
life.augmented

STB26N60M2

Datasheet - production data

N-channel 600 V, 0.14 Ω typ., 20 A MDmesh[™] M2 Power MOSFET in a D²PAK package

Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max.	ID	Ртот
STB26N60M2	650 V	0.165 Ω	20 A	169 W

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing	
STB26N60M2	26N60M2	D ² PAK	Tape and reel	

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	D ² PAK package information	9
	4.2	D ² PAK packing information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	±25	V
	Drain current (continuous) at T _{case} = 25 °C	20	А
lo	Drain current (continuous) at T _{case} = 100 °C	13	A
IDM ⁽¹⁾	Drain current (pulsed)	80	А
Ртот	Total dissipation at T _{case} = 25 °C	169	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/115
T _{stg}	Storage temperature range		°C
Tj	Operating junction temperature range	-55 to 150	C

Notes:

 $^{\left(1\right) }$ Pulse width is limited by safe operating area.

 $^{(2)}$ I_{SD} ≤ 20 A, di/dt=400 A/µs; V_{DS(peak)} < V_{(BR)DSS}, V_DD = 80% V_{(BR)DSS}.

 $^{(3)}$ V_{DS} \leq 480 V.

Table 3: Thermal data

Symbol	Parameter Va		Unit
R _{thj-case}	Thermal resistance junction-case	0.74	°C/W
Rthj-pcb ⁽¹⁾	Thermal resistance junction-pcb	30	-C/W

Notes:

 $^{(1)}When$ mounted on a 1-inch² FR-4, 2 Oz copper board.

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar ⁽¹⁾	Avalanche current, repetitive or not repetitive	3.8	А
E _{AS} ⁽²⁾	Single pulse avalanche energy	250	mJ

Notes:

 $^{\left(1\right) }$ Pulse width limited by $T_{jmax}.$

 $^{(2)}$ starting T_j = 25 °C, I_D = $I_{AR},\,V_{DD}$ = 50 V.

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 V, I_D = 1 mA$	600			v
	Zoro goto voltogo drain	$V_{GS} = 0 V, V_{DS} = 600 V$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 600 V,$ $T_{case} = 125 \ ^{\circ}C^{(1)}$			100	μA
lgss	Gate-body leakage current	$V_{\text{DS}} = 0 \text{ V}, \text{ V}_{\text{GS}} = \pm 25 \text{ V}$			±10	μA
$V_{GS(th)}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A}$		0.14	0.165	Ω

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1360	-	
Coss	Output capacitance	$V_{DS} = 100 V, f = 1 MHz,$	-	88	-	рF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0 V	-	2	-	2
Coss eq. ⁽¹⁾	Equivalent output capacitance	$V_{\text{DS}}=0 \text{ to } 480 \text{ V}, V_{\text{GS}}=0 \text{ V}$	-	124	-	рF
Rg	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	4	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, \text{ I}_{D} = 20 \text{ A}, \text{ V}_{GS} = 0$	-	34	-	
Qgs	Gate-source charge	to 10 V (see Figure 15: "Test circuit for gate charge	-	5.6	-	nC
Q _{gd}	Gate-drain charge	behavior")	-	16.3	-	

Table 6: Dynamic

Notes:

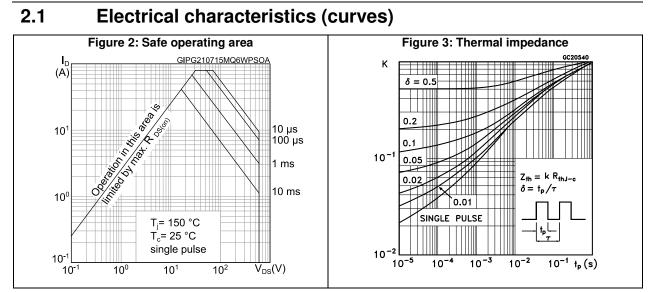
 $^{(1)}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when V_{DS} increases from 0 to 80% V_{DSS} .

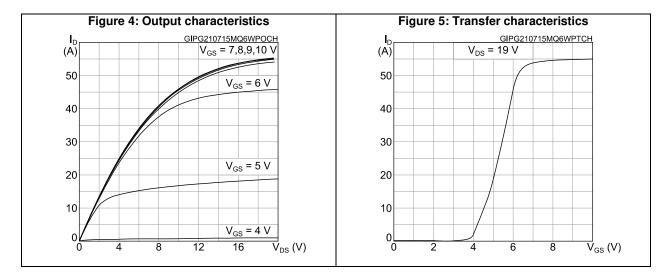
Electrical characteristics

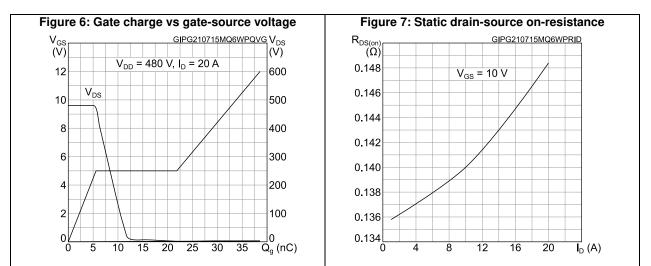
_	Table 7: Switching times					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
td(on)	Turn-on delay time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 10 \text{ A} \text{ R}_{G} = 4.7 \Omega,$	-	20.2	-	
tr	Rise time	V _{GS} = 10 V (see <i>Figure 14: "Test</i>		8	-	
td(off)	Turn-off delay time	circuit for resistive load switching times" and Figure 19: "Switching	-	66	-	ns
tr	Fall time	time waveform")	-	10	-	

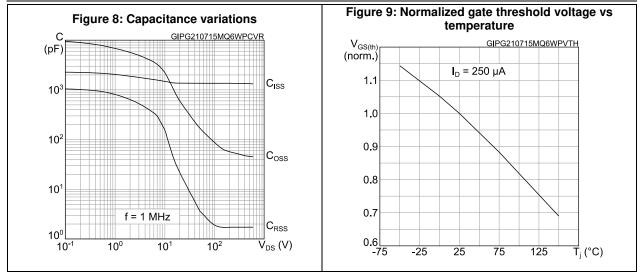
Table 8: Source-drain diode

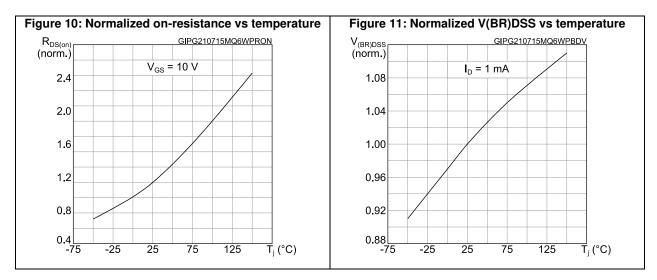
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		20	А
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		80	А
V _{SD} ⁽²⁾	Forward on voltage	$V_{GS} = 0 V$, $I_{SD} = 20 A$	-		1.6	V
trr	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/μs,		360		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load switching	-	5		μC
I _{RRM}	Reverse recovery current	and diode recovery times")		27		А
trr	Reverse recovery time	I _{SD} = 20 A, di/dt = 100 A/us,		556		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{T}_{\text{j}} = 150 ^{\circ}\text{C} \text{ (see Figure 16: "Test circuit for inductive load } $	-	8		μC
Irrm	Reverse recovery current	switching and diode recovery times")	-	29		А

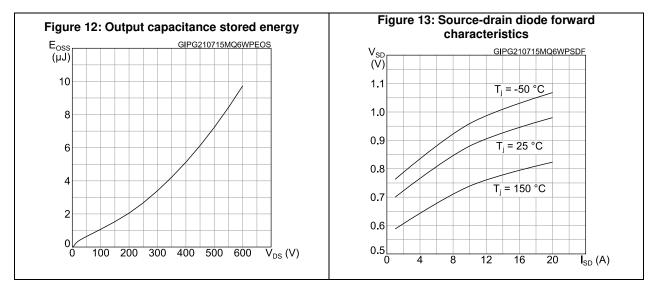

Notes:


 $^{\left(1\right) }$ Pulse width is limited by safe operating area.


 $^{(2)}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

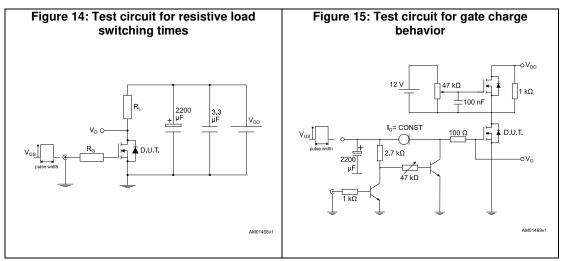

DocID030419 Rev 1

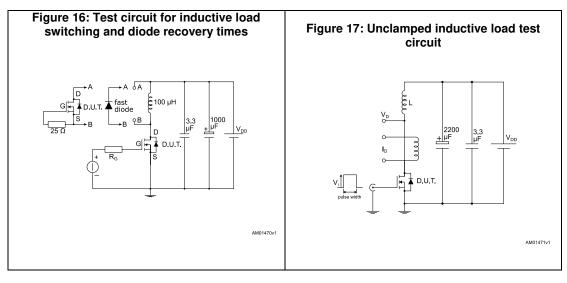


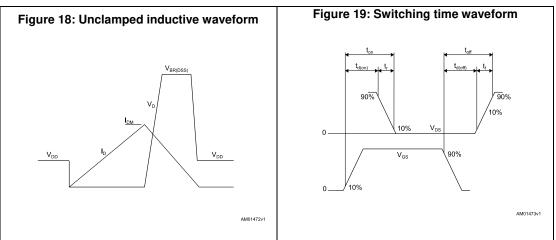

STB26N60M2

57

Electrical characteristics

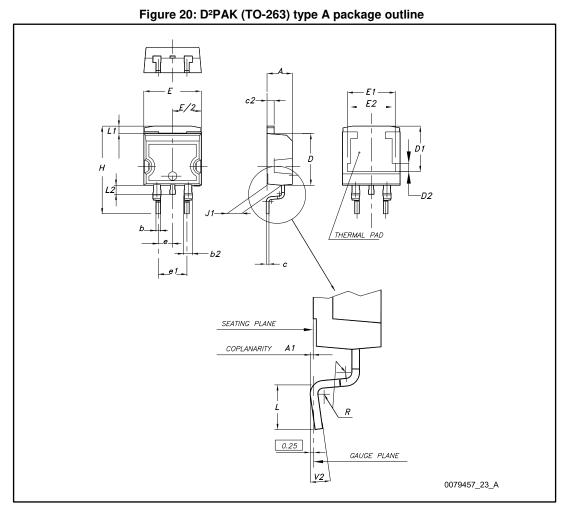






DocID030419 Rev 1

3 Test circuits

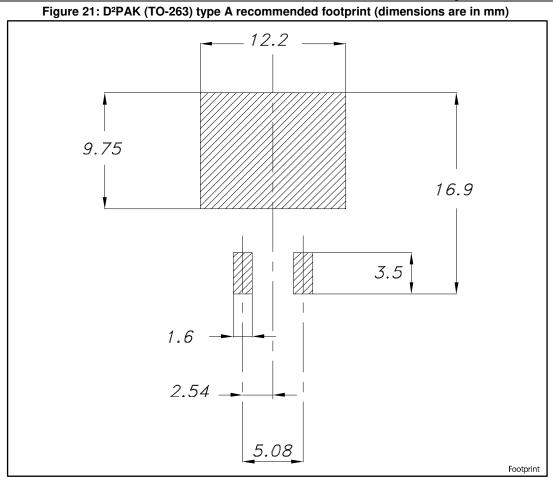

DocID030419 Rev 1

4 Package information

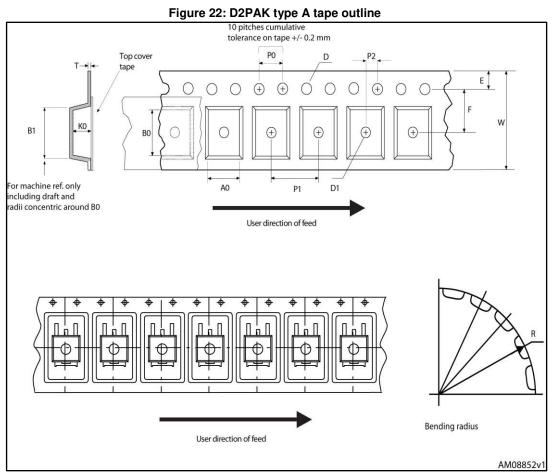
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 D²PAK package information

Package information


STB26N60M2

nformation			STB26N60M2
Tab	le 9: D2PAK (TO-263) type	e A package mechanica	l data
Dim.		mm	
Dini.	Min.	Тур.	Max.
A	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50	7.75	8.00
D2	1.10	1.30	1.50
E	10.00		10.40
E1	8.50	8.70	8.90
E2	6.85	7.05	7.25
е		2.54	
e1	4.88		5.28
Н	15.00		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.40	
V2	0°		8°


STB26N60M2

Package information

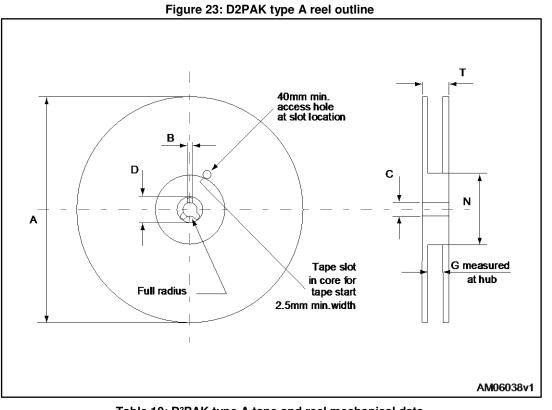


Table 10: D ² PAK type A	tape and reel mechanical data
Tano	Bool

Таре			Reel		
Dim.	mm		Dim.	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	А		330
B0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base quantity		1000
P2	1.9	2.1	Bulk quantity		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
10-Mar-2017	1	First release.

STB26N60M2

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

