8-Bit Addressable Latches The MC14099B is an 8-bit addressable latch. Data is entered in serial form when the appropriate latch is addressed (via address pins A0, A1, A2) and write disable is in the low state. For the MC14099B the input is a unidirectional write only port. The data is presented in parallel at the output of the eight latches independently of the state of Write Disable, $Write/\overline{Read}$ or Chip Enable. A Master Reset capability is available on both parts. #### **Features** - Serial Data Input - Parallel Output - Master Reset - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Capable of Driving Two Low-power TTL Loads or One Low-Power Schottky TTL Load over the Rated Temperature Range - MC14099B pin for pin compatible with CD4099B - These Devices are Pb-Free and are RoHS Compliant #### MAXIMUM RATINGS (Voltages Referenced to VSS) | Symbol | Parameter | Value | Unit | |------------------------------------|--|-------------------------------|------| | V _{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range (DC or Transient) | -0.5 to V _{DD} + 0.5 | V | | I _{in} , I _{out} | Input or Output Current
(DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation, per Package (Note 1) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature
(8-Second Soldering) | 260 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Temperature Derating: Plastic "P and D/DW" Packages: -7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. # ON Semiconductor® http://onsemi.com #### MARKING DIAGRAMS PDIP-16 P SUFFIX CASE 648 SOIC-16 WD DW SUFFIX CASE 751G = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Indicator #### **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. 1 #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|-------------------------|--------------------------| | MC14099BCPG | PDIP-16
(Pb-Free) | 500 Units / Rail | | MC14099BDWG | SOIC-16 WB
(Pb-Free) | 47 Units / Rail | | MC14099BDWR2G | SOIC-16 WB
(Pb-Free) | 1000 Units / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | | | | ., | - 5 | 5°C | | 25°C | | 125 | 5°C | | |---|-----------|-----------------|------------------------|-----------------------------------|----------------------|-----------------------------------|---|----------------------|-----------------------------------|----------------------|------| | Characteristic | | Symbol | V _{DD}
Vdc | Min | Max | Min | Typ
(Note 2) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | -
-
- | 0.05
0.05
0.05 | -
-
- | 0
0
0 | 0.05
0.05
0.05 | -
-
- | 0.05
0.05
0.05 | Vdc | | $V_{in} = 0 \text{ or } V_{DD}$ | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | -
-
- | 4.95
9.95
14.95 | 5.0
10
15 | -
-
- | 4.95
9.95
14.95 | -
-
- | Vdc | | Input Voltage
(V _O = 4.5 or 0.5 Vdc)
(V _O = 9.0 or 1.0 Vdc)
(V _O = 13.5 or 1.5 Vdc) | "0" Level | V _{IL} | 5.0
10
15 | -
-
- | 1.5
3.0
4.0 | -
-
- | 2.25
4.50
6.75 | 1.5
3.0
4.0 | -
-
- | 1.5
3.0
4.0 | Vdc | | $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$
$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$
$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | "1" Level | V _{IH} | 5.0
10
15 | 3.5
7.0
11 | -
-
- | 3.5
7.0
11 | 2.75
5.50
8.25 | -
-
- | 3.5
7.0
11 | -
-
- | Vdc | | Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $ | Source | I _{OH} | 5.0
5.0
10
15 | - 3.0
- 0.64
- 1.6
- 4.2 | -
-
- | - 2.4
- 0.51
- 1.3
- 3.4 | - 4.2
- 0.88
- 2.25
- 8.8 | -
-
- | - 1.7
- 0.36
- 0.9
- 2.4 | -
-
- | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$
$(V_{OL} = 0.5 \text{ Vdc})$
$(V_{OL} = 1.5 \text{ Vdc})$ | Sink | I _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | | 0.51
1.3
3.4 | 0.88
2.25
8.8 | -
-
- | 0.36
0.9
2.4 | -
-
- | mAdc | | Input Current | | l _{in} | 15 | _ | ±0.1 | _ | ±0.00001 | ±0.1 | - | ±1.0 | μAdc | | Input Capacitance (V _{in} = 0) | | C _{in} | ı | _ | 1 | - | 5.0 | 7.5 | _ | - | pF | | Input Capacitance
MC14599B — Data (pin
(V _{in} = 0) | 3) | C _{in} | - | _ | - | _ | 15 | 22.5 | - | _ | pF | | Quiescent Current
(Per Package) | | I _{DD} | 5.0
10
15 | -
-
- | 5.0
10
20 | -
-
- | 0.005
0.010
0.015 | 5.0
10
20 | -
-
- | 150
300
600 | μAdc | | Total Supply Current (Notes
(Dynamic plus Quiescer
Per Package)
(C _L = 50 pF on all outpu
buffers switching) | nt, | Ι _Τ | 5.0
10
15 | | | $I_T = (3)$ | 1.5 μΑ/kHz) f
3.0 μΑ/kHz) f
4.5 μΑ/kHz) f | + I _{DD} | | | μAdc | Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. The formulas given are for the typical characteristics only at 25°C. To calculate total supply current at loads other than 50 pF: $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, V = ($V_{DD} - V_{SS}$) in volts, f in kHz is input frequency, and k = 0.004. # SWITCHING CHARACTERISTICS (Note 5) (C $_L$ = 50 pF, T_A = 25 $^{\circ}C)$ | Characteristic | Symbol | V _{DD}
Vdc | Min | Typ
(Note 6) | Max | Unit | |---|--|------------------------|-------------------|----------------------|-------------------|------| | Output Rise and Fall Time $t_{TLH},t_{THL}=(1.35\;\text{ns/pF})\;C_L+32\;\text{ns}\\t_{TLH},t_{THL}=(0.6\;\text{ns/pF})\;C_L+20\;\text{ns}\\t_{TLH},t_{THL}=(0.4\;\text{ns/pF})\;C_L+20\;\text{ns}$ | t _{TLH} ,
t _{THL} | 5.0
10
15 | -
-
- | 100
50
40 | 200
100
80 | ns | | Propagation Delay Time
Data to Output Q | t _{PHL} ,
t _{PLH} | 5.0
10
15 | -
-
- | 200
75
50 | 400
150
100 | ns | | Write Disable to Output Q | | 5.0
10
15 | -
-
- | 200
80
60 | 400
160
120 | ns | | Reset to Output Q | | 5.0
10
15 | -
-
- | 175
80
65 | 350
160
130 | ns | | CE to Output Q (MC14599B only) | | 5.0
10
15 | -
-
- | 225
100
75 | 450
200
150 | ns | | Propagation Delay Time, MC14599B only
Chip Enable, Write/Read to Data | t _{PHL} ,
t _{PLH} | 5.0
10
15 | -
-
- | 200
80
65 | 400
160
130 | ns | | Address to Data | | 5.0
10
15 | -
-
- | 200
90
75 | 400
180
150 | ns | | Pulse Widths
Reset | t _{w(H)} | 5.0
10
15 | 150
75
50 | 75
40
25 | -
-
- | ns | | Write Disable | | 5.0
10
15 | 320
160
120 | 160
80
60 | -
-
- | ns | | Set Up Time
Data to Write Disable | t _{su} | 5.0
10
15 | 100
50
35 | 50
25
20 | -
-
- | ns | | Hold Time
Write Disable to Data | t _h | 5.0
10
15 | 150
75
50 | 75
40
25 | -
-
- | ns | | Set Up Time
Address to Write Disable | t _{su} | 5.0
10
15 | 100
80
40 | 45
30
10 | -
-
- | ns | | Removal Time
Write Disable to Address | t _{rem} | 5.0
10
15 | 0
0
0 | - 80
- 40
- 40 | -
-
- | ns | ^{5.} The formulas given are for the typical characteristics only at 25°C. 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. ## **FUNCTION DIAGRAM** ## **TRUTH TABLE** | Write
Disable | Reset | Addressed
Latch | Unaddressed
Latches | |------------------|-------|--------------------|------------------------| | 0 | 0 | Data | Q _n * | | 0 | 1 | Data | Reset † | | 1 | 0 | Q _n * | Q _n * | | 1 | 1 | Reset | Reset | *Q_n is previous state of latch. †Reset to zero state. CAUTION: To avoid unintentional data changes in the latches, Write Disable must be active (high) during transitions on the address inputs A0, A1, and A2. # **SWITCHING WAVEFORMS** # **PACKAGE DIMENSIONS** PDIP-16 **P SUFFIX** PLASTIC DIP PACKAGE CASE 648-08 ISSUE T - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIM | ETERS | |-----|-----------|-------|----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | В | 0.250 | 0.270 | 6.35 | 6.85 | | С | 0.145 | 0.175 | 3.69 | 4.44 | | D | 0.015 | 0.021 | 0.39 | 0.53 | | F | 0.040 | 0.70 | 1.02 | 1.77 | | G | 0.100 BSC | | 2.54 BSC | | | Н | 0.050 | BSC | 1.27 | BSC | | J | 0.008 | 0.015 | 0.21 | 0.38 | | K | 0.110 | 0.130 | 2.80 | 3.30 | | L | 0.295 | 0.305 | 7.50 | 7.74 | | М | 0° | 10 ° | 0° | 10 ° | | S | 0.020 | 0.040 | 0.51 | 1.01 | #### PACKAGE DIMENSIONS #### SOIC-16 WB **DW SUFFIX** PLASTIC SOIC PACKAGE CASE 751G-03 **ISSUE C** #### NOTES: - DIMENSIONS ARE IN MILLIMETERS. INTERPRET DIMENSIONS AND TOLERANCES. PER ASME Y14.5M, 1994. - DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR - PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | | | |------------|-------------|-------|--|--|--| | DIM | MIN | MAX | | | | | Α | 2.35 | 2.65 | | | | | A 1 | 0.10 | 0.25 | | | | | В | 0.35 | 0.49 | | | | | C | 0.23 | 0.32 | | | | | D | 10.15 | 10.45 | | | | | Е | 7.40 | 7.60 | | | | | е | 1.27 BSC | | | | | | Н | 10.05 | 10.55 | | | | | h | 0.25 | 0.75 | | | | | L | 0.50 | 0.90 | | | | | а | 0 ° | 7 ° | | | | ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative