Technical Data 4116

Effective October 2015 Supersedes March 2007

HC7 High current power inductors

Product description

- Surface mount inductors designed for higher speed switch mode applications requiring lower inductance, low voltage and high current
- Design utilizes high temperature powder iron material with a non-organic binder to eliminate thermal aging
- Inductance range from 0.22 uH to 4.81 uH
- Current range from 9.2 to 86.5 Amps
- Frequency range 1kHz to 500kHz

Applications

- Multi-phase regulators
- Voltage Regulator Modules (VRMs)
- Distributed power systems DC-DC converters
- Desktop and server VRMs and EVRDs
- Point-of-Load (POL) modules
- Field Programmable Gate Array (FPGA) DC-DC converters
- Battery power systems
- High current power supplies
- Data networking and storage systems

Environmental data

- Storage temperature range (component): -40°C to +155°C
- Operating temperature range: -40°C to +155°C (ambient plus self-temperature rise)
- Solder reflow temperature: J-STD-020D compliant

Technical Data **4116** Effective October 2015

Product specifications

Part number ⁶	OCL1 (µH) ±20%	l _{rms} ² (amps)	l _{sat} ³ (amps) 15% rolloff	l _{sat} 4 (amps) 30% rolloff	DCR (mΩ) maximum @ 20°C	Volt-µsec⁵ (V-µs)
HC7-R20-R	0.22	35.8	45.8	86.5	0.67	2.27
HC7-R47-R	0.53	23.4	27.5	51.9	1.60	3.83
HC7-1R0-R	1.05	20.3	19.6	37.1	2.10	5.36
HC7-1R5-R	1.73	14.2	15.3	28.8	4.30	6.90
HC7-2R2-R	2.58	13.0	12.5	23.6	5.20	8.40
HC7-3R9-R	3.61	10.4	10.6	20.0	7.90	10.0
HC7-4R7-R	4.81	9.8	9.2	17.3	9.00	12.6

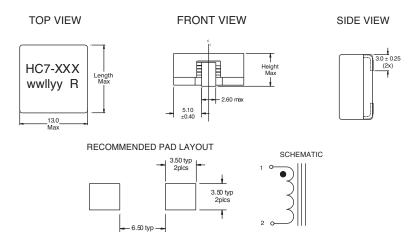
6. Part number definition: HC7-XXX-R

-R suffix indicates RoHS compliant

HC7 = Product code and size

number of zeros

1. Open Circuit Inductance (OCL) Test Parameters: 100kHz, 1.0Vrms, 0.0Adc, @ +25°C

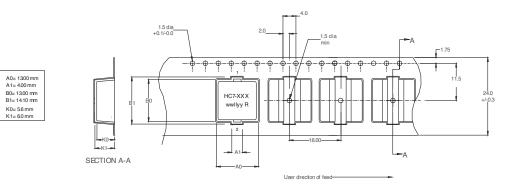

2. Irms: DC current for an approximately ΔT of 40°C without core loss. Derating is necessary for AC currents. Pad layout, trace thickness and width, airflow, and proximity of other heat generating components will affect the temperature rise. It is recommended that the temperature of the part not exceed 155°C under worst case conditions verified in the end application.

3. Peak current for approximately 15% rolloff @+20°C

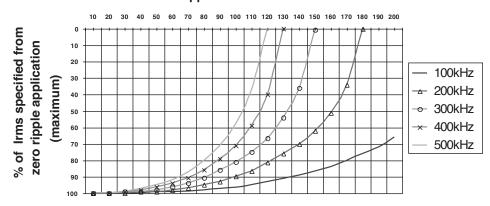
4. Peak current for approximately 30% rolloff @+20°C

5. Applied Volt-Time product (V-µs) across the inductor. This value represents the applied V-µs at operating frequency necessary to generate additional core loss which contributes to the 40°C temperature rise. De-rating of the Irms is required to prevent excessive temperature rise. The 100% V-us rating is equivalent to a ripple current Ip-p of 20% of Isat (30% rolloff option).

Dimensions-mm

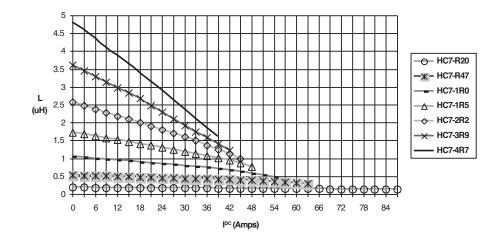

Part number	Height mm	Length mm
HC7-R20-R	6.0	14.25
HC7-R47-R	5.5	13.8
HC7-1R0-R	5.5	13.8
HC7-1R5-R	5.5	13.8
HC7-2R2-R	5.5	13.8
HC7-3R9-R	5.5	13.8
HC7-4R7-R	5.5	13.8

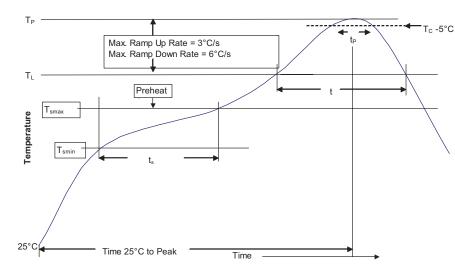
XXX = Inductance value in uH. R = Decimal point. If no R is present, then last character equals the


Part marking: HC7= (Product code and size)-xxx=(inductance value in uH, R= decimal point. If no R is present then last character equals number of zeros. wwlyly=date code, R=revision level Tolerances are ± 0.2 millimeters unless stated otherwise All soldering surfaces to be coplanar within 0.15 millimeter Do not route traces or vias underneath the inductor

Packaging information-mm

Supplied in tape and reel packaging, 610 parts per reel, 13" diameter reel.


Irms DERATING WITH CORE LOSS


% of Applied Volt-u-Seconds

Inductance characteristics

Inductance vs. I_{DC}

Solder reflow profile

$-_{T_c - 5^{\circ}C}$ Table 1 - Standard SnPb Solder (T_c)

Package Thickness	Volume mm3 <350	Volume mm3 ≥350
<2.5mm)	235°C	220°C
≥2.5mm	220°C	220°C

Table 2 - Lead (Pb) Free Solder (T_c)

Package Thickness	Volume mm ³ <350	Volume mm ³ 350 - 2000	Volume mm ³ >2000
<1.6mm	260°C	260°C	260°C
1.6 – 2.5mm	260°C	250°C	245°C
>2.5mm	250°C	245°C	245°C

Reference JDEC J-STD-020D

Profile Feature	Standard SnPb Solder	Lead (Pb) Free Solder	
Preheat and Soak • Temperature min. (T _{smin})	100°C	150°C	
• Temperature max. (T _{smax})	150°C	200°C	
• Time (T _{smin} to T _{smax}) (t _s)	60-120 Seconds	60-120 Seconds	
Average ramp up rate T _{smax} to T _p	3°C/ Second Max.	3°C/ Second Max.	
Liquidous temperature (TL) Time at liquidous (tL)	183°C 60-150 Seconds	217°C 60-150 Seconds	
Peak package body temperature (Tp)*	Table 1	Table 2	
Time $(t_p)^{**}$ within 5 °C of the specified classification temperature (T_c)	20 Seconds**	30 Seconds**	
Average ramp-down rate (Tp to T _{smax})	6°C/ Second Max.	6°C/ Second Max.	
Time 25°C to Peak Temperature	6 Minutes Max.	8 Minutes Max.	

* Tolerance for peak profile temperature (T_n) is defined as a supplier minimum and a user maximum.

** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

Life Support Policy: Eaton does not authorize the use of any of its products for use in life support devices or systems without the express written approval of an officer of the Company. Life support systems are devices which support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin.

Eaton Electronics Division 1000 Eaton Boulevard Cleveland, OH 44122 United States www.eaton.com/elx

© 2015 Eaton All Rights Reserved Printed in USA Publication No. 4116 October 2015

Eaton is a registered trademark.

All other trademarks are property of their respective owners.

