
SiHD5N80AE

Vishay Siliconix

E Series Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V) at T _J max.	850			
R _{DS(on)} typ. (Ω) at 25 °C	$V_{GS} = 10 V$	1.17		
Q _g max. (nC)	16.5			
Q _{gs} (nC)	3			
Q _{gd} (nC)	6			
Configuration	Single			

FEATURES

- Low figure-of-merit (FOM) Ron x Qg
- Low effective capacitance (C_{iss})
- · Reduced switching and conduction losses
- Ultra low gate charge (Qg)
- Avalanche energy rated (UIS)
- Integrated Zener diode ESD protection
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
 - Renewable energy

ORDERING INFORMATION				
Package	DPAK (TO-252)			
Lead (Pb)-free and halogen-free	SiHD5N80AE-GE3			

ABSOLUTE MAXIMUM RATINGS ($T_c = 25 \degree C$, unless otherwise noted)					
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-source voltage			V _{DS}	800	V
Gate-source voltage			V _{GS}	± 30	v
Continuous drain current (T _J = 150 °C)	V _{GS} at 10 V	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$ $T_{\rm C} = 100 \ ^{\circ}{\rm C}$	Ι _D	4.4	
	VGS at 10 V	T _C = 100 °C		2.8	А
Pulsed drain current ^a			I _{DM}	7	
Linear derating factor				0.5	W/°C
Single pulse avalanche energy ^b			E _{AS}	17	mJ
Maximum power dissipation			PD	62.5	W
Operating junction and storage temperature range			T _J , T _{stg}	-55 to +150	°C
Drain-source voltage slope $T_J = 125 \text{ °C}$		dv/dt	70		
Reverse diode dv/dt ^d			0.3	V/ns	
Soldering recommendations (peak temperature) ^c For 10 s			260	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature

b. V_{DD} = 140 V, starting T_J = 25 °C, L = 28.2 mH, R_g = 25 Ω , I_{AS} = 1.1 A

c. 1.6 mm from case

d. $I_{SD} \leq I_D$, di/dt = 100 A/µs, starting T_J = 25 °C

S20-0945-Rev. A, 14-Dec-2020

1

Document Number: 92374

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

COMPLIANT

HALOGEN

FREE

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	THERMAL RESISTANCE RATINGS								
$\begin{tabular}{ c c c c c c c c c c c c c $	PARAMETER	SYMBOL	MAX.		UNIT				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-ambient	R _{thJA}	62		°C AN				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum junction-to-case (drain)	R _{thJC}		2			°C/W		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
	SPECIFICATIONS ($T_J = 25 \ ^{\circ}C$,	unless otherwi	se noted)						
$\begin{array}{ c c c c c c c } \hline Drain-source breakdown voltage & V_{DS} & V_{GS} = 0 \ V, \ I_D = 250 \ \mu A & 800 & - & - & V \\ \hline V_{DS} temperature coefficient & \Delta V_{DS}/T_J & Reference to 25 \ ^{\circ}C, \ I_D = 1 \ mA & - & 0.8 & - & V^{\circ}C \\ \hline Gate-source threshold voltage (N) & V_{GS}(N) & V_{DS} = V_{GS}, \ I_D = 250 \ \mu A & 2 & - & 4 & V \\ \hline Gate-source threshold voltage (N) & V_{GS}(N) & V_{DS} = V_{DS} + 20 \ V & - & - & \pm 10 \\ \hline V_{GS} = \pm 20 \ V & - & - & \pm 50 \\ \hline V_{GS} = \pm 30 \ V & - & - & \pm 50 \\ \hline V_{DS} = 640 \ V, \ V_{GS} = 0 \ V & - & - & 10 \\ \hline V_{DS} = 640 \ V, \ V_{GS} = 0 \ V & - & - & 10 \\ \hline Drain-source on-state resistance & R_{DS(on)} & V_{GS} = 10 \ V & I_D = 1.5 \ A & - & 1.2 & - & S \\ \hline Drain-source on-state resistance & R_{DS(on)} & V_{DS} = 30 \ V, \ V_{DS} = 30 \ V, \ I_D = 2 \ A & - & 1.2 & - & S \\ \hline Drain-source on-state resistance & R_{DS(on)} & V_{DS} = 100 \ V, \ V_{DS} = 0 \ V \ V_{DS} = 100 \ V, \ V_{DS} = 0 \ V \ V_{DS} = 100 \ V, \ V_{DS} = 0 \ V \ V_{DS} = 100 \ V, \ V_{DS} = 0 \ V \$	PARAMETER	SYMBOL	TES	T CONDITIONS	MIN.	TYP.	MAX.	UNIT	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static								
$ \begin{array}{ c c c c c c } \hline Gate-source threshold voltage (N) & V_{GS(th)} & V_{GS(th)} & V_{GS} = V_{GS}, \ b_{2} = 250 \ \mu A & 2 & - & 4 & V \\ \hline Gate-source leakage & l_{GSS} & V_{GS} = 20 V & - & - & \pm 10 \\ \hline V_{GS} = \pm 20 V & - & - & \pm 50 \\ \hline V_{GS} = \pm 20 V & - & - & \pm 50 \\ \hline V_{GS} = \pm 20 V & V_{GS} = 0 V & - & - & \pm 50 \\ \hline V_{DS} = 800 V, V_{GS} = 0 V & - & - & 10 \\ \hline V_{DS} = 800 V, V_{GS} = 0 V & - & - & 10 \\ \hline V_{DS} = 800 V, V_{GS} = 0 V & - & - & 10 \\ \hline V_{DS} = 800 V, V_{GS} = 0 V & J_{D} = 1.5 A & - & 1.17 & 1.35 \ \Omega \\ \hline \text{Forward transconductance } & g_{fs} & V_{DS} = 30 V, \ J_{D} = 2 A & - & 1.2 & - & S \\ \hline \text{Dyname} & & & & & & & & & & \\ \hline \text{Input capacitance} & C_{Gs} & V_{GS} = 0 V, & & & & & & & & & & \\ \hline \text{Output capacitance} & C_{Gs} & V_{DS} = 100 V, & & & & & & & & & & & & \\ \hline \text{Reverse transfer capacitance} & C_{rss} & & & & & & & & & & & & & & \\ \hline \text{Effective output capacitance, energy} & C_{O(eff)} & & & & & & & & & & & & & & & & \\ \hline \text{Total gate charge} & Q_{g} & & & & & & & & & & & & & & & & \\ \hline \text{Gate-source charge} & Q_{gd} & & & & & & & & & & & & & & & \\ \hline \text{Turm-on delay time} & t_{d(cn)} & & & & & & & & & & & & & & & & \\ \hline \text{Turm-on delay time} & t_{d(cn)} & & & & & & & & & & & & & & & & & \\ \hline \text{Turm-on delay time} & t_{d(cn)} & & & & & & & & & & & & & & & & \\ \hline \text{Turm-on delay time} & t_{d(cn)} & & & & & & & & & & & & & & & & & \\ \hline \text{Fall time} & t_{f} & & & & & & & & & & & & & & & & & \\ \hline \text{Turm-on delay time} & t_{f} & & & & & & & & & & & & & & & & & \\ \hline \text{Turm-on delay time} & t_{f} & & & & & & & & & & & & & & & & & & &$	Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 250 μA	800	-	-	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C, I _D = 1 mA	-	0.8	-	V/°C	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source threshold voltage (N)	V _{GS(th)}	V _{DS} =	· V _{GS} , I _D = 250 μA	2	-	4	V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, v	$V_{\rm GS}$ = ± 20 V	-	-	± 10		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source leakage	IGSS	, v	V _{GS} = ± 30 V	-	-	± 50	μΑ	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zava gata valtaga dvain avvent		V _{DS} =	800 V, V _{GS} = 0 V	-	-	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero gate voltage drain current	IDSS	V _{DS} = 640 V	', V _{GS} = 0 V, T _J = 125 °C	-	-	10	μA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 1.5 A	-	1.17	1.35	Ω	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward transconductance ^a		V _{DS}	= 30 V, I _D = 2 A	-	1.2	-	S	
$ \begin{array}{ c c c c c c } \hline \text{Output capacitance} & C_{\text{oss}} & V_{\text{DS}} = 100 \ \text{V}, \\ \hline \text{Reverse transfer capacitance} & C_{\text{rss}} & \hline \text{f} = 1 \ \text{MHz} & - & 4 & - \\ \hline \text{Ff ctive output capacitance, energy} & C_{\text{oler}} & \\ \hline \text{Effective output capacitance, time} & C_{\text{o}(tr)} & \\ \hline \text{Effective output capacitance, time} & C_{\text{o}(tr)} & \\ \hline \text{Cotal gate charge} & Q_{\text{g}} & \\ \hline \text{Cotal gate charge} & Q_{\text{g}} & \\ \hline \text{Cate data charge} & Q_{\text{g}} & \\ \hline \text{Gate-source charge} & Q_{\text{g}d} & \\ \hline \text{Turn-on delay time} & t_{d(on)} & \\ \hline \text{Reverse transfer capacitance} & t_{r} & \\ \hline \text{V}_{\text{GS}} = 10 \ \text{V}, \ \text{N}_{\text{S}} = 640 \ \text{V}, \ \text{N}_{\text{D}} = 640 \ \text{V}, \ \text{N}_{\text{D}} = 640 \ \text{V}, \ \text{N}_{\text{B}} = 2 \ \text{A}, \ \text{V}_{\text{DS}} = 640 \ \text{V}, \ \text{D} = 2 \ \text{A}, \ \text{V}_{\text{D}} = 640 \ \text{V}, \ \text{D} = 2 \ \text{A}, \ \text{V}_{\text{B}} = 91 \ \text{O} & \hline \begin{array}{c} - & 11 & 16.5 \\ - & 111 & 16.5 \\ - & 3 & - \\ \hline - & 6 & - \\ \hline - & 6 & - \\ \hline \hline \text{Cate-drain charge} & Q_{\text{gd}} & \\ \hline \text{Turn-on delay time} & t_{d(on)} & \\ \hline \text{Rise time} & t_{r} & \\ \hline \text{Turn-off delay time} & t_{d(off)} & \\ \hline \text{Fall time} & t_{r} & \\ \hline \text{Gate input resistance} & \text{Rg} & \text{f} = 1 \ \text{MHz, open drain} & 1.6 \ \text{3.2} \ \text{6.4} \ \Omega & \Omega & \\ \hline \hline \text{Drain-Source Body Diode Characteristics} & \\ \hline \hline \text{Continuous source-drain diode current} & I_{\text{S}} & \\ \hline \text{Pulsed diode forward current} & I_{\text{S}} & \\ \hline \text{MOSFET symbol} & \\ \text{showing the} & \\ \text{integral reverse} & p \ n \text{ junction diode} & \\ \hline \hline \text{Continuous source-drain diode current} & I_{\text{S}} & \\ \hline \text{Pulsed diode forward voltage} & V_{\text{SD}} & \\ \hline \text{TJ} = 25 \ \ ^{\circ}, \ \text{Ig} = 2 \ \text{A}, \ \text{V}_{\text{G}} = 2 \ \text{A}, \\ \hline \text{C}, \ \text{I}, \ \text{I},$								•	
$ \begin{array}{ c c c c c c } \hline \text{Output capacitance} & C_{\text{oss}} & V_{\text{DS}} = 100 \ \text{V}, \\ \hline \text{Reverse transfer capacitance} & C_{\text{rss}} & \hline \text{f} = 1 \ \text{MHz} & - & 4 & - \\ \hline \text{Ff ctive output capacitance, energy} & C_{\text{oler}} & \\ \hline \text{Effective output capacitance, time} & C_{\text{o}(tr)} & \\ \hline \text{Effective output capacitance, time} & C_{\text{o}(tr)} & \\ \hline \text{Cotal gate charge} & Q_{\text{g}} & \\ \hline \text{Cotal gate charge} & Q_{\text{g}} & \\ \hline \text{Cate data charge} & Q_{\text{g}} & \\ \hline \text{Gate-source charge} & Q_{\text{g}d} & \\ \hline \text{Turn-on delay time} & t_{d(on)} & \\ \hline \text{Reverse transfer capacitance} & t_{r} & \\ \hline \text{V}_{\text{GS}} = 10 \ \text{V}, \ \text{N}_{\text{S}} = 640 \ \text{V}, \ \text{N}_{\text{D}} = 640 \ \text{V}, \ \text{N}_{\text{D}} = 640 \ \text{V}, \ \text{N}_{\text{B}} = 2 \ \text{A}, \ \text{V}_{\text{DS}} = 640 \ \text{V}, \ \text{D} = 2 \ \text{A}, \ \text{V}_{\text{D}} = 640 \ \text{V}, \ \text{D} = 2 \ \text{A}, \ \text{V}_{\text{B}} = 91 \ \text{O} & \hline \begin{array}{c} - & 11 & 16.5 \\ - & 111 & 16.5 \\ - & 3 & - \\ \hline - & 6 & - \\ \hline - & 6 & - \\ \hline \hline \text{Cate-drain charge} & Q_{\text{gd}} & \\ \hline \text{Turn-on delay time} & t_{d(on)} & \\ \hline \text{Rise time} & t_{r} & \\ \hline \text{Turn-off delay time} & t_{d(off)} & \\ \hline \text{Fall time} & t_{r} & \\ \hline \text{Gate input resistance} & \text{Rg} & \text{f} = 1 \ \text{MHz, open drain} & 1.6 \ \text{3.2} \ \text{6.4} \ \Omega & \Omega & \\ \hline \hline \text{Drain-Source Body Diode Characteristics} & \\ \hline \hline \text{Continuous source-drain diode current} & I_{\text{S}} & \\ \hline \text{Pulsed diode forward current} & I_{\text{S}} & \\ \hline \text{MOSFET symbol} & \\ \text{showing the} & \\ \text{integral reverse} & p \ n \text{ junction diode} & \\ \hline \hline \text{Continuous source-drain diode current} & I_{\text{S}} & \\ \hline \text{Pulsed diode forward voltage} & V_{\text{SD}} & \\ \hline \text{TJ} = 25 \ \ ^{\circ}, \ \text{Ig} = 2 \ \text{A}, \ \text{V}_{\text{G}} = 2 \ \text{A}, \\ \hline \text{C}, \ \text{I}, \ \text{I},$	Input capacitance	C _{iss}		$V_{cc} = 0 V$	-	321	-		
$ \begin{array}{ c c c c c c } \hline Reverse transfer capacitance & C_{rss} & f = 1 \ MHz & - & 4 & - \\ \hline Effective output capacitance, energy related a & & & \\ \hline Effective output capacitance, time related b & & \\ \hline C_{o(tr)} & C_{o(tr)} & & & \\ \hline V_{DS} = 0 \ V \ to \ 480 \ V, \ V_{GS} = 0 \ V \\ \hline P & & & \\ \hline P & & & \\ \hline Total gate charge & Q_g & & \\ \hline C_{ate-drain charge} & Q_{gd} & & \\ \hline Turn-on \ delay time & t_{d(on)} & & \\ \hline Turn-onf \ delay time & t_{d(off)} & & \\ \hline Fall time & t_{f} & & \\ \hline Turn-off \ delay time & t_{f} & & \\ \hline C_{ate-drain charge & Q_{gd} & & \\ \hline Turn-off \ delay time & t_{f} & & \\ \hline Turn-off \ delay time & t_{f} & & \\ \hline Fall time & t_{f} & & \\ \hline Continuous source-drain \ diode \ current & I_{S} & & \\ \hline Pulsed \ diode \ forward \ current & I_{SM} & & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & V_{SD} & \\ \hline Pulsed \ diode \ forward \ voltage & \\ \hline Pulsed \ diode \ forward \ voltage & \\ \hline Pulsed \ diode \ forward \ voltage & \\ \hline Pulsed \ diode \ forward \ voltage & \\ \hline Pulsed \ diode \ forward \ forward \ for$	Output capacitance		, ,		-	20	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse transfer capacitance				-	4	-		
$ \begin{array}{c c c c c c c } \hline \mbox{Hective output capacitance, time} & C_{0(tr)} & & & & & & & & & & & & & & & & & & &$					-	14	-	pF	
$ \begin{array}{c c c c c c c c c } \hline Gate-source charge & Q_{gs} & $V_{GS} = 10 \ V$ & $I_D = 2 \ A, \ V_{DS} = 640 \ V$ & $-$ & 3 & $-$ & nC \\ \hline Gate-drain charge & Q_{gd} & $V_{GS} = 10 \ V$ & $I_D = 2 \ A, \ V_{DS} = 640 \ V$ & $-$ & 6 & $-$ & $-$ & 12 & 24 \\ \hline $-$ & 12 & 24 & $-$ & 8 & 16 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 28 & 56 & $-$ & $-$ & $-$ & 28 & 56 & $-$ & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 10 & $-$ & $-$ & 10 & 20 & $-$ & $-$ & 10 & 10 & $-$ & $-$ & 10 & 10 & $-$ & $-$ & 10 & 10 & $-$ & $-$ & 10 & 10 & $-$ & $-$ & 10 & $-$ & $-$ & 1.2 & V \\ \hline \hline $Pulsed diode forward current & I_{S} & $I_{J} = 25 \ \ \ \ C, \ $I_{S} = 2 \ A, \ V_{GS} = 0 \ V$ & $-$ & $-$ & 1.2 & V \\ \hline $Reverse recovery time & t_{rr} & $-$ & 1.2 & V & $-$ & $-$ & $		C _{o(tr)}	$v_{\rm DS} = 0$	$V_{DS} = 0 V$ to 480 V, $V_{GS} = 0 V$		71	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total gate charge	Qg			-	11	16.5		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source charge	Q _{gs}	$V_{GS} = 10 V$	$I_D = 2 \text{ A}, V_{DS} = 640 \text{ V}$	-	3	-	nC	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-drain charge	Q _{gd}			-	6	-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-on delay time	t _{d(on)}			-	12	24		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise time		V _{DD} =	= 640 V, I _D = 2 A,	-	8	16		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-off delay time	t _{d(off)}	V _{GS} =			10	20	ns	
Drain-Source Body Diode CharacteristicsContinuous source-drain diode currentIsMOSFET symbol showing the integral reverse p - n junction diode-4.4APulsed diode forward currentIsM I_{SM} $T_J = 25 \ ^{\circ}C$, Is = 2 A, V_{GS} = 0 V7Diode forward voltageV_{SD} $T_J = 25 \ ^{\circ}C$, Is = 2 A, V_{GS} = 0 V1.2VReverse recovery time t_{rr} $T_J = 25 \ ^{\circ}C$, Is = 1s = 2 A, 	Fall time	t _f				28	56		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate input resistance	Rg	f = 1	MHz, open drain	1.6	3.2	6.4	Ω	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Body Diode Characterist	ics							
Pulsed diode forward currentIIII7Diode forward voltageVSDTJ = 25 °C, IS = 2 A, VGS = 0 V1.2VReverse recovery time t_{rr} TJ = 25 °C, IF = IS = 2 A, di/dt = 100 A/µS, VR = 25 V-267534ns	Continuous source-drain diode current	I _S	showing the integral reverse		-	-	4.4		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Pulsed diode forward current	I _{SM}			-	-	7		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Diode forward voltage	V _{SD}	T _J = 25 °	C, I _S = 2 A, V _{GS} = 0 V	-	- 1	1.2	V	
Reverse recovery charge Q_{rr} $T_J = 25 \ ^{\circ}C$, $I_F = I_S = 2 \ ^{\circ}A$, $di/dt = 100 \ ^{\circ}A/\mu s$, $V_B = 25 \ ^{\circ}V$ -1.22.4 μC	Reverse recovery time	-			-	267		ns	
$di/dt = 100 \text{ A/}\mu\text{s}, \forall R = 25 \text{ V}$					-				
			ai/at = 1	dı/dt = 100 A/µs, V _R = 25 V			- 1		

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 V to 480 V V_{DSS}

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 V to 480 V V_{DSS}

SiHD5N80AE

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

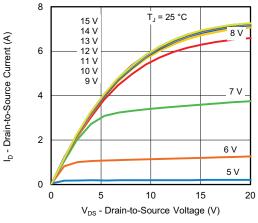


Fig. 1 - Typical Output Characteristics

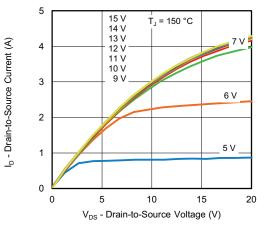


Fig. 2 - Typical Output Characteristics

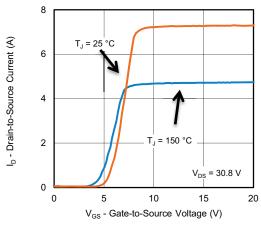


Fig. 3 - Typical Transfer Characteristics

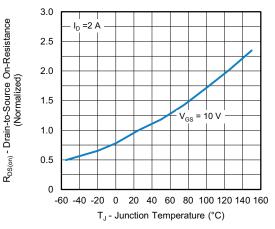


Fig. 4 - Normalized On-Resistance vs. Temperature

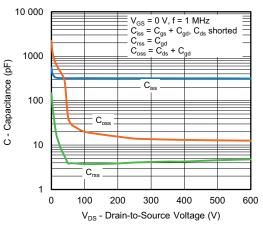
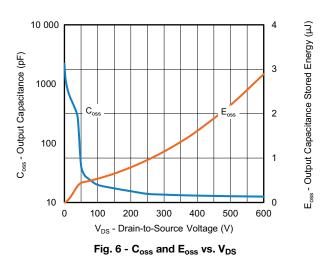



Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

S20-0945-Rev. A, 14-Dec-2020

3 For technical questions, contact: <u>hvm@vishay.com</u> Document Number: 92374

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SiHD5N80AE

Vishay Siliconix

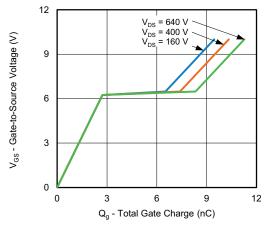


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

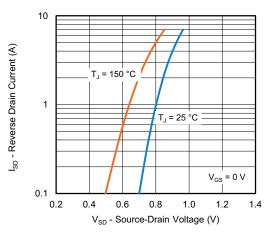


Fig. 8 - Typical Source-Drain Diode Forward Voltage

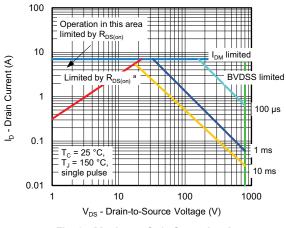


Fig. 9 - Maximum Safe Operating Area

Note

a. V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

4

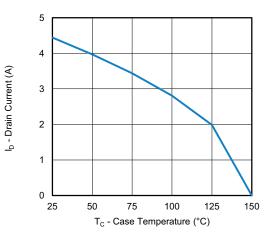


Fig. 10 - Maximum Drain Current vs. Case Temperature

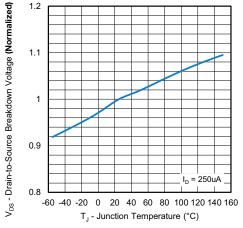


Fig. 11 - Normalized Breakdown Voltage vs. Temperature

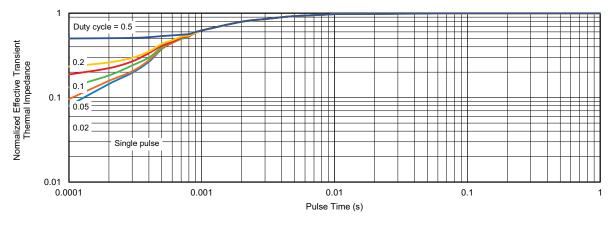


Fig. 12 - Normalized Transient Thermal Impedance, Junction-to-Case

Fig. 13 - Switching Time Test Circuit

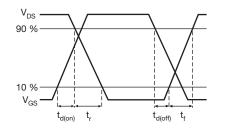


Fig. 14 - Switching Time Waveforms

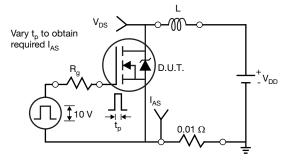


Fig. 15 - Unclamped Inductive Test Circuit

S20-0945-Rev. A, 14-Dec-2020

5 For technical questions, contact: <u>hvm@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

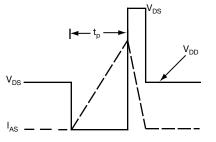


Fig. 16 - Unclamped Inductive Waveforms

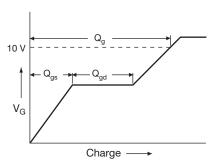
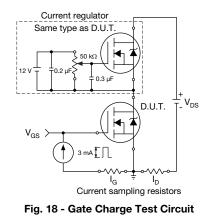



Fig. 17 - Basic Gate Charge Waveform

Peak Diode Recovery dv/dt Test Circuit

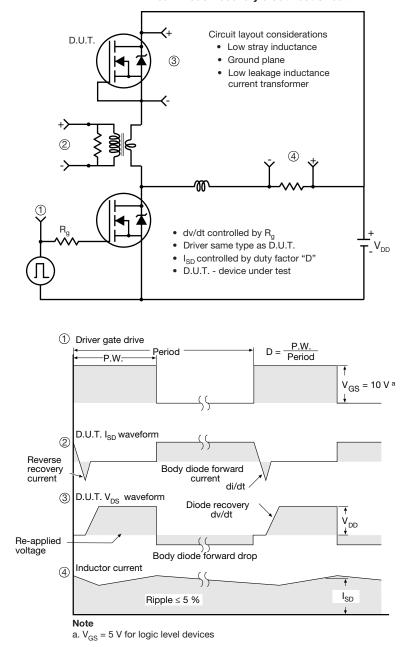
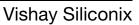
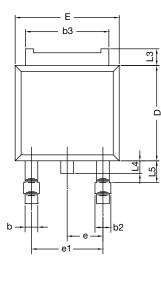
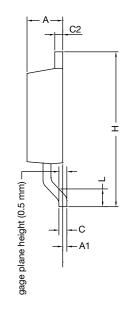
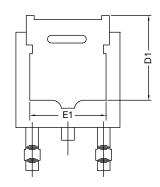



Fig. 19 - For N-Channel

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?92374.

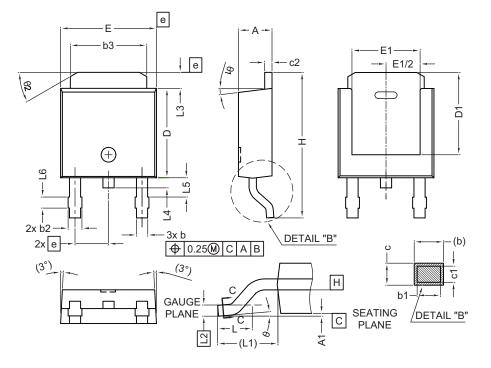

6





TO-252AA Case Outline

VERSION 1: FACILITY CODE = Y


	MILLIMETERS			
DIM.	MIN.	MAX.		
А	2.18	2.38		
A1	-	0.127		
b	0.64	0.88		
b2	0.76	1.14		
b3	4.95	5.46		
С	0.46	0.61		
C2	0.46	0.89		
D	5.97	6.22		
D1	4.10	-		
E	6.35	6.73		
E1	4.32	-		
Н	9.40	10.41		
е	2.28	2.28 BSC		
e1	4.56	4.56 BSC		
L	1.40	1.78		
L3	0.89	1.27		
L4	-	1.02		
L5	1.01	1.52		

Note

• Dimension L3 is for reference only

VERSION 2: FACILITY CODE = N

	MILLIMETERS		
DIM.	MIN.	MAX.	
A	2.18	2.39	
A1	-	0.13	
b	0.65	0.89	
b1	0.64	0.79	
b2	0.76	1.13	
b3	4.95	5.46	
С	0.46	0.61	
c1	0.41	0.56	
c2	0.46	0.60	
D	5.97	6.22	
D1	5.21	-	
E	6.35	6.73	
E1	4.32 -		
e	2.29 BSC		
Н	9.94 10.34		

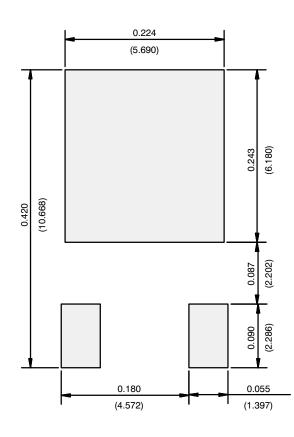
	MILLIMETERS		
DIM.	MIN.	MAX.	
L	1.50	1.78	
L1	2.74 ref.		
L2	0.51 BSC		
L3	0.89	1.27	
L4	-	1.02	
L5	1.14	1.49	
L6	0.65	0.85	
θ	0°	10°	
θ1	0°	15°	
θ2	25° 35°		

Notes

• Dimensioning and tolerance confirm to ASME Y14.5M-1994

• All dimensions are in millimeters. Angles are in degrees

• Heat sink side flash is max. 0.8 mm


Radius on terminal is optional

ECN: E22-0399-Rev. R, 03-Oct-2022 DWG: 5347

2

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.