

Features

- ESD protection for one line with bi-directional
- Provide transient protection for the protected line to

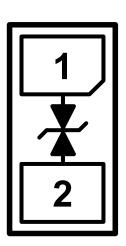
IEC 61000-4-2 (ESD) ±15kV (air) / ±13kV (contact) IEC 61000-4-5 (Lightning) 4A (8/20µs)

- Ultra-low capacitance: 0.15pF typical
- For low operating voltage applications: 1.5V
 and below
- 0201 small DFN package saves board space
- Fast turn-on and low clamping voltage
- Solid-state silicon-avalanche and active circuit triggering technology
- Green part

Applications

- USB4 interface
- Thunderbolt interface
- USB3.1 and USB3.0 interfaces
- USB Type-C interface
- Handheld portable applications
- Consumer electronics

Description


AZ5B9S-01F is a design which includes a bi-directional ESD rated clamping cell to protect high-speed data interfaces in an electronic system. The AZ5B9S-01F has been specifically designed to protect sensitive components which are connected to data and transmission lines from over-voltage caused by Electrostatic Discharging (ESD), Lightning, and Cable Discharge Event (CDE).

AZ5B9S-01F is a unique design which includes proprietary clamping cell with ultra-low capacitance in a small package. During transient conditions, the proprietary clamping cell prevents over-voltage on the control/data lines, protecting any downstream components.

AZ5B9S-01F is bi-directional and may be used on lines where the signal swings above and below ground.

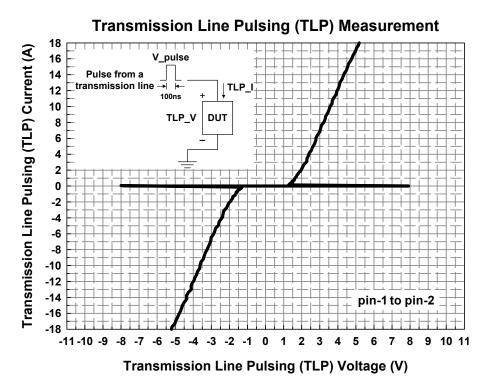
AZ5B9S-01F may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (\pm 15kV air, \pm 8kV contact discharge).

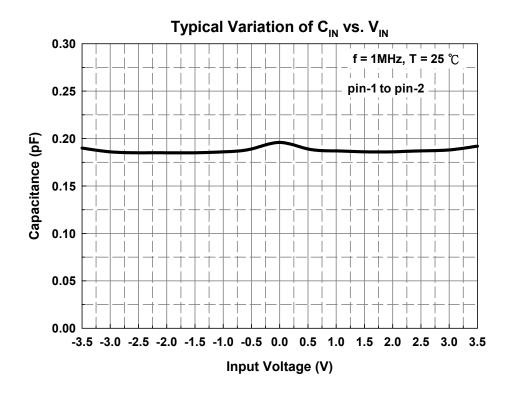
Circuit Diagram / Pin Configuration

DFN0603P2Y (Bottom View) (0.6mm x 0.3mm x 0.3mm)

Specifications

Absolute Maximum Ratings (T _A = 25°C, unless otherwise specified)				
Parameter	Symbol	Rating	Unit	
Peak Pulse Current (t _p =8/20μs)	I _{pp}	4	Α	
Operating Voltage	V_{DC}	±1.65	V	
ESD per IEC 61000-4-2 (Air)	V _{ESD-1}	±15	kV	
ESD per IEC 61000-4-2 (Contact)	V _{ESD-2}	±13	KV	
Lead Soldering Temperature	T _{SOL}	260 (10 sec.)	°C	
Operating Temperature	T _{OP}	-55 to +85	°C	
Storage Temperature	T _{STO}	-55 to +150	°C	


Electrical Characteristics						
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Reverse Stand-Off	V	T=25 °C.	-1.5		1.5	V
Voltage	V_{RWM}	1-25 C.	-1.5		1.5	V
Reverse Leakage		V - 14.5V T-05.9C			100	 Λ
Current	I _{Leak}	$V_{RWM} = \pm 1.5V, T=25 ^{\circ}C.$			100	nA
Reverse Breakdown	V		4			\ /
Voltage	V_{BV}	$I_{BV} = 100 \mu A, T=25 {}^{\circ}C.$	4			V
ESD Clamping	V	IEC 61000-4-2 +8kV (I _{TLP} = 16A),		4.6		V
Voltage (Note 1)	$V_{\text{CL-ESD}}$	contact mode, T=25 °C.				
ESD Dynamic Turn	D	IEC 61000-4-2 0~+8kV, contact		0.2		O
on Resistance	$R_{dynamic}$	mode, T=25 °C.	0.2			7.2
Channel Input	C	V _R = 1V, f = 1MHz, T=25 °C.		0.18		pF
Capacitance	C_{IN}	V _R = 1V, f = 1GHz, T=25 °C.		0.15		pF


Note 1: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.

TLP conditions: Z_0 = 50 Ω , t_p = 100ns, t_r = 1ns.

Typical Characteristics

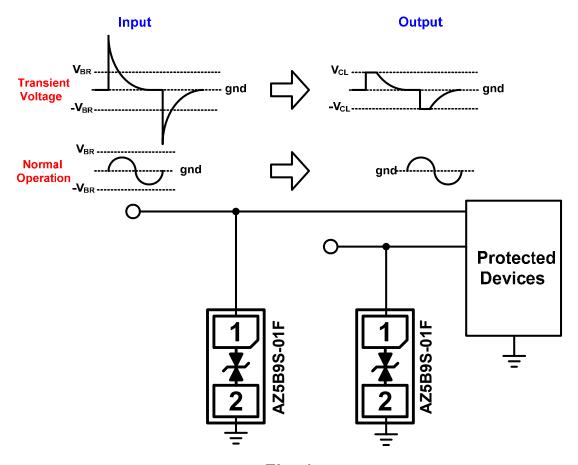
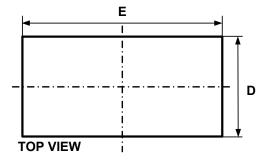
Application Information

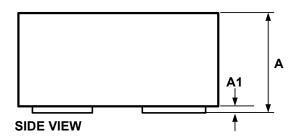
The AZ5B9S-01F is designed to protect one line against system ESD pulse by clamping it to an acceptable reference. It provides bi-directional protection.

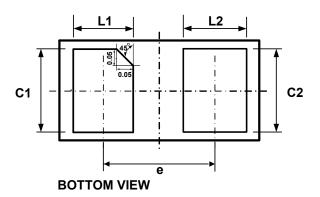
The usage of the AZ5B9S-01F is shown in Fig. 1. Protected line, such as data line, control line, or power line, is connected at pin 1. The pin 2 is connected to a ground plane on the board. In order to minimize parasitic inductance in the board traces, all path lengths connected to the pins of AZ5B9S-01F should be kept as short as possible.

In order to obtain enough suppression of ESD induced transient, a good circuit board is critical. Thus, the following guidelines are recommended:

- Minimize the path length between the protected lines and the AZ5B9S-01F.
- Place the AZ5B9S-01F near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- Use ground planes whenever possible.
- NEVER route critical signals near board edges and near the lines which the ESD transient easily injects to.

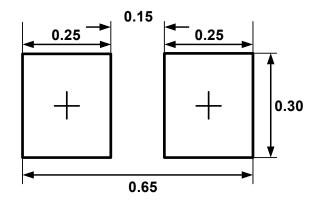




Fig. 1



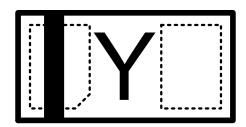
Mechanical Details

DFN0603P2Y PACKAGE DIAGRAMS



CVMDOL	MILLIMETERS			
SYMBOL	MIN.	NOM.	MAX.	
E	0.55	0.60	0.65	
D	0.25	0.30	0.35	
Α	0.28	0.30	0.32	
A 1	0.00	0.02	0.05	
L1	0.13	0.18	0.23	
L2	0.14	0.19	0.24	
C1/C2	0.20	0.25	0.30	
е		0.35 BSC	,	

Land Layout



(Unit: mm)

Notes:

This LAND LAYOUT is for reference purposes only. Please consult your manufacturing partners to ensure your company's PCB design guidelines are met.

Marking Code

Y = Device Code

Part Number	Marking Code
AZ5B9S-01F.R7G (Green Part)	Υ

Note. Green means Pb-free, RoHS, and Halogen free compliant.

Ordering Information

PN#	Material	Type	Reel size	MOQ	MOQ/internal box	MOQ/carton
AZ5B9S-01F.R7G	Green	T/R	7 inch	12,000/reel	4 reels= 48,000/box	6 boxes =288,000/carton

Revision History

Revision	Modification Description
Revision 2021/04/07	Formal Release.