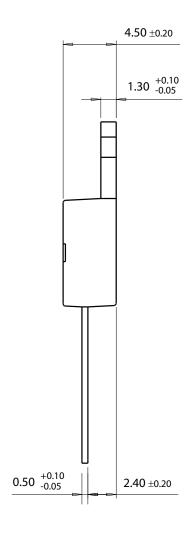


Figure 2. Variable Output

Notes:

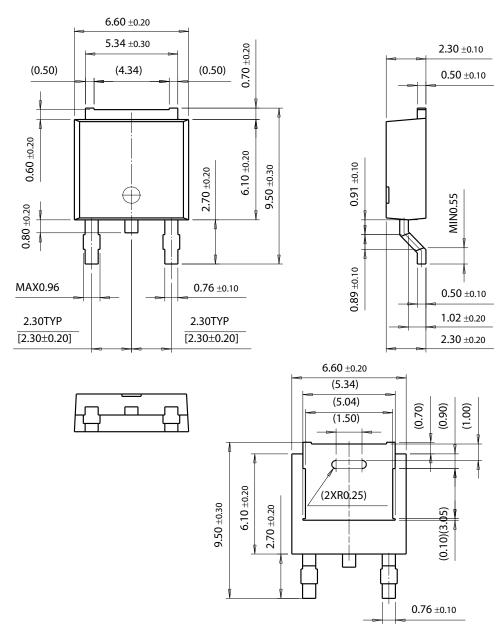

- 1. Required for stability. For value given, capacitor must be solid tantalum. 25 ∞F aluminum electrolytic may be substituted.
- 2. C2 improves transient response and ripple rejection. Do not increase beyond 50∞F.


Mechanical Dimensions

Package

Dimensions in millimeters

TO-220



Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

D-PAK

Ordering Information

Product Number	Package	Operating Temperature
KA79M05		
KA79M06		
KA79M08		
KA79M12	TO-220	
KA79M15		0 ~ + 125°C
KA79M18		0 ~ + 125 C
KA79M24		
LM79M05		
KA79M05R		
KA79M08R	D-PAK	
KA79M12R		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Qualification Support

Click on a product for detailed qualification data

Product KA79M15TU

back to top

Products & Samples | Applications | Design Support | Company About Fairchild Semiconductor | Contact Us | Investor Relations | Press Center | Careers | MyFairchild | Site Map® Copyright 2008 Fairchild Semiconductor Incorporated. All rights reserved. Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions of Sale

http://www.fairchildsemi.com/pf/KA/KA79M15.html