TSL8329M: Dual channel 2.0 – 4.2 GHz 20Watt Receiver Front End

Preliminary

1.0 Features

Integrated dual-channel RF front end

2-stage LNA and GaN SPDT switch On-chip bias and matching Single-supply operation

- Gain @ 3.6GHz: 32dB (High Gain mode)
 - @ 3.6GHz: 13dB (Low Gain mode)
- NF @ 3.6GHz: 1.0dB (High Gain mode)
 - @ 3.6GHz: 0.9dB (Low Gain mode)
- OP1dB@ 3.6GHz: 20dBm (High Gain mode)
 - @ 3.6GHz: 10.5dBm (Low Gain mode)
- Operating frequency: 2.0 to 4.2GHz
- High Isolation: RXOUT-CHA & RXOUT-CHB: 40 dB typical
- TERM-CHA and TERM-CHB: 55 dB typical
- Insertion loss @ 3600MHz: 0.45dB (TX mode)
- High power handling at TCASE = 105°C Full lifetime
- LTE average power (9 dB PAR): 43 dBm
- High OIP3 (high gain mode): 35 dBm typical
- High gain mode current: 90 mA typical at 5 V
- Low gain mode current: 45 mA typical at 5 V
- Power-down mode current: 5 mA typical at 5 V Positive logic control
- 6 mm × 6 mm, 40-lead LFCSP

Figure 1.1 Device Image (40 Pin 6×6×0.85mm QFN Package)

2.0 Applications

- 4G/5G Infrastructure Radios
- Small Cells and Cellular Repeaters
- Phase Array Radar
- SDARS

RoHS/REACH/Halogen Free Compliance

3.0 Description

The TSL8329M is a dual-channel, integrated RF, frontend, multichip module designed for different applications. The device operates from 2.0 GHz to 4.2GHz. The TSL8329M is configured in dual channels with a cascading, two-stage, LNA and a high GaN based SPDT switch.

In high gain mode, the cascaded two-stage LNA and switch offer a low noise figure of 1 dB and a high gain of 32 dB at 3.6 GHz with an output third-order intercept point (OIP3) of 35 dBm (typical) at high gain mode. In low gain mode, one stage of the two-stage LNA is in bypass, providing 13 dB of gain at a lower current of 45 mA. In power-down mode, the LNAs are turned off and the device draws 5 mA.

In transmit operation, when RF inputs are connected to a termination pin (TERM-CHA or TERM-CHB), the switch provides low insertion loss of 0.45 dB at 3.6GHz and handles long-term evolution (LTE) average power (9 dB peak to average ratio (PAR)) of 43 dBm for full lifetime operation.

The device comes in an RoHS compliant, compact, 6 mm \times 6 mm, 40-lead LFCSP.

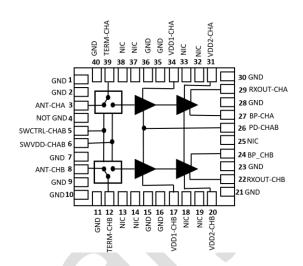


Figure 3.1 Function Block Diagram (Top View)

4.0 Ordering Information

Table 4.1 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number	
TSL8329M	40 Pin 6×6×0.85m m QFN	Tape & Reel	3000	13" (330mm)	18mm	TSL8329MTRPBF	
	Tuned Evaluation Board, 3300 - 4000MHz						
Tuned Evaluation Board, 2900 - 3300MHz					TSL8329M-EVB-B		
Tuned Evaluation Board, 2000 - 4000MHz					TSL8329M-EVB-C		

5.0 Pin Description

Table 5.1 Pin Definition

Pin Number	Pin Name	Description
1, 2, 7, 9 to 11, 15, 16,	2 111 2 (61110	
21, 23, 28, 30, 35, 36,	GND	Ground
40	GIAD	Ground
4	NOT GND	Internally used. Don't make it GND. Left unconnected.
		RF Input to Channel A. The ANT-CHA pin is ac-coupled to 0
3	ANT-CHA	V and matched to 50 Ω. Matching and a dc blocking
		capacitor are not required.
5	SWCTRL-CHAB	Control Voltage for Switches on Channel A and Channel B.
6	SWVDD-CHAB	Supply Voltage for Switches on Channel A and Channel B.
		RF Input to Channel B. The ANT-CHB pin is ac-coupled to 0
8	ANT-CHB	V and matched to 50 Ω . Matching and a dc blocking
		capacitor are not required.
		Termination Output for Channel B. The TERM-CHB pin is
10	TEDM CLID	the transmitter path for Channel B. The TERM-CHB pin is
12	TERM-CHB	ac-coupled to 0 V and matched to 50 Ω . No matching and dc
		blocking capacitor required.
13, 14, 18, 19, 25, 32,	NIC	Not Internally Connected. It is recommended to connect NIC
33, 37, 38	NIC	to the RF ground of the PCB.
17	VDD1-CHB	Vdd1 supplied through an external choke inductor
20	VDD2-CHB	Vdd2 supplied through an external choke inductor
		Receiver Output. The RXOUT -CHB pin is the receiver path
22	RXOUT-CHB	for Channel B. The RXOUT -CHB pin is ac matched to 50 Ω .
22	KAOUT-CHB	No matching component is required. A dc blocking capacitor
		is required.
24	BP-CHB	Bypass Second Stage LNA of Channel B.
26	PD-CHAB	Power-Down All Stages of LNA for Channel A and Channel
20	РД-СПАВ	В.
27	BP-CHA	Bypass Second Stage LNA of Channel A.
		Receiver Output. The RXOUT-CHA pin is the receiver path
29	RXOUT-CHA	for Channel A. The RXOUT-CHA pin is ac matched to 50Ω .
29	KAOU I-CHA	No matching component is required. A dc blocking capacitor
		is required.
34	VDD1-CHA	Vdd1 supplied through an external choke inductor
31	VDD2-CHA	Vdd2 supplied through an external choke inductor
		Termination Output for Channel A. The TERM-CHA pin is
39	TERM-CHA	the transmitter path for Channel A. The TERM-CHA pin is
37	I LIMI-CHA	ac-coupled to 0 V and matched to 50 Ω . No matching and dc
		blocking capacitor required
Package Rose	Paddle/Slug	DC and RF Ground. Also provides thermal relief. Multiple
Package Base	1 addic/Siug	vias are recommended

Note: [1] The backside ground slug of the device must be grounded directly to the ground plane through multiple vias to ensure proper operation. Adequate heatsinking required

6.0 Absolute Maximum Rating

Table 6.1 Absolute Maximum Rating @T_A=+25°C Unless Otherwise Specified

Parameter	Symbol	Value	Unit				
Electrical Ratings							
Supply voltage, VDD1-CHA, VDD1-CHB, VDD2-CHA, VDD2-CHB and SWVDD-CHAB	$ m V_{dd}$	+5.5	V				
RF input power		43	dBm				
Transmit Input Power (AVG, LTE with 8dB PAR,)	$\mathrm{RF}_{\mathrm{IN}}$		dBm				
Receive Input Power (LTE Peak, 8 dB PAR)	25						
Digital Control Input Voltage		2.6 to 5.5	V				
SWCTRL-CHAB, BP-CHA, BP-CHB, and PD-CHAB		2.0 to 3.3	V				
Digital Control Input Current		0.2	mA				
SWCTRL-CHAB, BP-CHA, BP-CHB, and PD-CHAB		0.2	IIIA				
Storage Temperature Range	T_{st}	-55 to +150	°C				
Operating Temperature Range	T_{op}	-40 to +105	°C				
Maximum Junction Temperature	T_{J}	170	°C				
Thermal Rat	ings						
Thermal Resistance (junction-to-case) – Bottom side	$R_{ m heta JC}$	15.0	°C/W				
Soldering Temperature	T_{SOLD}	260	°C				
ESD Rating	gs						
Human Body Model (HBM)	Level 1B	500 to <1000	V				
Charged Device Model (CDM)	Level C	≥1000	V				
Moisture Ra	ting						
Moisture Sensitivity Level	MSL	1	-				
	1						

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Recommended DC Operating Conditions

Table 7.1 Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Unit
Ducin Waltages	VDD1-CHA, VDD1-CHB		+5.0		V
Drain Voltages	VDD2-CHA, VDD2-CHB		+5.0		V
Drain Bias Currents	I _{DQ1} , Set by external drain feed		45		A
Drain Blas Currents	I _{DQ2} , Set by external drain feed		90		mA
Switch Supply	SWVDD-CHAB		+5		V
Switch Control Voltages	SWCTRL-CHAB, BP-CHA, BP-CHB, PD-CHAB	-0.3		+5.5	V
RF Input Power	PD-CHAB = 5 V, BP-CHA = BP-CHB = 0 V. 8 dB PAR LTE full lifetime average			43	dBm
At ANT-CHA, ANT-CHB	PD-CHAB = 0 V, BP-CHA = BP-CHB = 0 V, 8 dB PAR LTE full lifetime average			31	dBm
	PD-CHAB = 0 V, BP-CHA = BP-CHB = 5 ,8 dB PAR LTE full lifetime average,			43	dBm
DIGITAL INPUT SWCTRL-CHAB, PD-CHAB Low (VIL) High (VIH) BP-CHA, BP-CHB Low (VIL) High (VIH)		-0.3 2.6 0 2.6		0.5 Vdd 0.5 Vdd	V
DIGITAL INPUT CURRENTS SWCTRL-CHAB PD-CHAB BP-CHA, BP-CHB	SWCTRL-CHAB, PD-CHAB, BP-CHA, BP-CHB = 5 V per channel			<7.5 200 100	μΑ
Switch control max current				7.5	μA
Operating Temperature Range	T_{op}	-40	+25	+105	°C

8.0 RF Electrical Specifications for EVBs

VDD1-CHA, VDD1-CHB, VDD2-CHA, VDD2-CHB, and SWVDD-CHAB = 5 V, SWCTRL-CHAB = 0 V or SWVDD-CHAB, BP-CHA = VDD1-CHA or 0 V, BP-CHB = VDD1-CHB or 0 V, PD-CHAB = 0 V or VDD1-CHA, TCASE = 25° C, and 50Ω system, unless otherwise noted.

Table 8.1 3300 – 4000MHz EVB A

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Operational frequency Range		3.3 G	3.6G	4.0G	Hz
Gain	LNAs on Bypass off (High gain)		32		dB
Gain	LNA1 on Bypass on (Low gain)			dB	
Noise Figure (De-	LNAs on Bypass off (High gain)		1		dB
embedded)	LNA1 on Bypass on (Low gain)	3.3 G 3.6G 4.0G in) 32 in) 13 in) 0.9 in) 1.4 in) 10 in) 10 in) 9 in) 9 in) 10.5 in) 10.5 in) 90 in) 90 in) 90 in) 90 in) 90 in) 45 EF) 5	>	dB	
EVP Noise Figure	LNAs on Bypass off (High gain)		1.4		dB
EVB Noise Figure	LNA1 on Bypass on (Low gain)		1.3		dB
Input Return Loss	LNAs on Bypass off (High gain)		10		dB
input Return Loss	LNA1 on Bypass on (Low gain)		5		dB
Output Datum Lass	LNAs on Bypass off (High gain)		11		dB
Output Return Loss	LNA1 on Bypass on (Low gain)		9		dBm
OP1dB	LNAs on Bypass off (High gain)		20		dBm
OFIGE	LNA1 on Bypass on (Low gain)		10.5		dBm
OIP3	LNAs on Bypass off (High gain)0dBm per tone, Tone Spacing 1MHz		35		dBm
Oirs	LNA1 on Bypass on (Low gain) -2dBm per tone, Tone Spacing 1MHz		18		dBm
	LNAs on Bypass off (High gain)		90		
Current, Id	LNA1 on Bypass on (Low gain)		45		mA
	PD mode ON (Both LNAs OFF)		32 13 1 0.9 1.4 1.3 10 5 11 9 20 10.5 35 18 90 45 5 0.45 40		
Insertion Loss	Transmit operation at 3.6 GHz		0.45		dB
Channel to Channel Isolation Between RXOUT -CHA & RXOUT -CHB	At 3.6GHz Receive operation		40		dB
Between TERM-CHA AND TERM-CHB	Transmit operation	55		dB	
SWITCH ISOLATION ANT-CHA to TERM-CHA and ANT-CHB to TERM- CHB	Transmit operation, PD- CHAB=0 V		25		dB

SWITCHING CHARACTERISTICS (tON, tOFF)	50% control voltage to 90%, 10% of RXOUT -CHA or RXOUT -CHB in receive operation	400	ns
	50% control voltage to 90%, 10% of TERM-CHA or TERM- CHB in transmit operation	400	

Table 8.2 2900 – 33000MHz EVB B

Revision 1.3 - 2022-08-10

Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Operational frequency Range		2.9 G	3.1G	3.3 G	Hz
Gain	LNAs on Bypass off (High gain)		38-35		dB
Gain	LNA1 on Bypass on (Low gain)	(Low gain) 15-13.5		>	dB
Noise Figure (De-	LNAs on Bypass off (High gain)		0.9-1		dB
embedded)	LNA1 on Bypass on (Low gain)		0.9-1		dB
EVB Noise Figure	LNAs on Bypass off (High gain)		1.4-1.3		dB
EVB Noise Figure	LNA1 on Bypass on (Low gain)		1.4-1.3		dB
Input Datum Lags	LNAs on Bypass off (High gain)		9-9.5		dB
Input Return Loss	LNA1 on Bypass on (Low gain)		9-10		dB
Output Datum Laga	LNAs on Bypass off (High gain)		11-17 4-5.4		dB
Output Return Loss	LNA1 on Bypass on (Low gain)				dBm
OD14D	LNAs on Bypass off (High gain)		17-18		dBm
OP1dB	LNA1 on Bypass on (Low gain)		10-11		dBm
	LNAs on Bypass off (High gain)0dBm per tone, Tone Spacing 1MHz		32.5-30		dBm
OIP3	LNA1 on Bypass on (Low gain) -2dBm per tone, Tone Spacing 1MHz		25-20		dBm
	LNAs on Bypass off (High gain)		90		
Current, Id	LNA1 on Bypass on (Low gain)		45		mA
	PD mode ON (Both LNAs OFF)		15-13.5 0.9-1 0.9-1 1.4-1.3 1.4-1.3 9-9.5 9-10 11-17 4-5.4 17-18 10-11 32.5-30 25-20		
Insertion Loss	Transmit operation at 3.1 GHz		0.45		dB
Channel to Channel Isolation Between RXOUT -CHA & RXOUT -CHB	At 3.1GHz Receive operation		35		dB
Between TERM-CHA AND TERM-CHB	Transmit operation		55		dB
SWITCH ISOLATION	Transmit operation, PD-CHAB = 0 V		30		dB

ANT-CHA to TERM-CHA and ANT-CHB to TERM- CHB			
SWITCHING CHARACTERISTICS (tON, tOFF)	50% control voltage to 90%, 10% of RXOUT -CHA or RXOUT -CHB in receive operation	400	ns
	50% control voltage to 90%, 10% of TERM-CHA or TERM- CHB in transmit operation	400	

Table 8.3 2000 – 4000MHz EVB C

D	T4 C 1'4'	N/::	T	N/	TT24
Parameter	Test Condition	Minimum	Typical	Maximum	Unit
Operational frequency Range		2.0 G	3.0G	4.0 G	Hz
Gain	LNAs on Bypass off (High gain)		37-29		dB
Gain	LNA1 on Bypass on (Low gain)		18-12		dB
Noise Figure (De-	LNAs on Bypass off (High gain)		0.7-1.2		dB
embedded)	LNA1 on Bypass on (Low gain)		0.7-1.2		dB
EVD Noise Figure	LNAs on Bypass off (High gain)		1.1-1.6		dB
EVB Noise Figure	LNA1 on Bypass on (Low gain)	2.0 G 3.0G 4.0 G ain) 37-29 ain) 0.7-1.2 ain) 0.7-1.2 ain) 1.1-1.6 ain) 7.3-3.3 ain) 4-17 ain) 3-24 ain) 3-24 ain) 3-12 ain) 18.5- 20.5 ain) 7-12 ain) 7-12 ain) 90 ain) 90 ain) 90 ain) 90 ain) 45 EFF) 5		dB	
Innut Datum Laga	LNAs on Bypass off (High gain)				dB
Input Return Loss	LNA1 on Bypass on (Low gain)	4.2-7.3		dB	
Outrout Datum Laga	LNAs on Bypass off (High gain)		4-17		dB
Output Return Loss	LNA1 on Bypass on (Low gain)		3-24		dBm
OD1 ID	LNAs on Bypass off (High gain)				dBm
OP1dB	LNA1 on Bypass on (Low gain)				dBm
O.W.	LNAs on Bypass off (High gain)0dBm per tone, Tone Spacing 1MHz				dBm
OIP3	LNA1 on Bypass on (Low gain) -2dBm per tone, Tone Spacing 1MHz		17-21		dBm
	LNAs on Bypass off (High gain)		90		
Current, Id	LNA1 on Bypass on (Low gain)		45		mA
	PD mode ON (Both LNAs OFF)		5		
Insertion Loss	Transmit operation at 3.0 GHz		0.45		dB
Channel to Channel Isolation Between RXOUT -CHA & RXOUT -CHB	At 3.0GHz Receive operation		35		dB

Between TERM-CHA AND TERM-CHB	Transmit operation	55		dB
SWITCH ISOLATION ANT-CHA to TERM-CHA and ANT-CHB to TERM- CHB	Transmit operation, PD-CHAB = 0 V	30		dB
SWITCHING CHARACTERISTICS (tON, tOFF)	50% control voltage to 90%, 10% of RXOUT -CHA or RXOUT -CHB in receive operation	400		ns
	50% control voltage to 90%, 10% of TERM-CHA or TERM- CHB in transmit operation	400		

9.0 Typical performance characteristics

9.1 Receive Operation, LOW GAIN Mode 3.3-4.0GHz tuned EVB 25°C

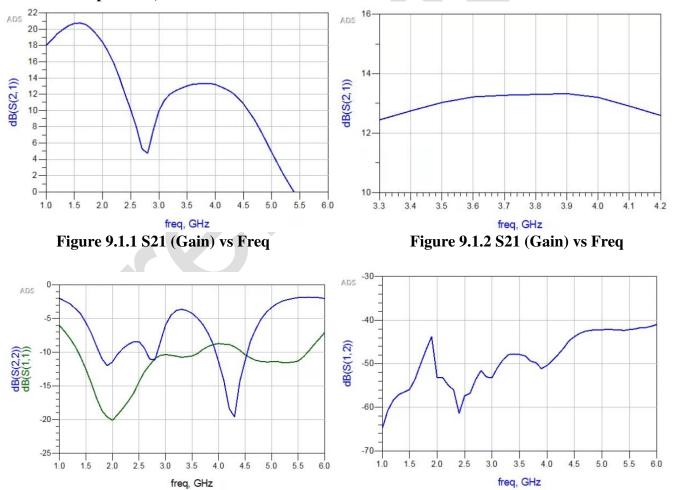


Figure 9.1.3 S11 (IRL) and S22(ORL) vs Freq Figure 9.1.4 Channel to channel isolation vs Freq

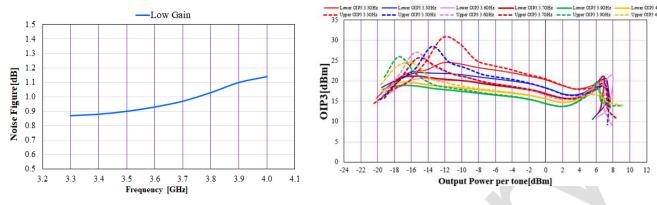


Figure 9.1.5 NF(De-embedded) vs Freq

Figure 9.1.6 OIP3dBm vs Freq

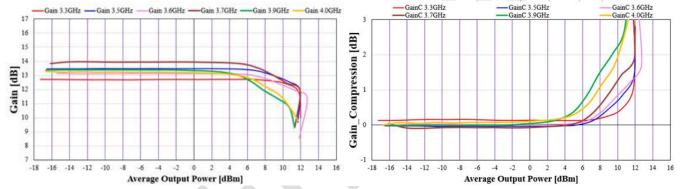


Figure 9.1.7 OP1dBm vs Freq

Figure 9.1.8 Gain compression vs Freq

9.2 Receive Operation, HIGH GAIN Mode 3.3-4.0GHz tuned EVB 25°C

Figure 9.2.1 S21 (Gain) vs Freq

Figure 9.2.2 S21 (Gain) vs Freq

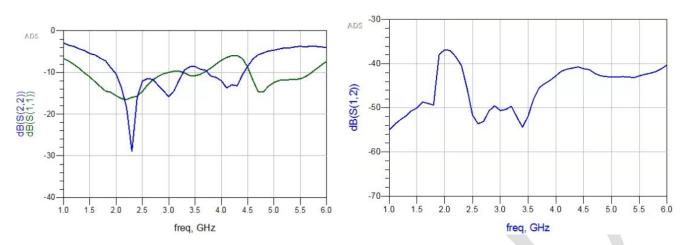


Figure 9.2.3 S11 (IRL) and S22(ORL) vs Freq Figure 9.2.4 Channel to channel isolation vs Freq

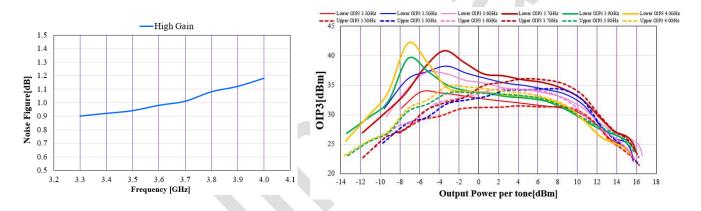


Figure 9.2.5 NF(De-embedded) vs Freq

Figure 9.2.6 OIP3dBm vs Freq

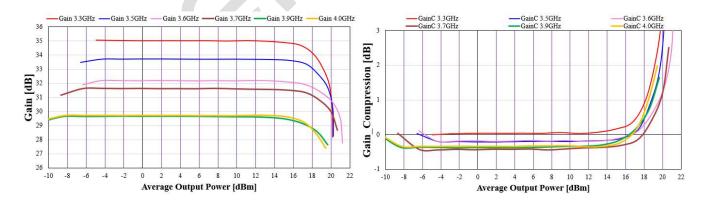


Figure 9.2.7 OP1dBm vs Freq

Figure 9.2.8 Gain compression vs Freq

9.3 Transmit Operation 3.3-4.0GHz tuned EVB 25°C

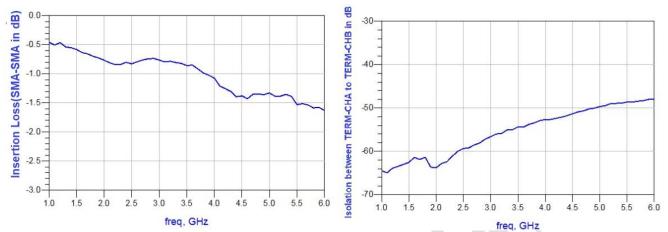


Figure 9.3.1 IL vs Freq

Figure 9.3.2 TERM-CHA and TERM-CHB isolation

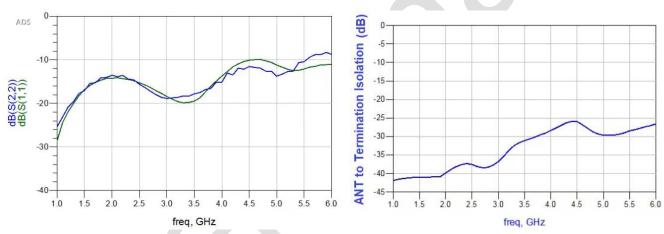


Figure 9.3.3 Return loss vs Freq

Figure 9.3.4 ANT to TERM isolation vs Freq , LNA on

10.0 Evaluation Boards

10.1 3300- 4000MHz EVB A-Schematic

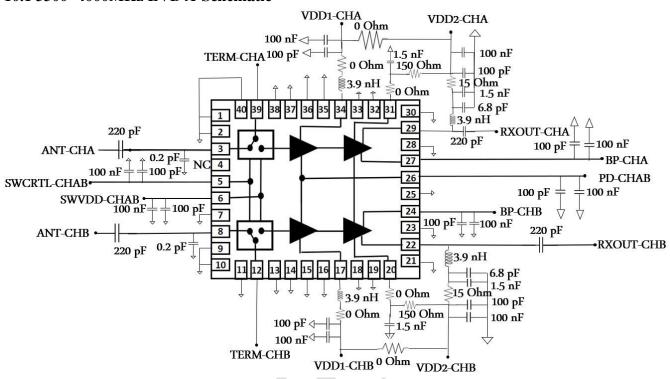


Figure 10.1 Schematic of the 3300 - 4000MHz EVB A

Table 10.1 BOM of the 3300 - 4000MHz EVB A

Table 10.1 DOM of the 5500 - 4000MHz E v D A						
Component ID	Value	Manufacturer	Recommended Part Number	Qty		
Check EVB image	0Ω	Panasonic	ERJ-2GE0R00X	6		
Check EVB image	150Ω	Panasonic	ERJ-2RHD1500X	2		
Check EVB image	15Ω	Panasonic	ERJ-H2RD15R0X	2		
Check EVB image	3.9nH	Coil craft	0402HP-3N9XGRW	4		
Check EVB image	6.8pF	Murata	GJM1555C1H6R8BB01D	2		
Check EVB image	1.5nF	Murata	04025C152JAT2A	4		
Check EVB image	220pF	Kemet	C0402C221K5GACAUTO	4		
Check EVB image	0.2pF	Murata	GJM1555C1HR20BB01D	2		
Check EVB image	100pF	AVX	04025A101JAT4A	9		
Check EVB image	100nF	TDK	C1005X7R1H104K050BE	9		
PCB	Ro	gers RO4350B, 20	mils, 1 oz copper	1		

10.2 3300- 4000MHz EVB A-EVB Layout

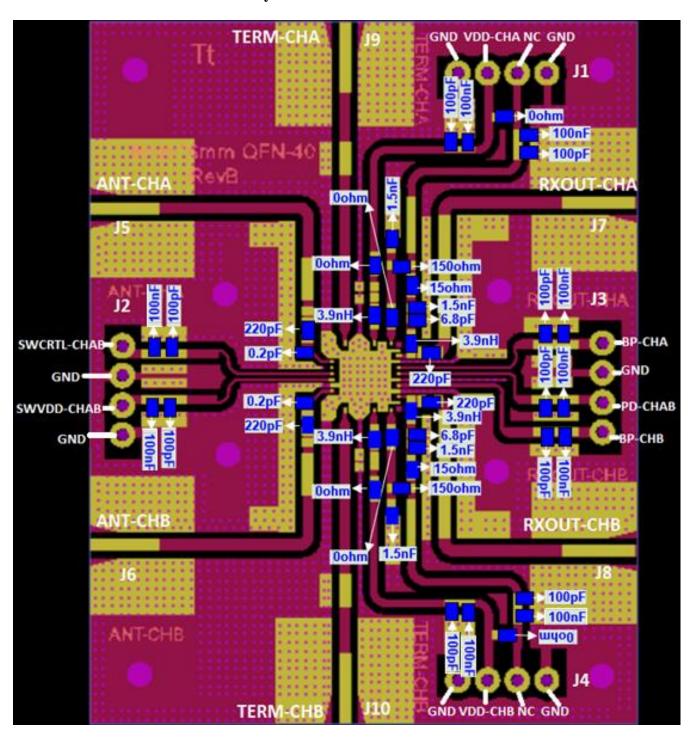


Figure 10.2 EVB Layout of the 3300 - 4000MHz EVB A

Revision 1.3 - 2022-08-10 http://www.tagoretech.com Page **14** of **26**

10.3 2900- 3300MHz EVB B-Schematic

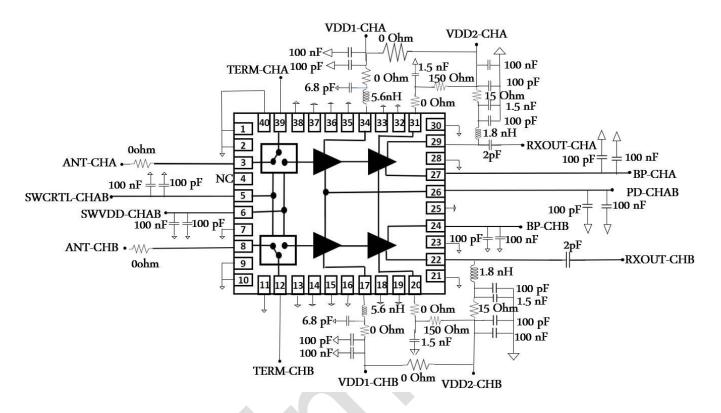


Figure 10.3 Schematic of the 2900 - 3300MHz EVB B

Table 10.3 BOM of the 2900 - 3300MHz EVB B

Component ID	Value	Manufacturer	Recommended Part Number	Qty
Check EVB image	0Ω	Panasonic	ERJ-2GE0R00X	6
Check EVB image	150Ω	Panasonic	ERJ-2RHD1500X	2
Check EVB image	15Ω	Panasonic	ERJ-H2RD15R0X	2
Check EVB image	1.8nH	Coil craft	0603HP-1N8XJLW	2
Check EVB image	5.6nH	Coil craft	0402HP-5N6XGRW	2
Check EVB image	6.8pF	Murata	GJM1555C1H6R8BB01D	2
Check EVB image	1.5nF	Murata	04025C152JAT2A	4
Check EVB image	2pF	Murata	GJM1555C1H2R0BB01D	2
Check EVB image	100pF	AVX	04025A101JAT4A	9
Check EVB image	100nF	TDK	C1005X7R1H104K050BE	9
PCB		Rogers RO4350B,	20 mils, 1 oz copper	1

Revision 1.3 - 2022-08-10 http://www.tagoretech.com Page 15 of 26

10.4 2900- 3300MHz EVB B-EVB Layout

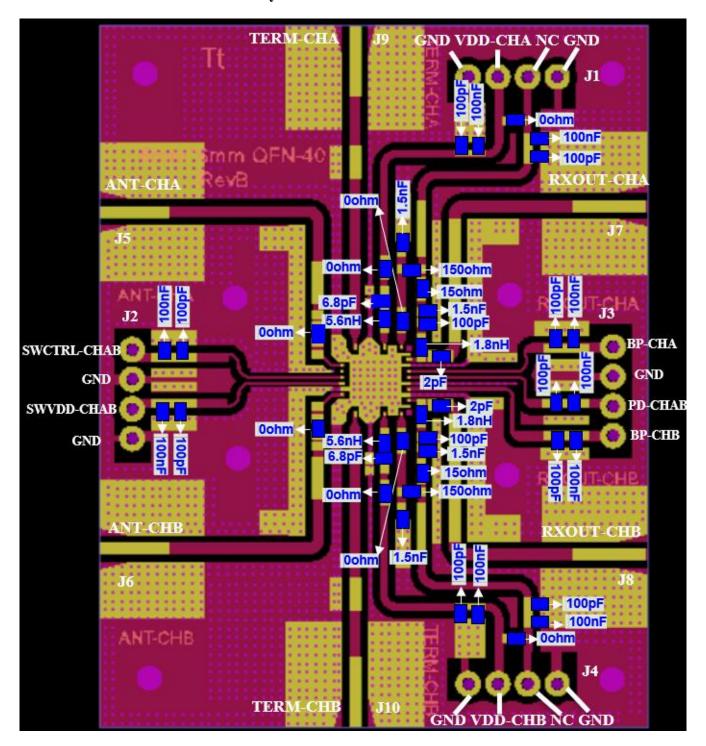


Figure 10.4 EVB Layout of the 2900 - 3300MHz EVB B

Revision 1.3 - 2022-08-10 http://www.tagoretech.com Page **16** of **26**

10.5 2000- 4000MHz EVB C-Schematic

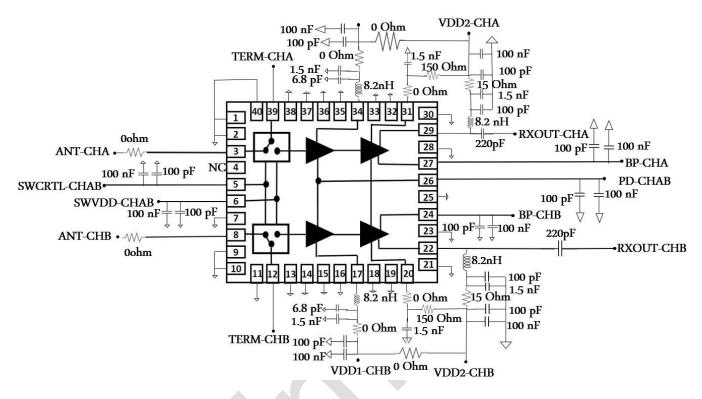


Figure 10.5 Schematic of the 2000 - 4000MHz EVB C

Table 10.5 BOM of the 2000 - 4000MHz EVB C

Component ID	Value	Manufacturer	Recommended Part Number	Qty
Check EVB image	0Ω	Panasonic	ERJ-2GE0R00X	8
Check EVB image	150Ω	Panasonic	ERJ-2RHD1500X	2
Check EVB image	15Ω	Panasonic	ERJ-H2RD15R0X	2
Check EVB image	8.2nH	Coil craft	0402HP-8N2XGRW	2
Check EVB image	6.8pF	Murata	GJM1555C1H6R8BB01D	2
Check EVB image	1.5nF	Murata	04025C152JAT2A	6
Check EVB image	220pF	Murata	C0402C221K5GACAUTO	2
Check EVB image	100pF	AVX	04025A101JAT4A	11
Check EVB image	100nF	TDK	C1005X7R1H104K050BE	9
PCB		Rogers RO4350B, 2	1	

10.6 2000- 4000MHz EVB C-EVB Layout

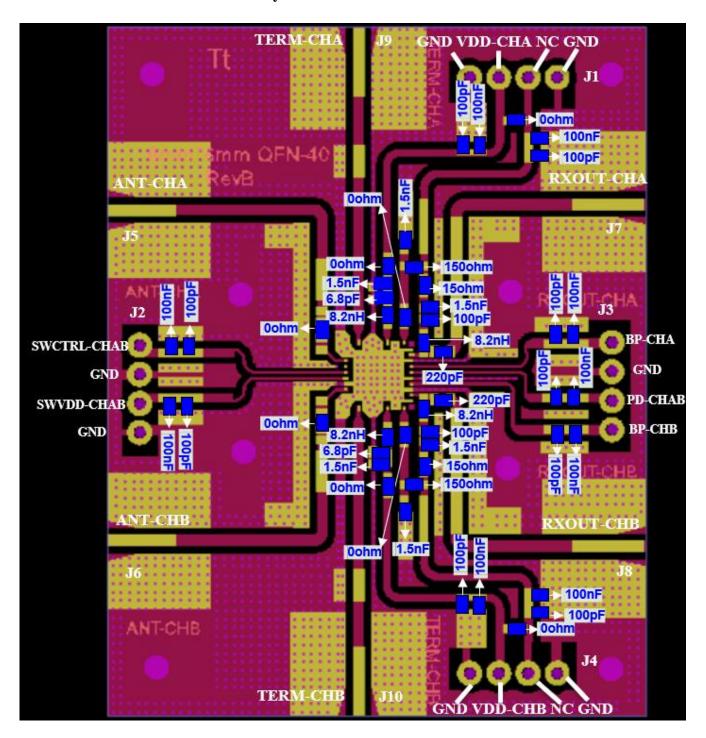


Figure 10.6 EVB Layout of the 2000 - 4000MHz EVB C

Revision 1.3 - 2022-08-10 http://www.tagoretech.com Page **18** of **26**

10.7 EVB TEST Details

Table 10.7 RF-DC Connector details

Connector Names & type	Voltage names	Description	
J1- DC connector	VDD-CHA	Supply LNA on Channel A	
J2- DC connector	SWVDD-CHAB &	Supply switches on Channel A and Channel B	
	SWCRTL-CHAB	Control switches on Channel A and Channel B	
J3- DC connector	BP-CHA,	Bypass LNA Stage 2 on Channel A	
	BP-CHB	Bypass LNA Stage 2 on Channel B	
	PD-CHAB	Power down all LNA stages on Channel A and B	
J4- DC connector	VDD-CHB	Supply LNA on Channel B	
J5- RF connector	ANT-CHA	Antenna input to Channel A	
J6- RF connector	ANT-CHB	Antenna input to Channel B	
J7- RF connector	RXOUT-CHA	Receiver output from Channel A	
J8- RF connector	RXOUT-CHB	Receiver output from Channel A	
J9- RF connector	TERM-CHA	Termination output from Channel A	
J10- RF connector	TERM-CHB	Termination output from Channel B	

All the connectors' names are given in the EVB layout figure [Figure no 10.2/10.4]

Table 10.8 Truth Table: Switch control

SWCTRL-CHAB	Signal Path Select		Signal Path Select	
	Transmit Operation	Receive Operation		
Low	Off	On		
High	On	Off		

Table 10.9 Truth Table: Receive Operation

Receive Operation	PD-CHAB	BP-CHA BP-CHB	Signal Path
High Gain Mode	Low	Low	ANT-CHA to RXOUT-
Low Gain Mode	Low	High	CHA, ANT-CHB to
Power-Down High Isolation Mode	High	Low	RXOUT-CHB
Power-Down Low Isolation Mode	High	High	

10.7.1 TEST PROCEDURE

Biasing sequence

To bias up the TSL8329M-EVB-A for Channel A, perform the following steps:

- 1. Ground the GND or GND1 test point.
- 2. Bias up SWVDD-CHAB=5V test points.
- 3. Bias up the SWCTRL-CHAB test point.
- 4. Bias up the VDD-CHA test point.
- 5. Bias up the BP-CHA test points.
- 6. Bias up the PD-CHAB test point.
- 7. Apply an RF input signal.

The TSL8329-EVB-A is shipped fully assembled and tested. Figure 10.7.1 provides a basic test setup diagram to evaluate the s-parameters in RX mode to get Channel-A performance (receive gain, transmit insertion loss and isolation, RF input and output return losses) using a network analyzer. Perform the following steps to complete the test setup and verify the operation of the TSL8329-EVB-A:

- 1. Connect the GND test point to the ground terminal of the power supply.
- 2. Connect the VDD-CHA and SWVDD-CHAB test points to the voltage output terminal of the 5 V supply that sources a current of approximately 90 mA in receive operation for high gain mode or 5 mA for power-down mode.
- 3. Connect the BP-CHA, BP-CHB, PD-CHAB, and SWCTRL-CHAB test points to the ground terminal of the power supply for high gain receive operation. The TSL8329-EVB-A can be configured in different modes by connecting the control test points to 5 V or ground, as shown in Table 10.3 and Table 10.4.
- 4. Connect a calibrated network analyzer to the ANT-CHA, TERM-CHA, and RXOUT-CHA SMA connectors. Sweep frequency from 1 GHz to 6 GHz and set power to −25 dBm.
- 5. Connect 50 Ω loads to the ANT-CHB, TERM-CHB, and RXOUT-CHB SMA connectors.
- 6. The TSL8329-EVB-A is expected to have a high and low receive gain of 32dB and 13dB respectively, at 3.6 GHz. See the expected results in Figure 9.2.1 to Figure 9.1.1.

Additional test equipment is needed to fully evaluate the device functions and performance.

For noise figure evaluation, use either a noise figure analyzer or a spectrum analyzer with noise option. The use of a low excess noise ratio (ENR) noise source is recommended.

For third-order intercept point evaluation, use two signal generators and a spectrum analyzer. A high isolation power combiner is recommended.

For power compression and power handling evaluations, use a two-channel power meter and a signal generator. A power amplifier with great enough power is recommended at the input. Test accessories such as couplers and attenuators must have enough power handling.

The TSL8329-EVB-A comes with a support plate attached to the bottom side. To ensure maximum heat dissipation and to reduce thermal rise on the TSL8329-EVB-A during high power evaluations, this support plate must be attached to a heat sink using thermal grease.

Note that the measurements performed at the SMA connectors of the TSL8329-EVB-A include the losses of the SMA connectors and the PCB. The thru line must be measured to calibrate out the TSL8329-EVB-A effects. The thru line is the summation of an RF input line and an RF output line that are connected to the device and equal in length.

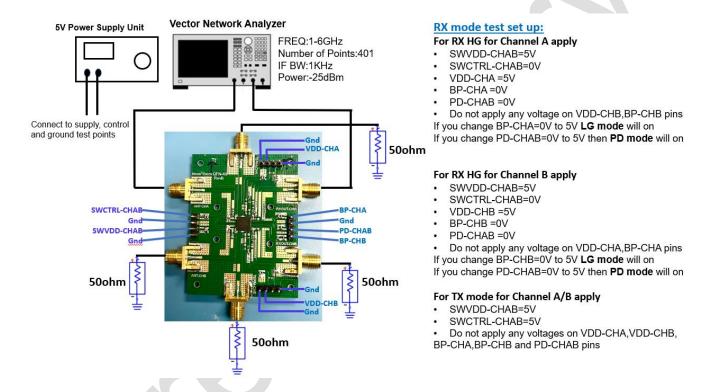
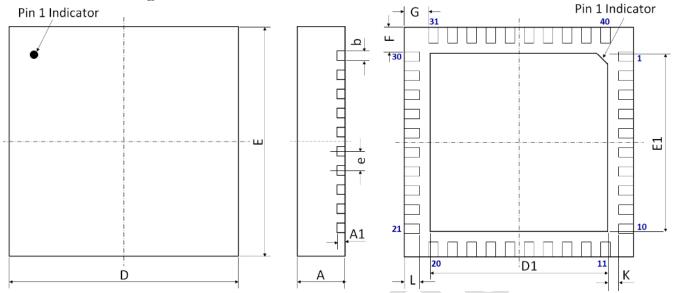



Figure 10.7.1 TEST Set Up Diagram for RX-mode

11.0 Device Package Information

Figure 11.1 Device Package Drawing

(All dimensions are in mm)

Table 11.1 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance	Dimension (mm)	Value (mm)	Tolerance
		(mm)			(mm)
A	0.85	±0.05	Е	6.00 BSC	±0.05
A1	0.203	±0.02	E1	4.65	±0.06
b	0.25	+0.05/-0.07	F	0.625	±0.05
D	6.00 BSC	±0.05	G	0.625	±0.05
D1	4.65	±0.06	L	0.40	±0.05
e	0.50 BSC	±0.05	K	0.275	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: $7.5\mu m \sim 20\mu m$ (Typical $10\mu m \sim 12\mu m$)

Attention:

Please refer to application notes *TN-001* and *TN-003* at http://www.tagoretech.com for PCB and soldering related guidelines.

12.0 PCB Land Design

Guidelines:

- [1] 4 layer PCB is recommended.
- [2] Via diameter is recommended to be 0.3mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall be placed on the center pad and should be filled/plugged with solder or copper.
- [4] The maximum via number for the center pad is $9(X)\times 9(Y)=81$.

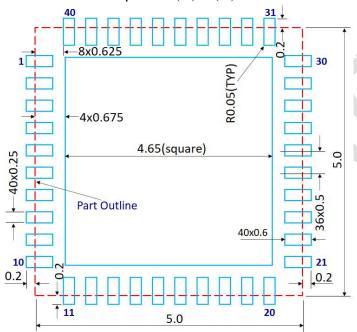


Figure 12.1 PCB Land Pattern (Dimensions are in mm)

Non-Solder Mask Defined (Preferred)

Solder Mask Defined

Figure 12.2 Solder Mask Pattern

(Dimensions are in mm)

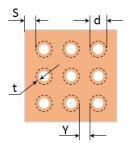
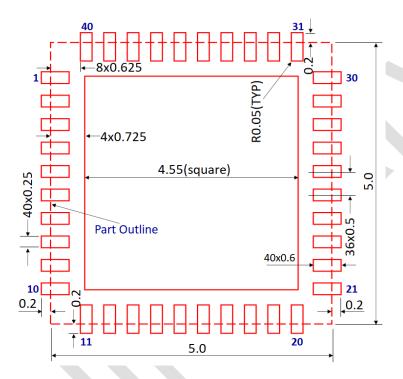


Figure 12.3 Thermal Via Pattern


(Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.3mm; Plating Thickness t=25µm or 50µm)

13.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be $125\mu m$.

Figure 13.1 Stencil Openings

(Dimensions are in mm)

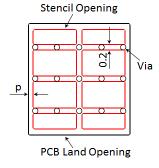


Figure 13.2 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

14.0 Tape and Reel Information

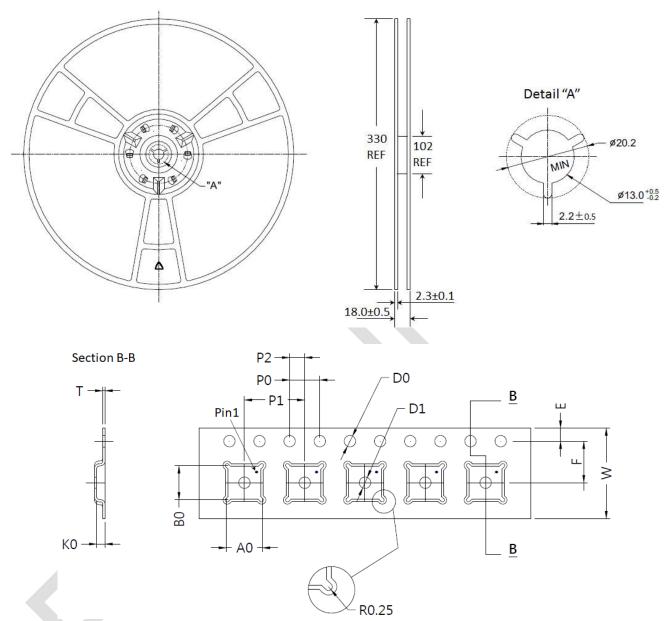


Figure 14.1 Tape and Reel Drawing

Table 14.1 Tape and Reel Dimensions

Dimension (mm)	Value (mm)	Tolerance	Dimension (mm)	Value (mm)	Tolerance
		(mm)			(mm)
A0	6.35	±0.10	K0	1.10	±0.10
B0	6.35	±0.10	P0	4.00	±0.10
D0	1.50	+0.10/-0.00	P1	8.00	±0.10
D1	1.50	+0.10/-0.00	P2	2.00	±0.05
E	1.75	±0.10	T	0.30	±0.05
F	5.50	±0.05	W	12.00	±0.30

Revision 1.3 - 2022-08-10 http://www.tagoretech.com Page **25** of **26**

Edition Revision 1.3 - 2022-08-10 Published by

Tagore Technology Inc. 5 East College Drive, Suite 200 Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.