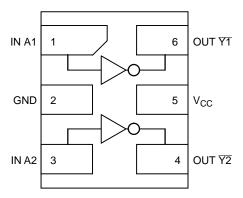
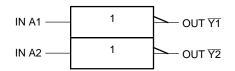
NLU2G04


Dual Inverter

The NLU2G04 MiniGate[™] is an advanced high–speed CMOS dual inverter in ultra–small footprint.


The NLU2G04 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.

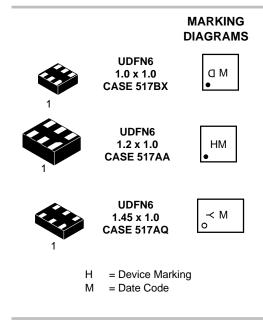
Features

- High Speed: $t_{PD} = 3.5 \text{ ns} (Typ) @ V_{CC} = 5.0 \text{ V}$
- Low Power Dissipation: $I_{CC} = 1 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- Power Down Protection Provided on inputs
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Packages
- These are Pb–Free Devices

Figure 2. Logic Symbol

PIN ASSIGNMENT

1	IN A1
2	GND
3	IN A2
4	OUT Y2
5	V _{CC}
6	OUT <u>Y1</u>


FUNCTION TABLE

A	Ŷ
L	H
H	L

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +7.0	V
V _{IN}	DC Input Voltage		-0.5 to +7.0	V
V _{OUT}	DC Output Voltage		-0.5 to +7.0	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	±20	mA
Ι _Ο	DC Output Source/Sink Current		±12.5	mA
I _{CC}	DC Supply Current Per Supply Pin		±25	mA
I _{GND}	DC Ground Current per Ground Pin		±25	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature Under Bias		150	°C
MSL	Moisture Sensitivity		Level 1	
F _R	Flammability Rating Oxygen	Index: 28 to 34	UL 94 V–0 @ 0.125 in	
ILATCHUP	Latchup Performance Above V_{CC} and Below GND a	t 125 °C (Note 2)	±500	mA

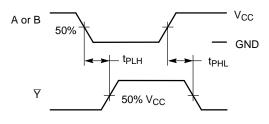
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.
Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

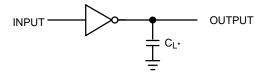
Symbol	Parameter	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V
V _{IN}	Digital Input Voltage	0	5.5	V
V _{OUT}	Output Voltage	0	5.5	V
T _A	Operating Free–Air Temperature	-55	+125	°C
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0 0	100 20	ns/V

DC ELECTRICAL CHARACTERISTICS

				V _{CC} T _A = 25 °C		С	T _A = +85°C		T _A = −55°C to +125°C		
Symbol	mbol Parameter Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit	
V _{IH}	Low–Level Input Voltage		1.65	0.75 x V _{CC}			0.75 x V _{CC}				V
			2.3 to 5.5	0.70 x V _{CC}			0.70 x V _{CC}				
V _{IL}	Low–Level Input Voltage		1.65			0.25 x V _{CC}		0.25 x V _{CC}		0.25 x V _{CC}	V
			2.3 to 5.5			0.30 x V _{CC}		0.30 x V _{CC}		0.30 x V _{CC}]
V _{OH}	High–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \ \mu\text{A}$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		1.9 2.9 4.4		V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$	3.0 4.5	2.58 3.94			2.48 3.80		2.34 3.66		V
V _{OL}	Low–Level Output Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \ \mu \text{A}$	2.0 3.0 4.5		0 0 0	0.1 0.1 0.1		0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$	3.0 4.5			0.36 0.36		0.44 0.44		0.52 0.52	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
Icc	Quiescent Supply Current	$0 \le V_{IN} \le V_{CC}$	5.5			1.0		10		40	μΑ


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

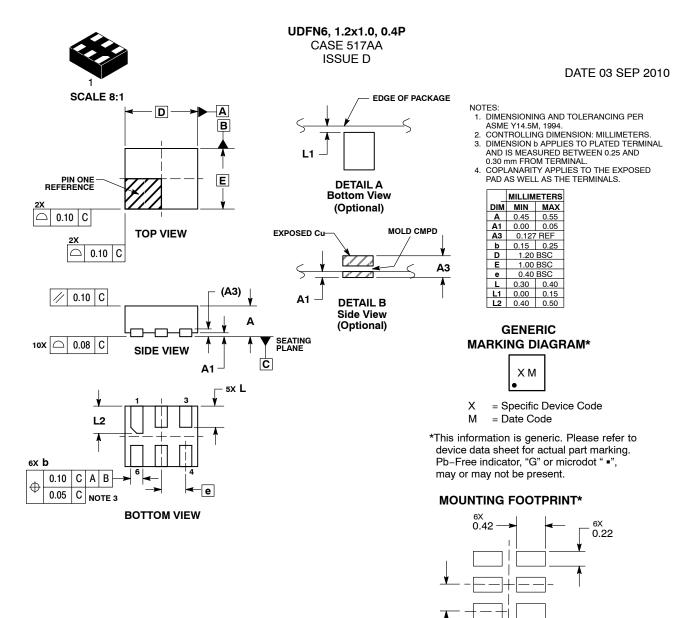
AC ELECTRICAL CHARACTERISTICS (Input t_r = t_f = 3.0 nS)


		v _{cc}	Test	т	_A = 25 °	с	T _A = +	-85°C		55°C to 5°C	
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} ,	Propagation Delay,	3.0 to	C _L = 15 pF		4.5	7.1		8.5		10.0	ns
t _{PHL}	Input A to Output \overline{Y}	4.5 to	C _L = 50 pF		6.4	10.6		12.0		14.5	
			C _L = 15 pF		3.5	5.5		6.5		8.0	
	5.5	5.5	C _L = 50 pF		4.5	7.5		8.5		10.0	
C _{IN}	Input Capacitance				4	10		10		10.0	pF
C _{PD}	Power Dissipation Capacitance (Note 3)	5.0			8.0						pF

3. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption: $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

NLU2G04

*Includes all probe and jig capacitance. A 1–MHz square input wave is recommended for propagation delay tests.


Figure 4. Test Circuit

ORDERING INFORMATION

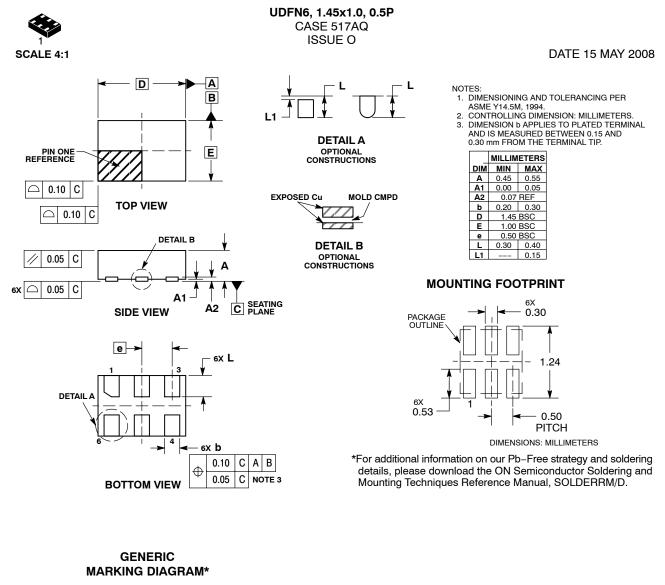
Device	Package	Shipping [†]
NLU2G04MUTCG	UDFN6, 1.2 x 1.0, 0.4P (Pb-Free)	3000 / Tape & Reel
NLU2G04AMUTCG	UDFN6, 1.45 x 1.0, 0.5P (Pb-Free)	3000 / Tape & Reel
NLU2G04CMUTCG	UDFN6, 1.0 x 1.0, 0.35P (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ONSEM¹.

DIMENSIONS: MILLIMETERS

1.07

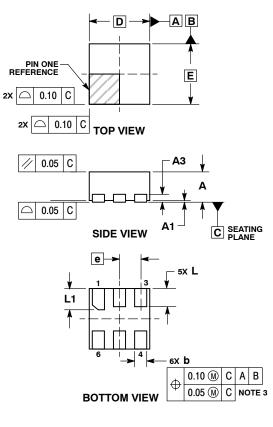

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

0.40

PITCH

DOCUMENT NUMBER:	98AON22068D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	6 PIN UDFN, 1.2X1.0, 0.4P		PAGE 1 OF 1			
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi making liability arising out of the application or use	, LLC dba onsemi or its subsidiaries in the United States and/or other cours es no warranty, representation or guarantee regarding the suitability of its pro- of any product or circuit, and specifically disclaims any and all liability, inclu- e under its patent rights nor the rights of others.	oducts for any particular			

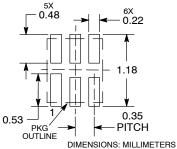
onsemi


- X = Specific Device Code
- M = Date Code
- *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present.

•						
PAGE 1 OF 1						
onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular						

DUSem

SCALE 4:1


UDFN6, 1x1, 0.35P CASE 517BX **ISSUE O**

DATE 18 MAY 2011

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN A DE ADD & OR MULTICAL TERMINAL TR
- AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

BURRS AND MOLD FL					
	MILLIMETERS				
DIM	MIN MAX				
Α	0.45	0.55			
A1	0.00 0.05				
A3	0.13 REF				
b	0.12 0.22				
D	1.00	BSC			
Е	1.00 BSC				
е	0.35 BSC				
L	0.25 0.35				
L1	0.30	0.40			

RECOMMENDED **SOLDERING FOOTPRINT***

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC **MARKING DIAGRAM***

X = Specific Device Code M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON56787E	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	UDFN6, 1x1, 0.35P		PAGE 1 OF 1		
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales