

April 2000

ТΜ

FQB5N40 / FQI5N40 **400V N-Channel MOSFET**

General Description

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, electronic lamp ballast based on half bridge.

Features

- 4.5A, 400V, R_{DS(on)} = 1.6Ω @V_{GS} = 10 V
 Low gate charge (typical 10 nC)
- Low Crss (typical 7.0 pF)
- Fast switching
- · 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter		FQB5N40 / FQI5N40	Units
V _{DSS}	Drain-Source Voltage		400	V
I _D	Drain Current - Continuous (T _C = 25°C)		4.5	А
	- Continuous (T _C = 100°C)		2.84	А
I _{DM}	Drain Current - Pulsed	(Note 1)	18	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	290	mJ
I _{AR}	Avalanche Current	(Note 1)	4.5	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	7.0	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
PD	Power Dissipation (T _A = 25°C) *		3.13	W
	Power Dissipation $(T_C = 25^{\circ}C)$		70	W
	- Derate above 25°C		0.56	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case		1.79	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient *		40	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W
* When mounter	ed on the minimum pad size recommended (PCB Mount)	·	·	

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	400			V
ΔΒV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu A$, Referenced to	25°C	0.38		V/°C
I _{DSS}	7 0 1 1 1 1 5 1 0 1	V _{DS} = 400 V, V _{GS} = 0 V			1	μA
Zero Gate Voltage Drain Current	V _{DS} = 320 V, T _C = 125°C			10	μA	
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	aractoristics		, i i i i i i i i i i i i i i i i i i i			
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 2.25 A		1.27	1.6	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, \text{ I}_{D} = 2.25 \text{ A}$ (Note 4)	3.15		S
C _{oss} C _{rss}	Output Capacitance Reverse Transfer Capacitance	f = 1.0 MHz		60 7	80 9	pF pF
C _{rss}	Reverse Transfer Capacitance			7	9	pF
Switch	ing Characteristics					
t _{d(on)}	Turn-On Delay Time	Vpp = 200 V. lp = 4.5 A.		12	30	ns
t _r	Turn-On Rise Time	$R_{G} = 25 \Omega$		60	130	ns
	Turn-Off Delay Time	5		20	50	ns
t _{d(off)}	Tain on Delay Time			30	70	ns
t _{d(off)} t _f	Turn-Off Fall Time	(Ne	ote 4, 5)	50		
t _{d(off)} t _f Q _g	Turn-Off Fall Time Total Gate Charge	(Ni V _{DS} = 320 V, I _D = 4.5 A,	ote 4, 5)	10	13	nC
t _{d(off)} t _f Q _g Q _{gs}	Turn-Off Fall Time Total Gate Charge Gate-Source Charge	(No V _{DS} = 320 V, I _D = 4.5 A, V _{GS} = 10 V		10 3.0	13 	nC nC
t _{d(off)} t _f Q _g Q _{gs} Q _{gd}	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	(No term of the second	ote 4, 5) ote 4, 5)	10 3.0 4.5	13 	nC nC nC
t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	(No $V_{DS} = 320 \text{ V}, \text{ I}_{D} = 4.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$ (No $V_{GS} = 10 \text{ V}$	ote 4, 5) ote 4, 5)	10 3.0 4.5	13 	nC nC nC
^t d(off) t _f Q _g Q _{gs} Q _{gd} Drain-S	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Dio	(Not the constraint of the forward Current (Not the forward Current (N	ote 4, 5) ote 4, 5) 	10 3.0 4.5	13 4.5	nC nC nC
t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Diode F Maximum Pulsed Drain-Source Diode F	(Note that the second	ote 4, 5) 	10 3.0 4.5	13 4.5 18	nC nC nC A
t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S Is Is IsM V _{SD}	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Diode Maximum Pulsed Drain-Source Diode F Drain-Source Diode Forward Voltage	(Note that the second	ote 4, 5) ote 4, 5)	 	13 4.5 18 1.5	nC nC nC A A V
t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S I _S I _S V _{SD} t _{rr}	Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode F Maximum Pulsed Drain-Source Diode F Drain-Source Diode Forward Voltage Reverse Recovery Time	(Note that the second state of the second sta	ote 4, 5) ote 4, 5)	 190	13 4.5 18 1.5 	nC nC nC A A V ns

Notes: 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 25mH, I_{AS} = 4.5A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C 3. I_{SD} ≤ 4.5A, di/dt ≤ 200A/µs, V_{DD} ≤ BV_{DSS} Starting T_J = 25°C 4. Pulse Test : Pulse width ≤ 300µs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature

FQB5N40 / FQI5N40

Rev. A, April 2000

FQB5N40 / FQI5N40

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] CROSSVOLT[™] E^2 CMOS[™] FACT[™] FACT Quiet Series[™] FAST[®] FAST[®] FASTr[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.