

1800W SURFACE MOUNT TRANSIENT VOLTAGE SUPPRESSOR

PowerDI5

Product Summary

Description and Applications

V _{RWM}	V _{BR} Min	I _{PPM} Max
28V	31V	41A

Packaged in the thermally efficient PowerDI[®]5 this 1800W TVS is

applications form transients induced by inductive load switching.

designed to protect sensitive electronic circuits in automotive

Features and Benefits

- Uni-directional polarity
- Low profile thermally efficient package
- Compliant with IEC 61000-4-2, IEC61000-4-4, IEC61000-4-5
- ISO7637-2 (pulses 1, 2a, 2b, 3) Compliant
- Lead-Free Finish; RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for Automotive
- PPAP Capable (Note 4)

Mechanical Data

- Case: PowerDI5
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Annealed over Copper Leadframe. Solderable per MIL-STD-202, Method 208 @3
- Terminal Connections: See Diagram Below
- Weight: 0.093 grams (Approximate)

Top View

Bottom View

Note: Pins Left & Right must be electrically connected at the printed circuit board.

Ordering Information (Note 5)

Product	Compliance	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
D28V0H1U2P5Q-13	Automotive	MH	13	16	5,000/Tape & Reel

1. EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant. All applicable RoHS exemptions applied. Notes:

2. See http://www.diodes.com/quality/lead free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. Automotive products are AEC-Q101 qualified and are PPAP capable. Please refer to http://www.diodes.com/quality/product compliance definitions/. 5. For packaging details, go to our website at http://www.diodes.com/products/packages.html.

Marking Information

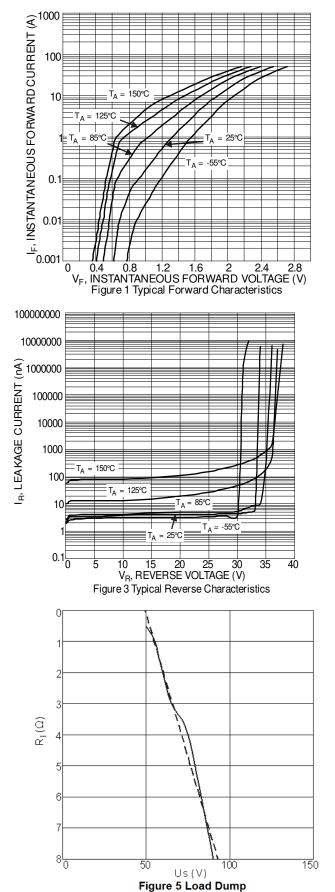
MH = Product Type Marking Code YYWW = Date Code Marking YY = Last Two Digits of Year (ex: 17 = 2017) WW = Week Code (01 - 53) K = Factory Designator

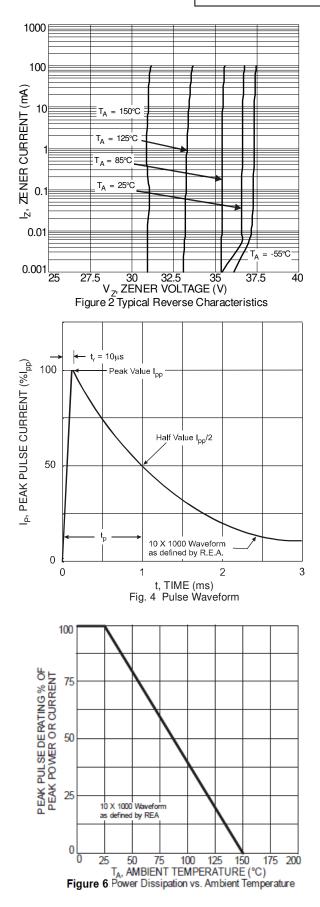
Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit	Conditions
Peak Pulse Power Dissipation	P _{PP}	1,800	W	10/1000µs, See Figure 4
Maximum Instantaneous Forward Voltage	V _F	3.5	V	I _F = 50A
Peak Pulse Surge Current	I _{PPM}	41	А	10/1000µs, See Figure 4
Non-Repetitive Peak Forward Surge Current 8.3ms	I _{FSM}	150	А	8.3ms single half sine-wave. Duty cycle = 4 pulses per minute max
ESD Protection – Human Body Model	V _{ESD_HBM}	8	kV	IEC 61000-4-2 Standard
ESD Protection – Machine Body Model	V _{ESD_MM}	400	V	IEC 61000-4-2 Standard
ESD Protection – Contact Discharge	V _{ESD_CONTACT}	30	kV	IEC 61000-4-2 Standard
ESD Protection – Air Discharge	V _{ESD_AIR}	30	kV	IEC 61000-4-2 Standard

Thermal Characteristics

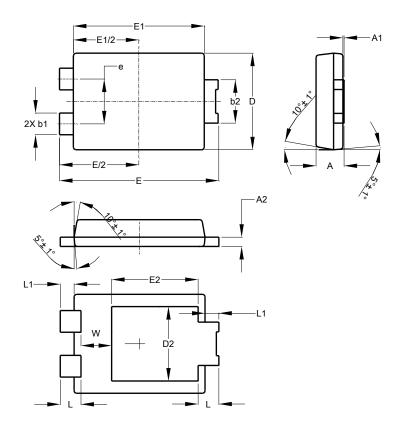
Characteristic	Symbol	Value	Unit
Package Power Dissipation (Note 6)	PD	1,300	mW
Thermal Resistance, Junction to Ambient (Note 6)	R _{0JA}	90	°C/W
Thermal Resistance, Junction to Case (Note 6)	R _{0JC}	21	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C


Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)


Symbol	Min	Тур	Max	Unit	Test Conditions
V _{RWM}		—	28	V	—
I _{RM}	—	—	100	nA	V _{RWM} = 28V
V _{CL}	_	_	44	V	$I_{PP} = I_{PPM}, t_P = 10/1000 \mu s$
V _{BR}	31	_	35	V	I _R = 1mA
R _{DIF}	—	—	0.45	Ω	I _R = 1A, t _P = 10/1000μs
	V _{RWM} I _{RM} V _{CL} V _{BR}	VRWM — IRM — VCL — VBR 31	V _{RWM} I _{RM} V _{CL} V _{BR} 31	V _{RWM} -28 I _{RM} 100 V _{CL} 44 V _{BR} 31 35	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

6. Device mounted on FR-4 substrate PC board, with minimum recommended pad layout. Refer to http://www.diodes.com/package-outlines.html. 7. Short duration pulse test used to minimize self-heating effect.

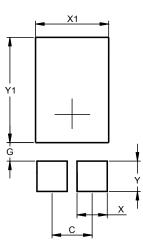
D28V0H1U2P5Q



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

PowerDI5



PowerDI5				
Dim	Min	Max	Тур	
Α	1.05	1.15	1.10	
A1	0.00	0.05	-	
A2	0.33	0.43	0.381	
b1	0.80	0.99	0.89	
b2	1.70	1.88	1.78	
D	3.90	4.05	3.966	
D2	1	1	3.054	
ш	6.40	6.60	6.504	
e	-	1	1.84	
E1	5.30	5.45	5.37	
E2	_	-	3.549	
L	0.75	0.95	0.85	
L1	0.50	0.65	0.57	
W	1.10	1.41	1.255	
All	Dimens	ions in	mm	

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

PowerDI5

Dimensions	Value (in mm)
С	1.840
G	0.852
Х	1.390
X1	3.360
Y	1.400
Y1	4.860

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated

www.diodes.com