

HGTA32N60E2

April 1995

32A, 600V N-Channel IGBT

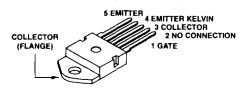
Features

- 32A, 600V
- · Latch Free Operation
- Typical Fall Time 620ns
- · High Input Impedance
- Low Conduction Loss

Description

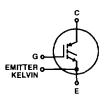
The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C.

IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.


PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND			
HGTA32N60E2	TO-218	GA32N60E2			

NOTE: When ordering, use the entire part number.


Package

JEDEC MO-093AA (5 LEAD TO-218)

Terminal Diagram

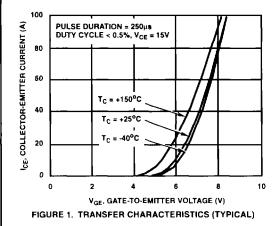
N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specified

	HGTA32N60E2	UNITS
Collector-Emitter Voltage	600	V
Collector-Gate Voltage R _{GE} = 1MΩ V _{CGR}	600	V
Collector Current Continuous at T _C = +25°C	50	A
at V _{GE} = 15V at T _C = +90°C	32	Α
Collector Current Pulsed (Note 1)	200	Α
Gate-Emitter Voltage Continuous	±20	V
Gate-Emitter Voltage Pulsed	±30	V
Switching Sage Operating Area T _J = +150°C	200A at 0.8 BV _{CES}	-
Power Dissipation Total at T _C = +25°C P _D	208	W
Power Dissipation Derating T _C > +25°C	1.67	W/°C
Operating and Storage Junction Temperature Range	-55 to +150	°C
Maximum Lead Temperature for Soldering	260	°C
Short Circuit Withstand Time (Note 2) at V _{GE} = 15V	3	μs
at V _{GE} = 10V t _{SC}	15	μs

- 1. Repetitive Rating: Pulse width limited by maximum junctions temperature.
- 2. $V_{CE(PEAK)} = 360V$, $T_{C} = +125^{\circ}C$, $R_{GE} = 25\Omega$.

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:


4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951
4 060 027							

Electrical Specifications $T_C = +25^{\circ}C$, Unless Otherwise Specified

		. TEST CONDITIONS		LIMITS			
PARAMETERS	SYMBOL			MIN	TYP	MAX	UNITS
Collector-Emitter Breakdown Voltage	BV _{CES}	I _C = 250μA, V _{GE} = 0V		600	-	•	٧
Collector-Emitter Leakage Current	I _{CES}	V _{CE} = BV _{CES}	T _C = +25°C	-	-	250	μА
		V _{CE} = 0.8 BV _{CES}	T _C = +125°C	-	-	4.0	mA
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C = I _{C90} , V _{GE} = 15V	T _C = +25°C		2.4	2.9	V
			T _C = +125°C	-	2.4	3.0	٧
Gate-Emitter Threshold Voltage	V _{GE(TH)}	I _C = 1.0mA, V _{CE} = V _{GE}	T _C = +25°C	3.0	4.5	6.0	V
Gate-Emitter Leakage Current	I _{GES}	V _{GE} = ±20V		1	-	±500	nA
Gate-Emitter Plateau Voltage	V _{GEP}	I _C = I _{C90} , V _{CE} = 0.5 BV _{CES}		-	6.5	-	V
On-State Gate Charge	Q _{G(ON)}	$I_{C} = I_{C90},$ $V_{CE} = 0.5 \text{ BV}_{CES}$	V _{GE} = 15V	-	200	260	nC
			V _{GE} = 20V	· ·	265	345	nC
Current Turn-On Delay Time	t _{D(ON)I}	$\begin{split} L &= 500 \mu H, I_C = I_{C90}, R_G = 25 \Omega, \\ V_{GE} &= 15 V, T_J = +125^{\circ} C, \\ V_{CE} &= 0.8 BV_{CES} \end{split}$			100	-	ns
Current Rise Time	t _{Rt}				150	-	ns
Current Turn-Off Delay Time	t _{D(OFF)} i			-	630	820	ns
Current Fall Time	t _{F1}	1			620	800	ns
Turn-Off Energy (Note 1)	W _{OFF}	1		-	3.5	-	mJ
Thermal Resistance	R _{NC}			-	0.5	0.6	°C/W

NOTE:

Typical Performance Curves

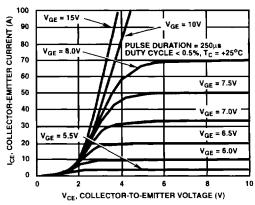
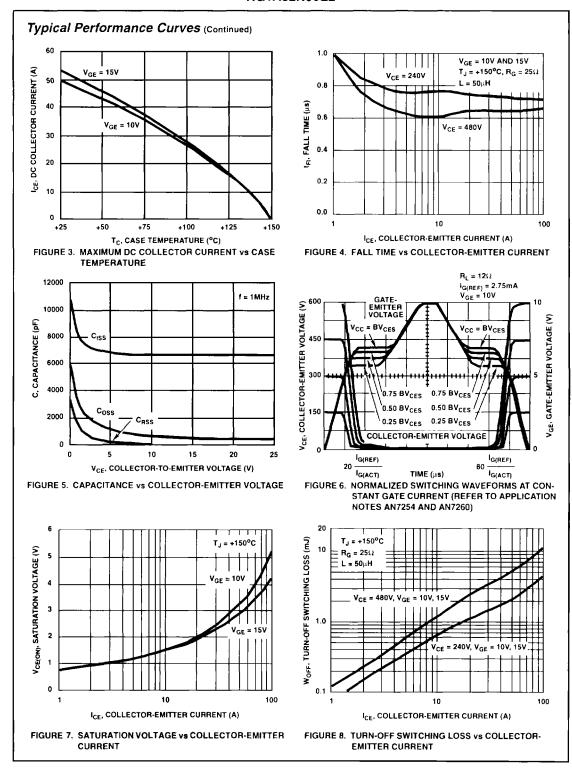



FIGURE 2. SATURATION CHARACTERISTICS (TYPICAL)

Turn-off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and
ending at the point where the collector current equals zero (I_{CE} = 0A) The HGTA32N60E2 was tested per JEDEC standard No. 24-1 Method
for Measurement of Power Device Turn-off Switching Loss. This test method produces the true total Turn-off Energy Loss.

Typical Performance Curves (Continued)

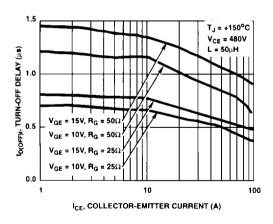
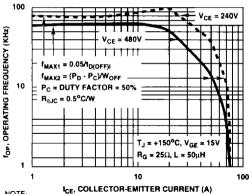



FIGURE 9. TURN-OFF DELAY VS COLLECTOR-EMITTER

NOTE: I_{CE}, COLLECTOR-EMITTER CURRENT (A)

P_D = ALLOWABLE DISSIPATION P_C = CONDUCTION DISSIPATION

FIGURE 10. OPERATING FREQUENCY VS COLLECTOR-EMITTER CURRENT AND VOLTAGE

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows f_{MAX1} or f_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1} = 0.05/t_{D(OFF)I}$. $t_{D(OFF)I}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)I}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device turn-off delay can establish an additional

frequency limiting condition for an application other than T_{JMAX} . $t_{\text{D(OFF)}}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2}=(P_D-P_C)/W_{OFF}.$ The allowable dissipation (P_D) is defined by $P_D=(T_{JMAX}-T_C)/R_{\theta JC}.$ The sum of device switching and conduction losses must not exceed $P_D.$ A 50% duty factor was used (Figure 10) so that the conduction losses (P_C) can be approximated by $P_C=(V_{CE}\times I_{CE})/2.$ W_{OFF} is defined as the sum of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CE}-0A).$

The switching power loss (Figure 10) is defined as $f_{MAX1} \times W_{OFF}$. Turn on switching losses are not included because they can be greatly influenced by external circuit conditions and components.