

Designated client product

This product will be discontinued its production in the near term.

And it is provided for customers currently in use only, with a time limit.

It can not be available for your new project. Please select other new or existing products.

For more information, please contact our sales office in your region.

New Japan Radio Co.,Ltd.

www.njr.com

ADJUSTABLE 3-TERMINAL POSITIVE VOLTAGE REGULATOR

■ GENERAL DESCRIPTION

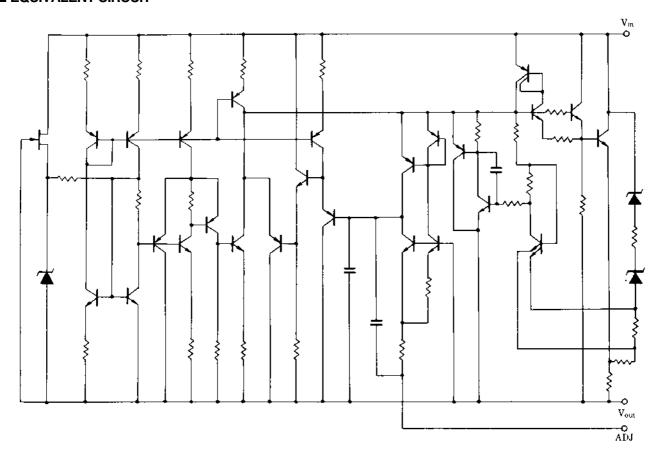
The NJM317 is adjustable 3-terminal positive voltage regulator IC. It is capable of adjustment from typical 1.25V to 37V output voltage range with two resistors. It is capable of supplying in excess of 1.5A with heat sink.

The NJM317 is suitable for the power supply for general purpose.

■ FEATURES

- Operating Voltage (+4.25V to +40V)
- Adjustable Output Down to 1.2V
- Guarantee'd 1.5A Output Current
- Line Regulation typically (0.01%/V)
- Load Regulation typically (0.1%)
- 80dB Ripple Rejection
- Package Outline TO-220F, TO-252
- Bipolar Technology

■ PACKAGE OUTLINE


(TO-220F) (TO-252)

NJM317F

NJM317DL1

- Adjustment
 - 2. Output
 - 3. Input

■ EQUIVALENT CIRCUIT

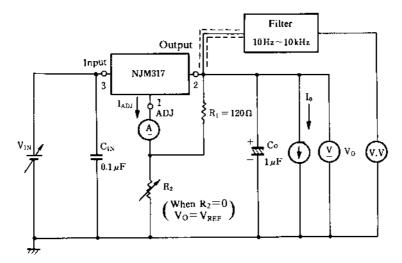
■ ABSOLUTE MAXIMUM RATINGS

 $(T_a=25^{\circ}C)$

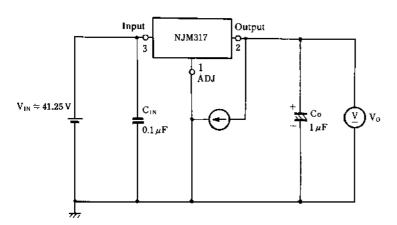
PARAMETER	SYMBOL	RATINGS	UNIT
Input-Output Differential Voltage	V _{IN} - V _O	40 (T _C =25°C)	V
Power Dissipation	P _D	TO-220F 16 (T _C ≤70°C) TO-252 10 (Tc≤25°C) 1 (Ta≤25°C)	W
Operating Temperature Range (Junction) (Ambient)	T _{opr} (j) T _{opr (a)}	-40 to +150 -40 to +85	₆ C
Storage Temperature Range	T _{stg}	-50 to +150	ōC

■ THERMAL CHARACTERISTICS

			TO-220F	TO-252		
Thermal Resistance	Junction-To-Ambient	θја	60	125	0044	
	Junction-To-Case	θјс	5	12.5	ºC/W	

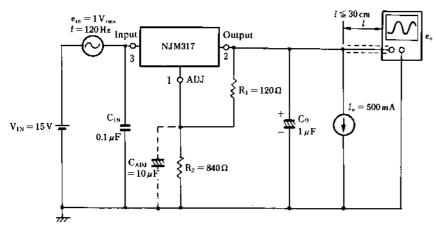

$\blacksquare \textbf{ ELECTRICAL CHARACTERISTICS} \quad (V_{IN} \quad -V_O = 5V, \ I_O = 500 \text{mA}, \ C_{IN} = 0.1 \mu F, \ C_O = 1 \mu F, \ Tj = 25^{\circ} C)$

Measurement is to be conducted in pulse testing.


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Reference Voltage	V _{REF} V _{REF} -V _{IN} V _{REF} -I _O	$3V \le (V_{IN} - V_O) \le 40V$, $I_O = 100$ mA 10 mA $\le I_O \le 1.5$ A (TO-220F) 10 mA $\le I_O \le 500$ mA (TO-252)	1.2 1.2 1.2 1.2	1.25 1.25 1.25 1.25	1.3 1.3 1.3 1.3	V
Reference Voltage Thermal Change	ΔV _{REF} -T	0 ≤ Tj ≤ 125°C	-	5	-	mV
Adjustment Pin Current	I _{ADJ}		-	50	100	μA
Adjustment Pin Current Change	ΔI_{ADJ} - V_{IN} ΔI_{ADJ} - I_{O}	$3V \le (V_{IN} - V_O) \le 40V, I_O=100mA$ $10mA \le I_O \le 1.5A (TO-220F)$ $10mA \le I_O \le 500mA (TO-252)$	- - -	0.2 0.2 0.2	5 5 5	μΑ
Line Regulation	ΔV _O - V _{IN}	$3V \le (V_{IN} - V_O) \le 40V, I_O = 100mA$	-	0.01	0.04	%/V
Load Regulation	ΔV _O - I _O	10mA≤ I_O ≤ 1.5A (TO-220F) 10mA≤ I_O ≤ 500mA (TO-252) V_O ≤ 5V V_O > 5V	-	5 0.1	25 0.5	mV %
Minimum Load Current	I _{O(MIN)}	$(V_{IN} - V_O) = 40V$	-	3.5	10	mA
Peak Output Current	I _{O(PEAK)}	$5V \le (V_{IN} - V_{O}) \le 15V$ $(V_{IN} - V_{O}) = 40V$	1.5 0.15	2.2 0.4	-	А
RMS Output Noise Voltage	V _{NO}	10Hz ≤ f ≤ 10kHz (RMS)	-	0.001	-	%/V ₀
Ripple Rejection Ratio	RR	V_O =10V, f= 120Hz, ΔV_{IN} =1Vrms C_{ADJ} =0 C_{ADJ} =10 μ F	- 66	65 80	-	dB

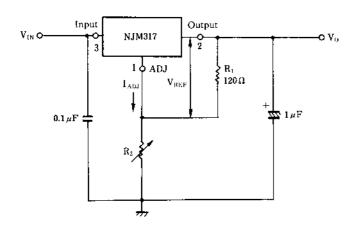
■ TEST CIRCUIT

1) (Reference Voltage Thermal Change), (Adjustment Pin Current Change), (Line Regulation), (Load Regulation), (Peak Output Current), (RMS Output Noise Current)

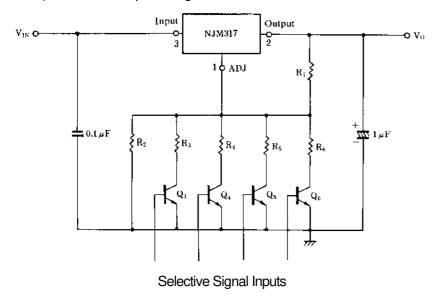


2) Minimum Load Current

 I_{OMIN} : Minimum Io for $V_O = V_{REF}$ (Typical 1.25V) $(V_{IN} = 40 + V_{REF})$


3) Ripple Rejection

Ripple Rejection = $20log_{10} \left(\frac{e_{IN}}{e_o} \right) [dB]$


■ TYPICAL APPLICATIONS

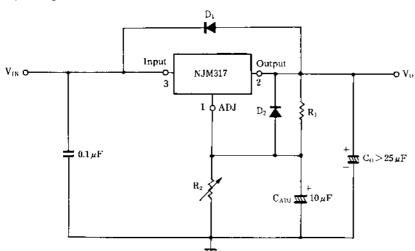
1) $V_O = 1.25V$ to 37V Adjustable Voltage Regulator

$$V_O = V_{REF} x \left(1 + \frac{R_2}{R_1} \right) + R_2 x I_{ADJ}$$

2) Selected Output Voltage

The transistors Q_3 are switched by selective signal inputs and the output voltage V_O is controlled by the transistor on or off.

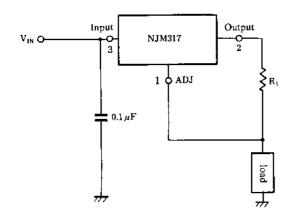
(Example)


When all transistor is off,

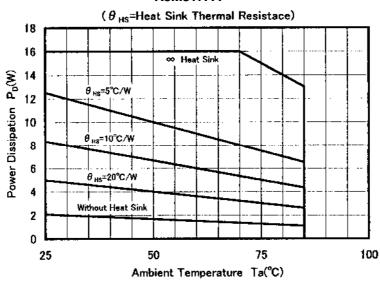
$$V_O = V_{REF} x \left(1 + \frac{R_2}{R_1}\right)$$

When the transistor Q_3 is on, and others are off.

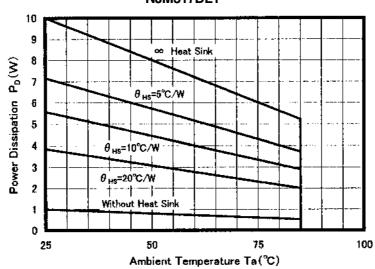
$$V_O = V_{REF} x \left\{ 1 + \frac{R_2 \times R_3}{(R_2 + R_3) \times R_1} \right\}$$


3) Regulater with Protection Diodes

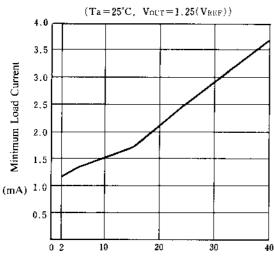
D₁ protects about C_O
D₂ protects about C_{ADJ}


^{*}I_{ADJ} ignore.

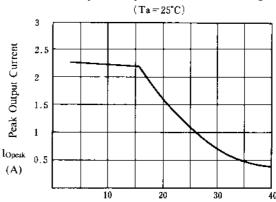
4) Constant Current Regulator



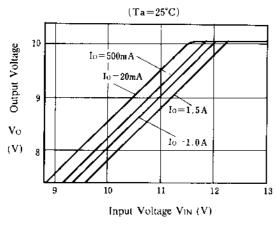
 $\begin{aligned} R_1 &\leq 125\Omega \\ 10\text{mA} &\leq I_O \leq 1.5\text{A} \\ I_O &= \frac{V_{\text{REF}}}{R_1} \end{aligned}$


NJM317FA

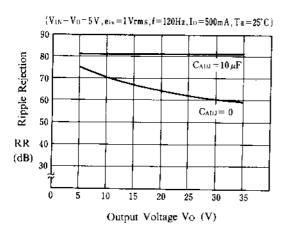
NJM317DL1



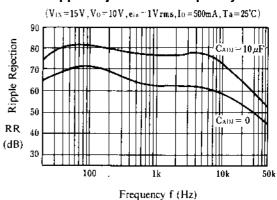
■ TYPICAL CHARACTERISTICS Minimum Load Current

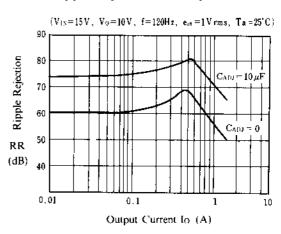

Input-Output Differential Voltage $V_{\rm IN} = V_{\rm O}$ (V)

Peak Output Current vs. Input-Output Differential Voltage

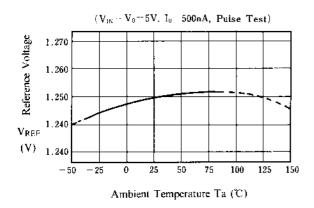


Input-output Differential Voltage V_{IN}=V_O (V)

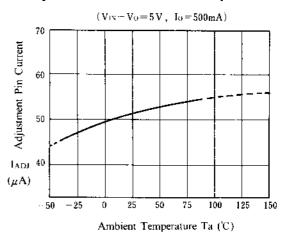

Output Voltage vs. Input Voltage.


Ripple Rejection vs. Output Voltage

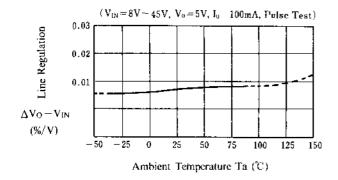
Ripple Rejection vs. Frequency

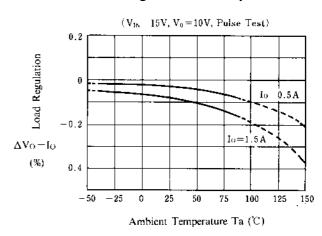


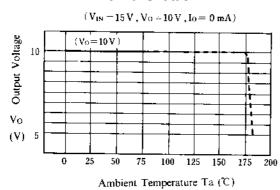
Ripple Rejection vs. Output Current



■ TYPICAL CHARACTERISTICS


Reference Voltage vs. Temperature


Adjustment Pin Current vs. Temperature


Line Regulation vs. Temperature

Load Regulation vs. Temperature

Thermal Shutdown

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.