ON Semiconductor

Is Now

Onsemí

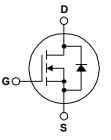
To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

ON Semiconductor®

FQD6N40C

N-Channel QFET[®] MOSFET 400 V, 4.5 A, 1.0 Ω


Features

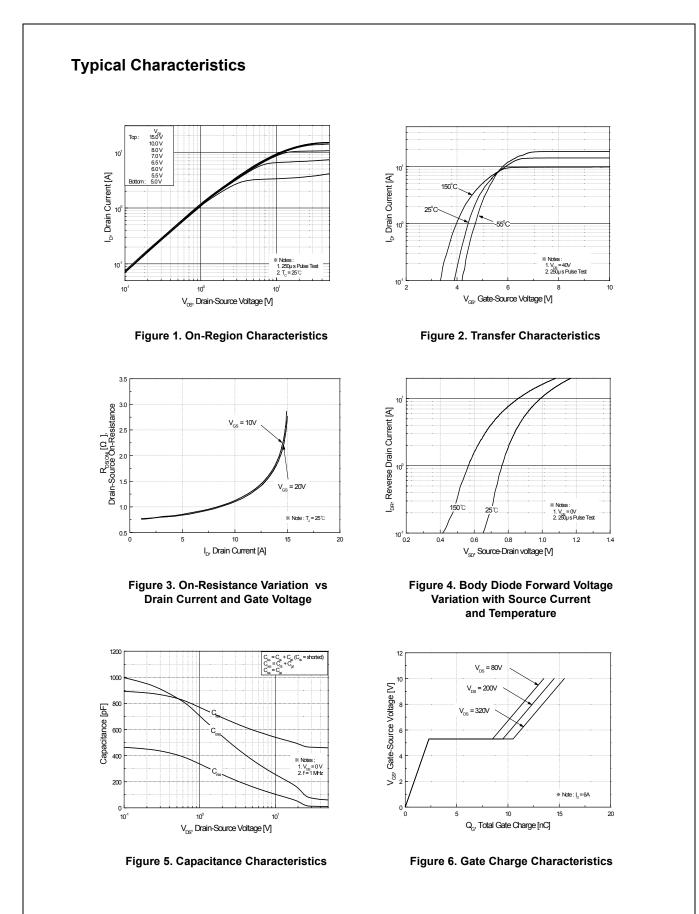
- 4.5 A, 400 V, $R_{DS(on)} = 1.0 \Omega$ (Max.) @V_{GS} = 10 V, $I_D = 2.25 A$
- Low Gate Charge (Typ. 16 nC)
- Low Crss (Typ. 15 pF)
- 100% Avalanche Tested

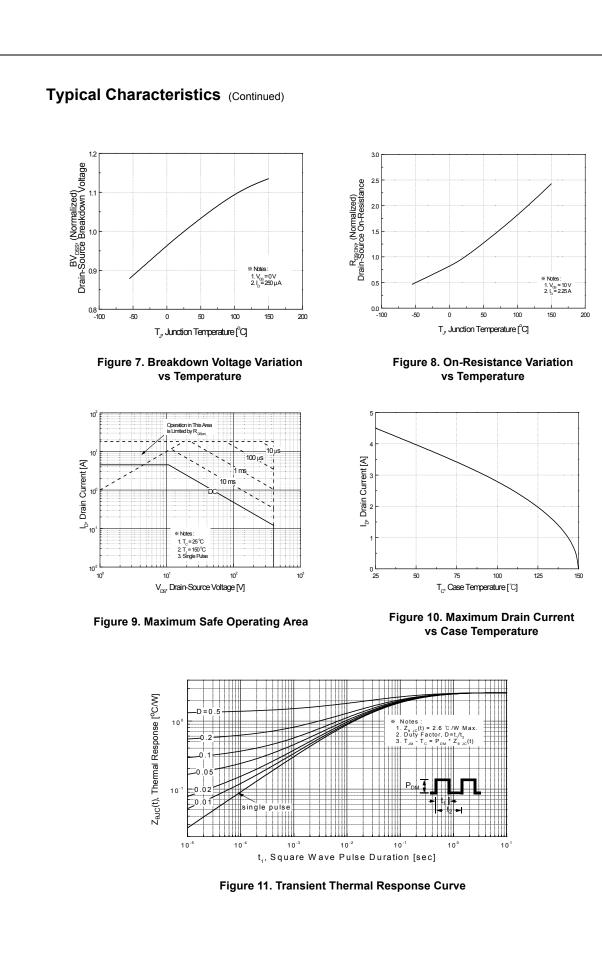
Description

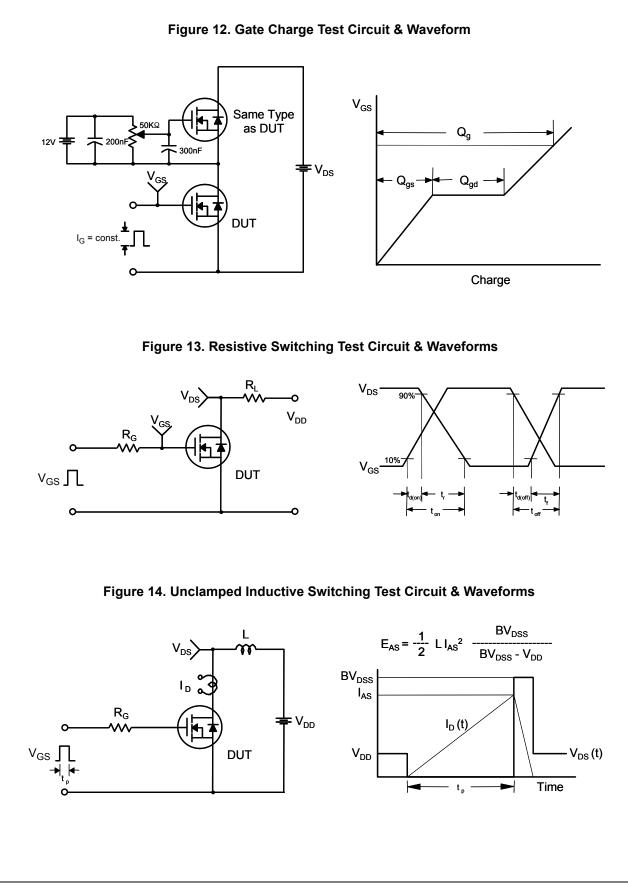
This N-Channel enhancement mode power MOSFET is produced using ON Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter	FQD6N40CTM	Unit		
V _{DSS}	Drain-Source Voltage		400	V	
I _D	Drain Current - Continuous ($T_c = 25^{\circ}C$)		4.5	А	
	- Continuous (T _C = 100°C)		2.7	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	18	А	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		270	mJ	
I _{AR}	Avalanche Current	(Note 1)	4.5	A	
E _{AR}	Repetitive Avalanche Energy (Note		4.8	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns	
	Power Dissipation (T _A = 25°C)*		2.5	W	
P _D	Power Dissipation ($T_C = 25^{\circ}C$)		48	W	
	- Derate above 25°C		0.38	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	


Thermal Characteristics


Symbol	Parameter	FQD6N40CTM	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	2.6	
P	Thermal Resistance, Junction-to-Ambient (minimum pad of 2 oz copper), Max.	110	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient (* 1 in ² pad of 2 oz copper), Max.	50	


Device Marking FQD6N40C		Device	Package	Reel Size	Tape Width 16 mm		Qua	ntity
		FQD6N40CTM	D-PAK	330 mm			2500 units	
lectric	cal Char	acteristics T _C = 25°C	Cunless otherwise	noted.				
Symbol	nbol Parameter		Test C	Min	Тур	Max	Unit	
Off Cha	racteristi	cs						
BV _{DSS}	Drain-Sour	ce Breakdown Voltage	$V_{GS} = 0 V, I_D = 2$	250 μΑ	400			V
ΔBV _{DSS} ΔTJ	Breakdown Coefficient	Voltage Temperature	I_D = 250 µA, Referenced to 25°C			0.54		V/°C
	Zero Gate Voltage Drain Current		V _{DS} = 400 V, V _G			1	μA	
DSS			V _{DS} = 320 V, T _C			10	μΑ	
GSSF	Gate-Body	Leakage Current, Forward	V _{GS} = 30 V, V _{DS}	= 0 V			100	nA
GSSR	Gate-Body	Leakage Current, Reverse	V_{GS} = -30 V, V_{DS} = 0 V				-100	nA
On Cha	racteristic	s						
/ _{GS(th)}	Gate Thres	hold Voltage	$V_{DS} = V_{GS}, I_D =$	250 μΑ	2.0		4.0	V
R _{DS(on)}	Static Drain On-Resista		V _{GS} = 10 V, I _D =	2.25A		0.83	1	Ω
FS	Forward Tra	ansconductance	V _{DS} = 40 V, I _D =	2.25A		4.7		S
Dynami	ic Charact	eristics		/				
Ciss	Input Capa	citance	V _{DS} = 25 V, V _{GS}	= 0 V.		480	625	pF
C _{oss}	Output Cap	acitance	f = 1.0 MHz	- /		80	105	pF
C _{rss}	Reverse Tra	ansfer Capacitance				15	20	pF
Switchi	ng Chara	cteristics						
d(on)	Turn-On De	elay Time	V _{DD} = 200 V, I _D	= 64		13	35	ns
r	Turn-On Ri	se Time	$R_{\rm G} = 25 \Omega$	vn,		65	140	ns
d(off)	Turn-Off De	elay Time				21	55	ns
f	Turn-Off Fa	II Time]	(Note 4)		38	85	ns
ζ ^g	Total Gate	Charge	V _{DS} = 320 V, I _D =	= 6A,		16	20	nC
ጋ _{gs}	Gate-Sourc	e Charge	V _{GS} = 10 V			2.3		nC
ຊ _{gd}	Gate-Drain	Charge		(Note 4)		8.2		nC
	ource Dic	de Characteristics a	nd Maximum F	Ratings				
S		num Continuous Drain-Source Diode Forward Current					4.5	Α
SM		Pulsed Drain-Source Diode F				18	Α	
/ _{SD}	Drain-Sour	ce Diode Forward Voltage	V_{GS} = 0 V, I_{S} = 4	4.5 A			1.4	V
rr		ecovery Time	$V_{GS} = 0 V, I_{S} = 0$	6 A,		230		ns
2 _{rr}	David and D	ecovery Charge	$dI_{\rm F} / dt = 100 {\rm A/s}$	16		1.7		μC

FQD6N40C — N-Channel QFET[®] MOSFET

2. L = 13.7 mH, I_{AS} = 6 A, V_{DD} = 50V, R_G = 25 Ω , starting T_J = 25°C. 3. I_{SD} ≤ 6A, di/dt ≤ 200A/µs, V_{DD} ≤ BV_{DSS}, starting T_J = 25°C. 4. Essentially independent of operating temperature.

www.onsemi.com 5

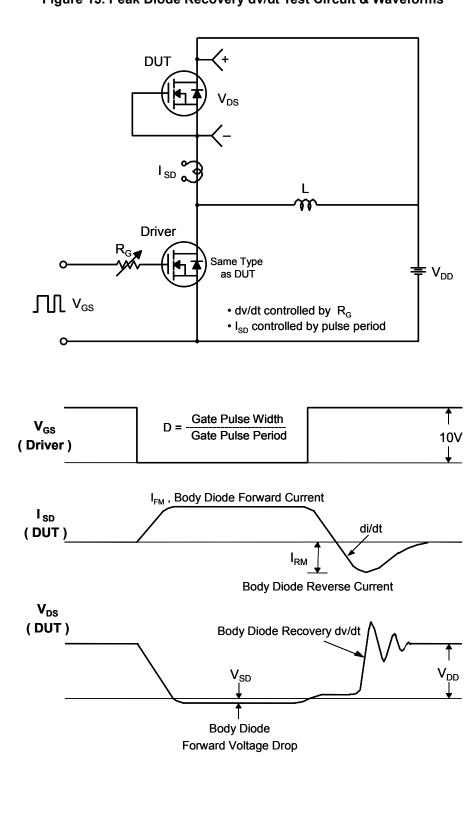
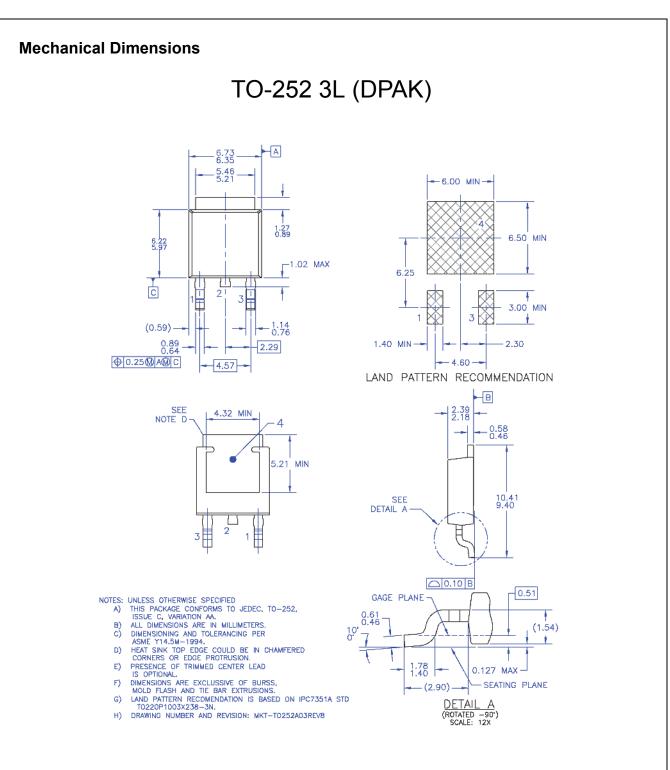



Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Figure 16. TO252 (D-PAK), Molded, 3 Lead, Option AA&AB

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products.

Dimension in Millimeters

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative