

# **DATA SHEET**

# SURFACE MOUNT MULTILAYER CERAMIC CAPACITORS

Automotive grade
High Temperature Application
X8G / X8R

680 pF to 100 nF

RoHS compliant & Halogen Free



**YAGEO** 

Product Specification - May 01, 2022 V.2





#### Surface-Mount Ceramic Multilayer Capacitors Automotive grade

X8G / X8R | 16 V to 100 V

19

#### SCOPE

This specification describes Automotive grade X8G / X8R series chip capacitors with leadfree terminations and used for automotive equipments.

#### <u>APPLICATIONS</u>

All general-purpose applications under normal operation and usage conditions for automotive equipment's.

#### **FEATURES**

- · AEC-Q200 qualified
- Operating temperature range: -55 to 150°C
- MSL class: MSL I
- · Soldering is compliant with J-STD-020D
- RoHS compliant
- · High component and equipment reliability
- The capacitors are 100% performed by automatic optical inspection prior to taping.

#### ORDERING INFORMATION - GLOBAL PART NUMBER

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

#### **GLOBAL PART NUMBER**

AC XXXX X X XXX X B X XXX

(1) (2) (3) (4) (5) (6) (7)

#### (I) SIZE - INCH BASED (METRIC)

0603 (1608)

0805 (2012)

#### (2) TOLERANCE

X8G X8R

 $J = \pm 5\%$  $K = \pm 10\%$ 

 $G = \pm 2\%$  $M = \pm 20\%$ 

 $F = \pm 1\%$  $| = \pm 5\%$ 

#### (3) PACKING STYLE (SEE TABLE 6)

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

#### (4) TC MATERIAL

X8G: 0±30 ppm/°C

X8R: ±15%

#### (5) RATED VOLTAGE

7 = 16 V

8 = 25 V

9 = 50 V

0 = 100 V

#### (6) PROCESS

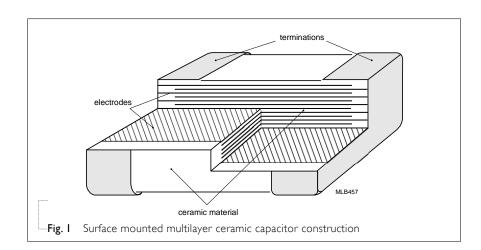
N = Class I MLCC (X8G)

B = Class II MLCC (X8R)

#### (7) CAPACITANCE VALUE

2 significant digits+number of zeros

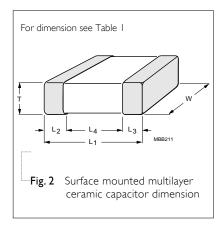
The 3rd digit signifies the multiplying factor, and letter R is decimal point


Example:  $121 = 12 \times 10^{1} = 120 \text{ pF}$ 

#### CONSTRUCTION

**YAGEO** 

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.


The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (Matte Sn). The terminations are leadfree. A cross section of the structure is shown in Fig.I.



#### **DIMENSION**

| Table I | For outlines s<br>L <sub>I</sub> (mm) | see fig. 2<br>W (mm) | T (MM)     | L <sub>2</sub> / I<br>min. | <sub>-3</sub> (mm) | L <sub>4</sub> (mm)<br>min. |
|---------|---------------------------------------|----------------------|------------|----------------------------|--------------------|-----------------------------|
| 0603    | 1.6 ±0.10                             | 0.80 ±0.10           | 0.80 ±0.10 | 0.20                       | 0.50               | 0.60                        |
|         | 2.0 ±0.10                             | 1.25 ±0.10           | 0.60 ±0.10 |                            |                    |                             |
| 0805    | 2.0 ±0.20                             | 1.25 ±0.20           | 0.85 ±0.10 | 0.25                       | 0.75               | 0.70                        |
|         | 2.0 ±0.20                             | 1.25 ±0.20           | 1.25 ±0.20 |                            |                    |                             |

#### **OUTLINES**







Surface-Mount Ceramic Multilayer Capacitors Automotive grade

X8G / X8R | 16 V to 100 V

#### CAPACITANCE RANGE & THICKNESS FOR X8G

| <b>Table 2-I</b> Size from 0603 to 0805 |         |         |          |          |  |  |  |  |
|-----------------------------------------|---------|---------|----------|----------|--|--|--|--|
| CAP.                                    | 0603    |         | 0805     |          |  |  |  |  |
|                                         | 25 V    | 50 V    | 50 V     | 100 V    |  |  |  |  |
| 680 pF                                  | 0.8±0.1 | 0.8±0.1 |          |          |  |  |  |  |
| I nF                                    | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  |  |  |  |  |
| I.2 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  |  |  |  |  |
| 1.5 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  |  |  |  |  |
| I.8 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  |  |  |  |  |
| 2.7 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  |  |  |  |  |
| 3.3 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  |  |  |  |  |
| 3.9 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  |  |  |  |  |
| 4.7 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  |  |  |  |  |
| 5.6 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.6±0.1  | 0.6±0.1  |  |  |  |  |
| 6.8 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.85±0.1 | 0.85±0.1 |  |  |  |  |
| 8.2 nF                                  | 0.8±0.1 | 0.8±0.1 | 0.85±0.1 | 0.85±0.1 |  |  |  |  |
| I0 nF                                   | 0.8±0.1 | 0.8±0.1 | 0.85±0.1 | 0.85±0.1 |  |  |  |  |

#### NOTE

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-12 series is on request

#### CAPACITANCE RANGE & THICKNESS FOR X8R

| <b>Table 2-2</b> Size 0805 |        |          |          |          |  |  |  |  |
|----------------------------|--------|----------|----------|----------|--|--|--|--|
| CAP.                       |        | 0805     |          |          |  |  |  |  |
|                            |        | 16 V     | 25 V     | 50 V     |  |  |  |  |
|                            | 22 nF  | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |  |  |  |  |
|                            | 33 nF  | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |  |  |  |  |
|                            | 47 nF  | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |  |  |  |  |
|                            | 68 nF  | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |  |  |  |  |
|                            | 100 nF | 1.25±0.2 | 1.25±0.2 | 1.25±0.2 |  |  |  |  |

#### NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is on request



#### **ELECTRICAL CHARACTERISTICS**

**YAGEO** 

#### X8G / X8R DIELECTRIC CAPACITORS; NI/SIN TERMINATIONS

Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C - Relative humidity: 25% to 75% - Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

| Table                  | 3                                                                              |                                                                 |                   |
|------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|
| DESCRIPT               | TON                                                                            |                                                                 | VALUE             |
| Capacitano             | ce range                                                                       |                                                                 | 680pF to 100 nF   |
| Dissipation            | n factor (D.F.)                                                                |                                                                 |                   |
| X8G                    | C < 30 pF                                                                      |                                                                 | ≤ I / (400 + 20C) |
|                        | C ≥ 30 pF                                                                      |                                                                 | ≤ 0.1 %           |
| X8R                    |                                                                                | 0805                                                            |                   |
| 16V                    |                                                                                | 22 nF to 100 nF                                                 | ≤ 2.5%            |
| 25V                    |                                                                                | 22 nF to 100 nF                                                 | ≤ 2.5%            |
| 50V                    |                                                                                | 22 nF to 100 nF                                                 | ≤ 2.5%            |
| Insulation             | resistance after I minute at $U_r$ (DC)                                        | I.R. $\geq$ 10 G $\Omega$ or I.R. $\times$ C $\geq$ 500 seconds | whichever is less |
|                        | capacitance change as a function of temper<br>are characteristic/coefficient): | rature                                                          |                   |
| X8G                    |                                                                                |                                                                 | ±30 ppm/°C        |
| X8R                    |                                                                                |                                                                 | ±15%              |
| Operating<br>X8G / X8R | temperature range:                                                             |                                                                 | –55 °C to +150 °C |



### 19

#### **SOLDERING RECOMMENDATION**

| • | Tab | le | 4 |
|---|-----|----|---|
|   |     |    |   |

| SOLDERING   | SIZE     |          |          |          |             |
|-------------|----------|----------|----------|----------|-------------|
| METHOD      | 0402     | 0603     | 0805     | 1206     | ≥ 1210      |
| Reflow      | ≥ 0.1 µF | ≥ 1.0 µF | ≥ 2.2 µF | ≥ 4.7 µF | Reflow only |
| Reflow/Wave | < 0.1 µF | < 1.0 µF | < 2.2 µF | < 4.7 µF |             |

#### **SOLDERING CONDITIONS**

The lead free MLCCs are able to stand the reflow soldering conditions as below:

- Temperature: above 220 °C
- Endurance: 95 to 120 seconds
- Cycles: 3 times

The test of "soldering heat resistance" is carried out in accordance with the schedule of "MIL-STD-202G-method 210F", "The robust construction of chip capacitors allows them to be completely immersed in a solder bath of 260 °C for 10 seconds". Therefore, it is possible to mount MLCCs on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Capacitors are tested for solderability at 245 °C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds.

#### TESTS AND REQUIREMENTS

Test procedures and requirements Table 5

| TEST                         | TEST METHOD PROCEDURE     |       |                                                                                                                                                                                                                                                                                                                                                              | REQUIREMENTS                                |  |
|------------------------------|---------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| Mounting                     | IEC 60384-<br>21/22       | 4.3   | The capacitors may be mounted on printed-circuit boards or ceramic substrates                                                                                                                                                                                                                                                                                | No visible damage                           |  |
| Capacitance                  | IEC 60384-<br>21/22       | 4.5.1 | X8G: At 20 °C, 24 hours after annealing $f = 1$ MHz for $C \le 1$ nF, measuring at voltage $1 \text{ V}_{rms}$ at 20 °C $1 \text{ F}_{rms}$ at 20 °C, 24 hours after annealing $1 \text{ F}_{rms}$ at 20 °C | Within specified tolerance                  |  |
| Dissipation<br>Factor (D.F.) | IEC 60384- 4.5.2<br>21/22 |       | X8G: At 20 °C, 24 hours after annealing $f = 1 \text{ MHz}$ for $C \le InF$ , measuring at voltage $I V_{rms}$ at 20 °C $f = 1 \text{ KHz}$ for $C > InF$ , measuring at voltage $I V_{rms}$ at 20 °C X8R: At 20 °C, 24 hours after annealing $f = 1 \text{ KHz}$ , measuring at voltage $I V_{rms}$ at 20 °C                                                | In accordance with specification on Table 3 |  |
| Insulation<br>Resistance     | IEC 60384-<br>21/22       | 4.5.3 | At U <sub>r</sub> (DC) for I minute                                                                                                                                                                                                                                                                                                                          | In accordance with specification on Table 3 |  |



## Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

X8G / X8R 16 V to 100 V

| TEST                                         | TEST METHOD                                | PROCEDURE                                                                                                                                                                                                                                                                      | REQUIREMENTS                                                                                                                                                |
|----------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High<br>Temperature<br>Exposure              | AEC-Q200 3                                 | Unpowered ; 1000hours @ T=150°C  Measurement at 24±2 hours after test conclusion.                                                                                                                                                                                              | No visual damage ΔC/C: X8G: within ±0.5% or 0.5 pF whichever is greater X8R: ±10% D.F.: within initial specified value I.R.: within initial specified value |
| Temperature AEC-Q200 4 Cycling               |                                            | Preconditioning; 150 +0/-10 °C for 1 hour, then keep for 24 ±1 hours at room temperature  1000 cycles with following detail: 30 minutes at lower category temperature                                                                                                          | No visual damage $\Delta C/C$ X8G: Within $\pm 1\%$ or 0.5pF, whichever is greater. X8R: $\pm 10\%$                                                         |
|                                              |                                            | 30 minutes at upper category temperature Recovery time 24 ±2 hours                                                                                                                                                                                                             | D.F. meet initial specified value                                                                                                                           |
| Destructive<br>Physical Analysis             | AEC-Q200 5                                 | Only applies to SMD ceramics. Electrical test not required.                                                                                                                                                                                                                    |                                                                                                                                                             |
| Moisture<br>Resistance                       | AEC-Q200 6                                 | T=24 hrs/per cycle; 10 continuous cycles unpowered. Measurement at 24 $\pm 2$ hours after test condition.                                                                                                                                                                      | No visual damage                                                                                                                                            |
| 70<br>65<br>60                               | INITIAL CON-<br>DITIONING IN<br>A DRY OVEN | 100x RH = RH = 90-100x RH = 80-100x RH                                                                                                                                                                                                                                         | X8G: Within ±3% or 3 pF,<br>whichever is greater<br>X8R: ±15%                                                                                               |
| 55<br>50<br>45<br>40<br>35<br>30<br>25<br>20 | NITIAL MEASUREMENTS S SPECIFIED IN 3.2     | VOLTAGE APPLIED AS SPECIFIED IN 3.5  STEPS 78 & 75 LIF APPLICABLE) SHALL BE PERFORMED A MINIMUM OF 5 OF THE 10 CYCLES. HUMIDITY IS UNCONTROLLED DURING STEPS 78 & 75 UNITY | D.F. Within initial specified value I.R.  X8G: ≥ 10,000 MΩ  X8R: Meet initial specified value                                                               |

PRIOR TO FIRST CYCLE STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6 STEP UNLESS OTHERHISE ONE CYCLE 24 HOURS. REPEAT AS SPECIFIED IN 3.3

Fig. 3 Moisture resistant



## Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

X8G / X8R 16 V to 100 V

| TEST                  | TEST METH | HOD | PROCEDURE                                                                                                                                                                              | REQUIREMENTS                                                                                             |
|-----------------------|-----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Biased Humidity       | AEC-Q200  | 7   | 1. Preconditioning, class 2 only: 150 $\pm$ 0/-10 °C /1 hour, then keep for 24 $\pm$ 1 hour at room temp                                                                               | No visual damage after recovery                                                                          |
|                       |           |     | 2. Initial measure: Parameter: I.R. Measuring voltage: I.5V $\pm$ 0.1 VDC Note: Series with 100 K $\Omega$                                                                             | X8R  The insulation resistance shall be greater than 10% of initial spec.                                |
|                       |           |     | 3. Test condition: 85 °C, 85% R.H. connected with 100 K $\Omega$ resistor, applied 1.5V/U $_{\rm r}$ for 1,000 hours.                                                                  |                                                                                                          |
|                       |           |     | 4. Recovery: X8G: 6 to 24 hours X8R: 24 $\pm$ 2 hours                                                                                                                                  |                                                                                                          |
|                       |           |     | 5. Final measure: I.R.                                                                                                                                                                 |                                                                                                          |
| Operational Life      | AEC-Q200  | 8   | I. Preconditioning, X8R only:<br>I50 +0/-10 °C /I hour, then keep for                                                                                                                  | No visual damage                                                                                         |
|                       |           |     | 24 ±1 hour at room temp  2. Initial measure:  Spec: refer to initial spec C, D, I.R.                                                                                                   | ΔC/C<br>X8G: Within ±2% or 1 pF,<br>whichever is greater                                                 |
|                       |           |     | 3. Endurance test:                                                                                                                                                                     | X8R: ±15%                                                                                                |
|                       |           |     | Temperature: X8R: 150 °C  Specified stress voltage applied for 1,000 hours:  Applied 2.0 × Ur for ≤ 100V series  Applied 1.5 × Ur for 200V, 250V series  4. Recovery time: 24 ±2 hours | D.F.<br>X8G: ≤ 0.2%                                                                                      |
|                       |           |     |                                                                                                                                                                                        | X8R: within initial specified value                                                                      |
|                       |           |     | 5. Final measure: C, D, I.R.  Note: If the capacitance value is less than the minimum value permitted, then after the other measurements have been                                     | I.R.<br>$\times$ 8G: $\geq$ 4,000 M $\Omega$ or I.R. $\times$ Cr $\geq$ 40 $\Omega$ .F whichever is less |
|                       |           |     | made the capacitor shall be preconditioned according to "IEC 60384 4.1" and then the requirement shall be met.                                                                         | X8R: $\geq$ 1,000 MΩ or l.R. $\times$ Cr $\geq$ 50Ω.F whichever is less                                  |
| External Visual       | AEC-Q200  | 9   | Any applicable method using × 10 magnification                                                                                                                                         | In accordance with specification                                                                         |
| Physical<br>Dimension | AEC-Q200  | 10  | Verify physical dimensions to the applicable device specification.                                                                                                                     | In accordance with specification                                                                         |



TEST

## Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | X8G / X8R | 16 V to 100 V

**PROCEDURE** 

TEST METHOD

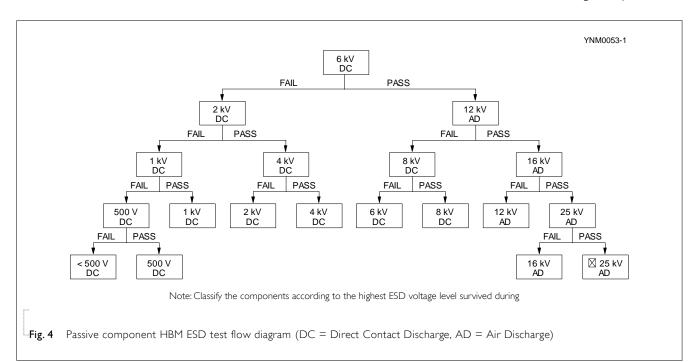
REQUIREMENTS

|                                 |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TEQUITE TELTTO                                                                                                                                                                                                                                |
|---------------------------------|----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mechanical<br>Shock             | AEC-Q200 | NEC-Q200 13 | Three shocks in each direction shall be applied along the three mutually perpendicular axes of the test specimen (18 shocks)  Peak value: 1,500 g's  Duration: 0.5 ms  Velocity change: 15.4 ft/s                                                                                                                                                                                                                                                                                                                                                                                           | $\Delta C/C$ X8G: Within ±0.5% or 0.5 pF, whichever is greater X8R: ±10%                                                                                                                                                                      |
|                                 |          |             | Waveform: Half-sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D.F. Within initial specified value I.R. Within initial specified value                                                                                                                                                                       |
| Vibration                       | AEC-Q200 | 14          | 5 g's for 20 minutes, 12 cycles each of 3 orientations.  Note:  Use 8" x 5" PCB. 0.31" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10-2000 Hz.                                                                                                                                                                                                                                                                                                                                        | ΔC/C X8G: Within ±0.5% or 0.5 pF, whichever is greater X8R: ±10%  D.F: meet initial specified value I.R. meet initial specified value                                                                                                         |
| Resistance to<br>Soldering Heat | AEC-Q200 | 15          | Precondition: $150 + 0/-10$ °C for I hour, then keep for $24 \pm 1$ hours at room temperature  Preheating: for size $\leq 1206$ : $120$ °C to $150$ °C for I minute  Preheating: for size $\geq 1206$ : $100$ °C to $120$ °C for I minute and $170$ °C to $200$ °C for I minute  Solder bath temperature: $260 \pm 5$ °C  Dipping time: $10 \pm 0.5$ seconds  Recovery time: $24 \pm 2$ hours                                                                                                                                                                                               | Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned $\Delta C/C$ X8G: Within ±1% or 0.5 pF, whichever is greater  X8R: ±10%  D.F. within initial specified value I.R. within initial specified value |
| Thermal Shock                   | AEC-Q200 | 16          | <ol> <li>Preconditioning, X8R only:         <ul> <li>150 +0/-10 °C /I hour, then keep for 24 ± I hour at room temp</li> </ul> </li> <li>Initial measure:         <ul> <li>Spec: refer to initial spec C, D, I.R.</li> </ul> </li> <li>Rapid change of temperature test:         <ul> <li>X8G / X8R: -55 °C to +150 °C; 300 cycles</li> <li>I5 minutes at lower category temperature; I5 minutes at upper category temperature.</li> </ul> </li> <li>Recovery time:         <ul> <li>X8G: 6 to 24 hours</li> <li>X8R: 24 ± 2 hours</li> </ul> </li> <li>Final measure: C, D, I.R.</li> </ol> | No visual damage $\Delta C/C$ X8G: Within ±1% or 1 pF, whichever is greater  X8R: ±15%  D.F: meet initial specified value  I.R. meet initial specified value                                                                                  |



#### Surface-Mount Ceramic Multilayer Capacitors | Automotive grade

X8G / X8R | 16 V to 100 V


**TEST** 

#### **TEST METHOD PROCEDURE**

#### **REQUIREMENTS**

**ESD** 

AEC-Q200 Per AEC-Q200-002 A component passes a voltage level if all components stressed at that voltage level pass.



#### Solderability

AEC-Q200

Preheated to a temperature of 80 °C to 140 °C and maintained 18 for 30 seconds to 60 seconds.

The solder should cover over 95% of the critical area of each termination.

Test conditions for lead containing solder alloy

Temperature: 235 ±5 °C Dipping time: 2 ±0.2 seconds Depth of immersion: 10 mm Alloy Composition: 60/40 Sn/Pb Number of immersions: I

Test conditions for lead-free containing solder alloy

Temperature: 245 ±5 °C Dipping time: 3 ±0.3 seconds Depth of immersion: 10 mm Alloy Composition: SAC305 Number of immersions: I

#### **Electrical** Characterization

AEC-Q200

Parametrically test per lot and sample size requirements, summary to show Min, Max, Mean and Standard deviation at room as well as Min and Max operating temperatures.

 $\Delta$ C/C X8G: ±30 ppm/°C X8R: ±15%

X8G / X8R: -55 °C to +150 °C Normal temperature: 25 °C





#### **Surface-Mount Ceramic Multilayer Canacitors** Automotive grade

X8G / X8R | 16 V to 100 V

#### 19

#### **TEST Board Flex**

#### **TEST METHOD**

AEC-Q200

#### **PROCEDURE**

Part mounted on a 100 mm X 40 mm FR4 PCB board, which is 1.6  $\pm$ 0.2 mm thick and has a layer-thickness 35  $\mu$ m  $\pm$  10  $\mu$ m. Part should be mounted using the following soldering reflow profile.

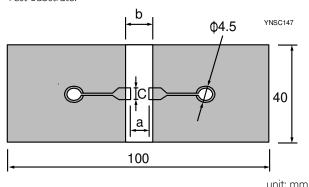
Conditions:

X8G:

Bending 3 mm at a rate of 1 mm/s, radius jig 340 mm

Bending 2 mm at a rate of 1 mm/s, radius jig 340 mm

#### **REQUIREMENTS**


No visible damage

 $\Delta C/C$ 

X8G: Within  $\pm 1\%$  or 0.5 pF, whichever is greater

X8R: ±10%

#### Test Substrate:



|      | Dimension(mm) |     |      |  |  |
|------|---------------|-----|------|--|--|
| Туре | а             | b   | С    |  |  |
| 0201 | 0.3           | 0.9 | 0.3  |  |  |
| 0402 | 0.4           | 1.5 | 0.5  |  |  |
| 0603 | 1.0           | 3.0 | 1.2  |  |  |
| 0805 | 1.2           | 4.0 | 1.65 |  |  |
| 1206 | 2.2           | 5.0 | 1.65 |  |  |
| 1210 | 2.2           | 5.0 | 2.0  |  |  |
| 1808 | 3.5           | 7.0 | 3.7  |  |  |

#### Terminal Strength

#### AEC-Q200

22

With the component mounted on a PCB obtained with the device to be tested, apply a 17.7N (1.8Kg) force to the side of a device being tested.

This force shall be applied for 60+1 seconds.

Also the force shall be applied gradually as not to apply a shock to the component being tested.

\* Apply 2N force for 0402 size.

Magnification of 20X or greater may be employed for inspection of the mechanical integrity of the device body, terminals and body/terminal junction.

Before, during and after the test, the device shall comply with all electrical requirements stated in

this specification.

#### Beam Load Test

AEC-O200 23

Place the part in the beam load fixture. Apply a force until the part breaks or the minimum acceptable force level required in the user specification(s) is attained.

≤ 0805

Thickness > 0.5mm: 20N Thickness ≤ 0.5mm: 8N

≥ 1206

Thickness ≥1.25 mm: 54N Thickness < 1.25 mm: 15N

#### Voltage Proof

- 1. Specified stress voltage applied for 1~5 seconds
- 2. Ur ≤ 100 V: series applied 2.5 Ur
- 3.  $100 \text{ V} < \text{Ur} \le 200 \text{ V}$  series applied (1.5 Ur + 100)
- 4. 200 V < Ur ≤ 500 V series applied (1.3 Ur + 100)
- 5. Ur > 500 V: 1.3 Ur
- 6. Ur ≥ 1000 V: 1.2 Ur

Charge/Discharge current is less than 50 mA

No breakdown or flashover

#### THICKNESS CLASSES AND PACKING QUANTITY

Table 6

|     |              |                             | PACKING CODE |         |            | QUANTITY PER REEL |         |         |           |
|-----|--------------|-----------------------------|--------------|---------|------------|-------------------|---------|---------|-----------|
|     | SIZE<br>ODE  | THICKNESS<br>CLASSIFICATION |              |         | TAPE WIDTH | Ø180 MM           | 7 INCH  | Ø330 MM | / 13 INCH |
|     | CODE         | CLASSIFICATION              | 7 INCH       | 13 INCH |            | Paper             | Blister | Paper   | Blister   |
| 060 | 03           | 0.80 ±0.1 mm                | R            | Р       | 8 mm       | 4,000             |         | 15,000  |           |
|     |              | 0.60 ±0.1 mm                | R            | Р       | 8 mm       | 4,000             |         | 20,000  |           |
| 080 | 05           | 0.85 ±0.1 mm                | R            | Р       | 8 mm       | 4,000             |         | 15,000  |           |
|     | 1.25 ±0.2 mm | K                           | F            | 8 mm    |            | 3,000             |         | 10,000  |           |

#### **PAPER/PE TAPE SPECIFICATION**

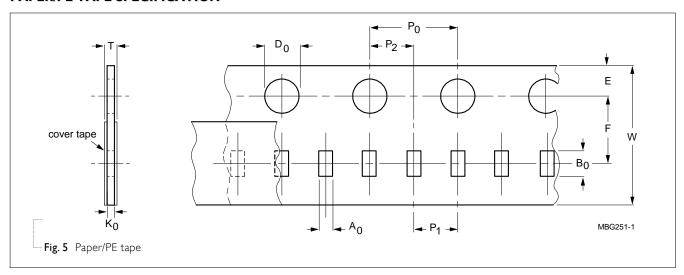



Table 7 Dimensions of paper/PE tape for relevant chip size; see Fig.5

| SIZE | SYMBOL Unit: mm |                |            |            |             |             |            |                |               |                           |                           |
|------|-----------------|----------------|------------|------------|-------------|-------------|------------|----------------|---------------|---------------------------|---------------------------|
| CODE | $A_0$           | B <sub>0</sub> | W          | E          | F           | $P_0^{(l)}$ | $P_{I}$    | P <sub>2</sub> | $ØD_0$        | K <sub>0</sub>            | Т                         |
| 0201 | 0.39 ± 0.06     | 0.70 ± 0.06    | 8.0 ± 0.20 | 1.75 ± 0.1 | 3.50 ± 0.05 | 4.0 ± 0.05  | 2.0 ± 0.05 | 2.0 ± 0.05     | 1.55 ± 0.03   | 0.38 ± 0.05               | (0.47 / 0.55)±0.10        |
| 0402 | 0.70 ± 0.15     | 1.21 ± 0.12    | 8.0 ± 0.20 | 1.75 ± 0.1 | 3.50 ± 0.05 | 4.0 ± 0.05  | 2.0 ± 0.05 | 2.0 ± 0.05     | 1.50 +0.1 /-0 | (0.75 / 0.60)±0.10        | (0.85 / 0.70)±0.10        |
| 0603 | 1.05 ± 0.14     | 1.86 ± 0.13    | 8.0 ± 0.20 | 1.75 ± 0.1 | 3.50 ± 0.05 | 4.0 ± 0.10  | 4.0 ± 0.10 | 2.0 ± 0.05     | 1.50 +0.1 /-0 | (1.05 / 0.95 / 0.75)±0.10 | (1.15 / 1.05 / 0.85)±0.10 |
| 0805 | 1.50 ± 0.15     | 2.26 ± 0.20    | 8.0 ± 0.20 | 1.75 ± 0.1 | 3.50 ± 0.05 | 4.0 ± 0.10  | 4.0 ± 0.10 | 2.0 ± 0.05     | 1.50 +0.1 /-0 | (1.05 / 0.95 / 0.75)±0.10 | (1.15 / 1.05 / 0.85)±0.10 |
| 1206 | 1.90 ± 0.15     | 3.50 ± 0.20    | 8.0 ± 0.20 | 1.75 ± 0.1 | 3.50 ± 0.05 | 4.0 ± 0.10  | 4.0 ± 0.10 | 2.0 ± 0.05     | 1.50 +0.1 /-0 | (0.95 / 0.75)±0.10        | (1.05 / 0.85)± 0.10       |

#### NOTE

1.  $P_0$  pitch tolerance over any 10 pitches is  $\pm 0.2$  mm



#### **BLISTER TAPE SPECIFICATION**

**YAGEO** 

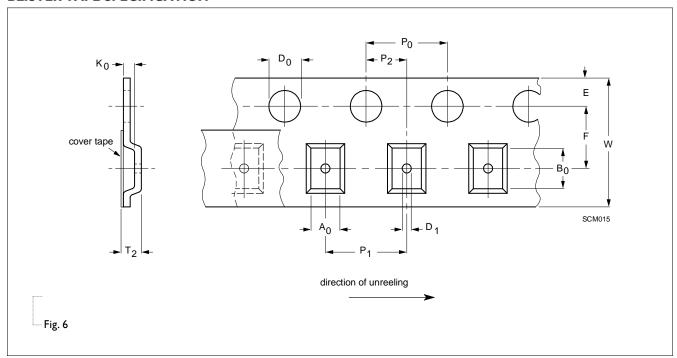



Table 8 Dimensions of blister tape for relevant chip size; see Fig.6

|              | SYMBOL |      |      |      |      |      |            |           |           |               |               |           | U         | nit: mm   |      |      |
|--------------|--------|------|------|------|------|------|------------|-----------|-----------|---------------|---------------|-----------|-----------|-----------|------|------|
| SIZE<br>CODF | A0     |      | ВО   |      | K0   |      | W          | E         | F         | ØD0           | ØDI           | P0 (2)    | PI        | P2        | T2   |      |
|              | Min.   | Max. | Min. | Max. | Min. | Max. |            |           |           |               | Min.          |           |           |           | Min. | Max. |
| 0805         | 1.29   | 1.65 | 2.09 | 2.60 | 1.25 | 1.62 | 8.1 ±0.20  | 1.75 ±0.1 | 3.5 ±0.05 | 1.5 +0.1/-0.0 | I +0.1/-0.0   | 4.0 ±0.10 | 4.0 ±0.10 | 2.0 ±0.05 | 1.30 | 1.67 |
| 1206         | 1.65   | 2.12 | 3.30 | 3.75 | 1.22 | 2.15 | 8.I ±0.20  | 1.75 ±0.1 | 3.5 ±0.05 | 1.5 +0.1/-0.0 | 1 +0.1/-0.0   | 4.0 ±0.10 | 4.0 ±0.10 | 2.0 ±0.05 | 1.27 | 2.20 |
| 1210         | 2.55   | 3.02 | 3.31 | 3.88 | 0.97 | 2.92 | 8.I ±0.20  | 1.75 ±0.1 | 3.5 ±0.05 | 1.5 +0.1/-0.0 | 1 +0.1/-0.0   | 4.0 ±0.10 | 4.0 ±0.10 | 2.0 ±0.05 | 1.02 | 2.97 |
| 1808         | 2.05   | 2.55 | 4.80 | 5.45 | 1.30 | 2.45 | 12.1 ±0.20 | 1.75 ±0.1 | 5.5 ±0.05 | 1.5 +0.1/-0.0 | 1.5 +0.1/-0.0 | 4.0 ±0.10 | 4.0 ±0.10 | 2.0 ±0.05 | 1.35 | 2.50 |
| 1812         | 3.35   | 3.75 | 4.70 | 5.33 | 0.70 | 2.40 | 12.1 ±0.20 | 1.75 ±0.1 | 5.5 ±0.05 | 1.5 +0.1/-0.0 | 1.5 +0.1/-0.0 | 4.0 ±0.10 | 8.0 ±0.10 | 2.0 ±0.05 | 0.75 | 2.45 |

#### NOTE

- I. Typical capacitor displacement in pocket
- 2. P0 pitch tolerance over any 10 pitches is  $\pm 0.2$  mm



#### **REEL SPECIFICATION**

**YAGEO** 

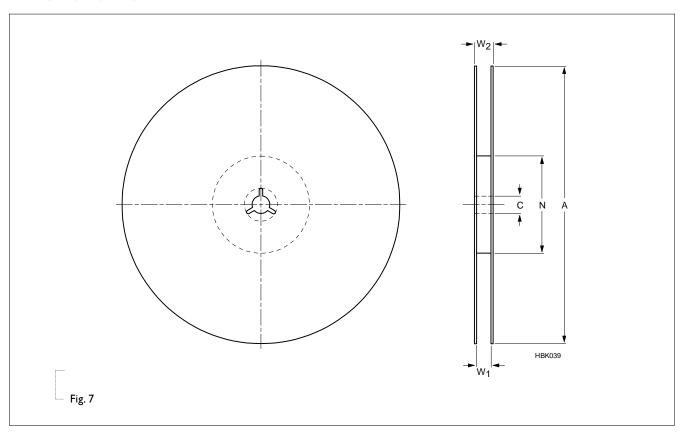



 Table 9
 Reel dimensions; see Fig.7

| TARE MURTI      | SYMBOL   |          |                |           |                     |  |  |  |  |
|-----------------|----------|----------|----------------|-----------|---------------------|--|--|--|--|
| TAPE WIDTH      | A        | N        | С              | $W_1$     | W <sub>2max</sub> . |  |  |  |  |
| 8 (Ø178 mm/7")  | 178 ±1.0 | 60 ±1.0  | 13 +0.50/-0.20 | 9.4 ±1.5  | 14.4                |  |  |  |  |
| 8 (Ø330 mm/13") | 330 ±1.0 | 100 ±1.0 | 13 +0.50/-0.20 | 9.0 ±0.2  | 14.4                |  |  |  |  |
| I2 (ØI78 mm/7") | 178 ±1.0 | 60 ±1.0  | 13 +0.50/-0.20 | 13.4 ±1.5 | 18.4                |  |  |  |  |

#### PROPERTIES OF REEL

Material: polystyrene

Surface resistance: <1010 X/sq.



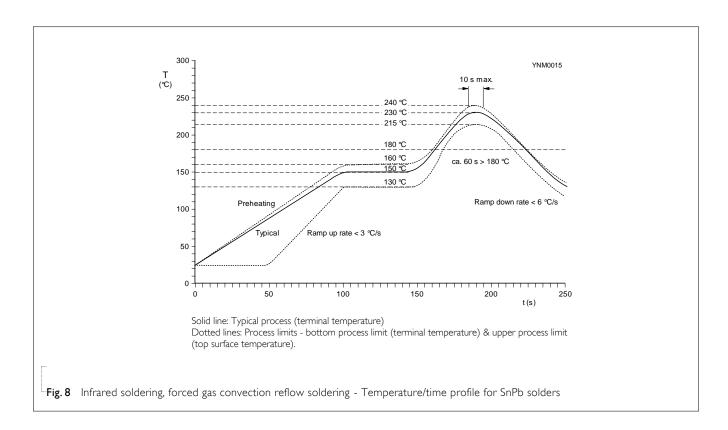
#### MOUNTING

YAGEO

#### **SOLDER REPAIRS**

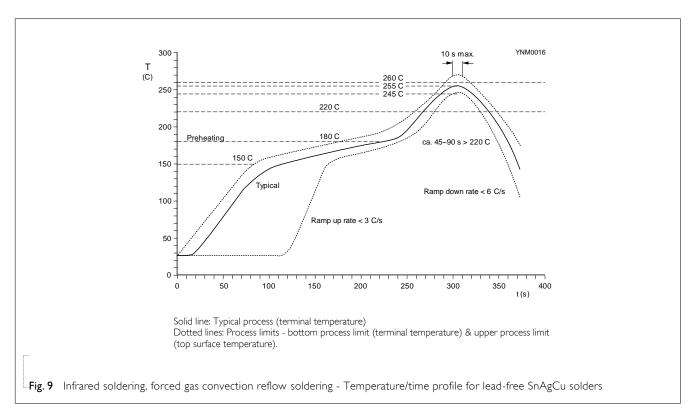
Conventional solder repairs are carried out with a soldering iron as shown as Table 10. The tip of the soldering iron should not directly touch the chip component to avoid thermal shock on the interface between termination and body during mounting, repairing or de-mounting processes. Ensure the termination solder has melted before removing the chip component.

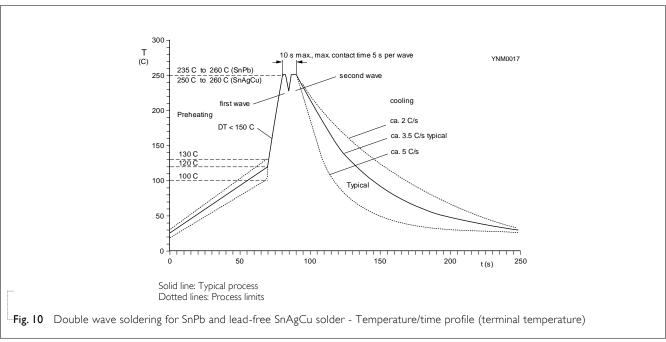
Table 10 Recommended soldering iron condition


| SIZE                     | Temp(°C) | DURATION (SEC.) | PREHEATING TEMP(°C) | ATMOSPHERE |
|--------------------------|----------|-----------------|---------------------|------------|
| 0201/0402/0603/0805/1206 | 350 max. | 3 max.          | 150 min.            | air        |
| 1210/1808/1812/2220      | 280 max. | 3 max.          | 150 min.            | air        |

#### **SOLDERING CONDITIONS**

For normal use the capacitors may be mounted on printed-circuit boards or ceramic substrates by applying wave soldering, reflow soldering or conductive adhesive in accordance with IEC 61760-1 (Standard method for the specification of surface mounting components). For advised soldering profiles see Figs 8, 9, 10.


An improper combination of soldering, substrate and chip size can lead to a damaging of the component. The risk increases with the chip size and with temperature fluctuations (>100 °C).


Therefore, it is advised to use the smallest possible size and follow the dimensional recommendations given in Tables 8, 9 and 10 for reflow and wave soldering. More detailed information is available on request.



### Surface-Mount Ceramic Multilayer Capacitors Automotive grade

X8G / X8R | 16 V to 100 V





#### **FOOTPRINT DIMENSIONS**

**YAGEO** 

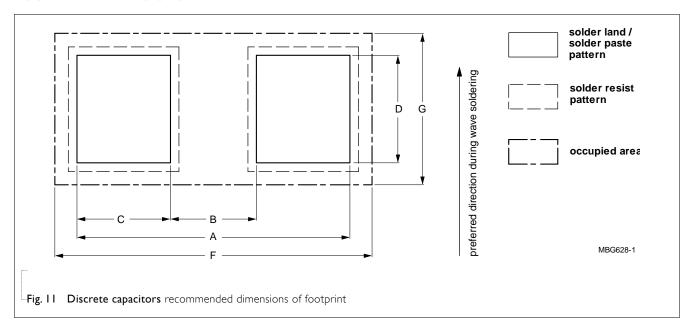



Table II Reflow soldering; for footprint dimensions see Fig.II

| SIZE | FOOTPRINT DIMENSIONS Unit: m |            |            |           |            |            |                           |  |  |  |
|------|------------------------------|------------|------------|-----------|------------|------------|---------------------------|--|--|--|
| CODE | A                            | В          | С          | D         | F          | G          | Processing remarks        |  |  |  |
| 0201 | 0.8 ±0.20                    | 0.25 ±0.05 | 0.28 ±0.07 | 0.3 ±0.10 |            |            |                           |  |  |  |
| 0402 | 1.5 ±0.15                    | 0.5 ±0.15  | 0.5 ±0.15  | 0.5 ±0.15 | 1.75 ±0.15 | 0.95 ±0.15 | _                         |  |  |  |
| 0603 | 2.3 ±0.15                    | 0.7 ±0.15  | 0.8 ±0.15  | 0.9 ±0.15 | 2.7 ±0.15  | 1.5 ±0.15  | _                         |  |  |  |
| 0603 | 2.3 ±0.25                    | 0.5 ±0.25  | 0.9 ±0.25  | 0.9 ±0.25 | 2.7 ±0.25  | 1.5 ±0.25  | IR or hot plate soldering |  |  |  |
| 0805 | 2.8 ±0.25                    | 0.9 ±0.25  | 0.95 ±0.25 | 1.4 ±0.25 | 3.2 ±0.25  | 2.1 ±0.25  | _                         |  |  |  |
| 1206 | 4.0 ±0.25                    | 2.0 ±0.25  | 1.0 ±0.25  | 1.8 ±0.25 | 4.4 ±0.25  | 2.5 ±0.25  | _                         |  |  |  |
| 1210 | 4.0 ±0.25                    | 2.0 ±0.25  | 1.0 ±0.25  | 2.7 ±0.25 | 4.4 ±0.25  | 3.4 ±0.25  |                           |  |  |  |
| 1808 | 5.4 ±0.25                    | 3.3 ±0.25  | 1.05 ±0.25 | 2.3 ±0.25 | 5.8 ±0.25  | 2.9 ±0.25  | _                         |  |  |  |
| 1812 | 5.4 ±0.25                    | 3.3 ±0.25  | 1.05 ±0.25 | 3.5 ±0.25 | 5.8 ±0.25  | 4.1 ±0.25  | Ceramic substrate only    |  |  |  |
| 2220 | 6.6 ±0.25                    | 4.5 ±0.25  | 1.05 ±0.25 | 5.3 ±0.25 | 7.0 ±0.25  | 5.9 ±0.25  |                           |  |  |  |



Surface-Mount Ceramic Multilayer Capacitors | Automotive grade | X8G / X8R | 16 V to 100 V

Product specification 18

#### REVISION HISTORY

**YAGEO** 

| REVISION  | DATE          | CHANGE NOTIFICATION | DESCRIPTION                                             |
|-----------|---------------|---------------------|---------------------------------------------------------|
| Version 2 | May 01, 2022  | -                   | - Add X8G 0603, 680pF to 10nF, 25V to 50V               |
| Version I | Oct, 2, 2019  | -                   | - Add X8G product range, 0805, InF to I0nF, 50V to I00V |
| Version 0 | Dec. 12, 2018 | -                   | - New                                                   |





#### **Surface-Mount Ceramic Multilayer Capacitors**

#### LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.