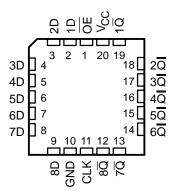
SN54ACT564 . . . J OR W PACKAGE SN74ACT564 . . . DB, DW, N, NS, OR PW PACKAGE

(TOP VIEW)

SCAS549B - NOVEMBER 1995 - REVISED NOVEMBER 2002

- 4.5-V to 5.5-V V_{CC} Operation
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 8.5 ns at 5 V
- Inputs Are TTL-Voltage Compatible
- 3-State Inverted Outputs Drive Bus Lines Directly
- Flow-Through Architecture to Optimize PCB Layout
- Full Parallel Access for Loading

description/ordering information


The 'ACT564 devices are octal D-type edge-triggered flip-flops that feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

On the positive transition of the clock (CLK) input, the \overline{Q} outputs are set to the complements of the logic levels set up at the data (D) inputs.

A buffered output-enable (\overline{OE}) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

ŌĒ		U 20] v _{cc}
1D	2	19] 1Q
2D	[з	18] 2Q
3D	4	17] 3Q
4D	5	16] 4Q
5D	6	15	5Q
6D	7	14	6Q
7D	8	13	7Q
8D	9	12	8Q
GND	10	11] сік

SN54ACT564 . . . FK PACKAGE (TOP VIEW)

TA	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74ACT564N	SN74ACT564N
	SOIC - DW	Tube	SN74ACT564DW	ACT564
-40°C to 85°C	50IC - DW	Tape and reel	SN74ACT564DWR	AC1504
-40°C 10 85°C	SOP – NS	Tape and reel	SN74ACT564NSR	ACT564
	SSOP – DB	Tape and reel	SN74ACT564DBR	AD564
	TSSOP – PW	Tape and reel	SN74ACT564PWR	AD564
	CDIP – J	Tube	SNJ54ACT564J	SNJ54ACT564J
–55°C to 125°C	CFP – W	Tube	SNJ54ACT564W	SNJ54ACT564W
	LCCC – FK	Tube	SNJ54ACT564FK	SNJ54ACT564FK

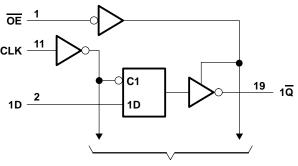
ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCAS549B - NOVEMBER 1995 - REVISED NOVEMBER 2002


description/ordering information (continued)

OE does not affect internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE (each flip-flop)						
	INPUTS		OUTPUT			
OE	CLK	D	Q			
L	\uparrow	Н	L			
L	\uparrow	L	Н			
L	H or L	Х	\overline{Q}_0			
н	Х	Х	z			

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}		–0.5 V to 7 V
Input voltage range, V _I (see Note 1)		–0.5 V to V _{CC} + 0.5 V
Output voltage range, V _O (see Note 1)		–0.5 V to V _{CC} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$).		±20 mA
Output clamp current, I_{OK} (V _O < 0 or V _O > V _C		
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	-	±50 mA
Continuous current through V _{CC} or GND		±200 mA
Package thermal impedance, θ_{JA} (see Note 2)): DB package	70°C/W
	DW package	58°C/W
	N package	69°C/W
	NS package	60°C/W
	PW package	83°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCAS549B - NOVEMBER 1995 - REVISED NOVEMBER 2002

recommended operating conditions (see Note 3)

		SN54ACT564		SN74ACT564		
		MIN	MAX	MIN	MAX	UNIT
VCC	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2	2	2		V
VIL	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	Vcc	0	VCC	V
Vo	Output voltage	0,	Vcc	0	VCC	V
ЮН	High-level output current	N _C	-24		-24	mA
IOL	Low-level output current	202	24		24	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	2	8		8	ns/V
Тд	Operating free-air temperature	-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	N.s.s.	T _A = 25°C			SN54A	CT564	4 SN74ACT564		
PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
		4.5 V	4.4	4.49		4.4		4.4		
	I _{OH} = -50 μA	5.5 V	5.4	5.49		5.4		5.4		
Vou	I _{OH} = -24 mA	4.5 V	3.86			3.7		3.76		v
VOH	OH = -24 mA	5.5 V	4.86			4.7		4.76		v
	I _{OH} = -50 mA [†]	5.5 V				3.85	2			
	$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V					ME	3.85		
	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1	V
	$OL = 30 \mu A$	5.5 V			0.1	1	0.1		0.1	
	1	4.5 V			0.36	ν _c	0.5		0.44	
VOL	I _{OL} = 24 mA	5.5 V			0.36	20	0.5		0.44	
	$I_{OL} = 50 \text{ mA}^{\dagger}$	5.5 V				40	1.65			
	I _{OL} = 75 mA [†]	5.5 V							1.65	
I _{OZ}	$V_{O} = V_{CC}$ or GND	5.5 V			±0.25		±5		±2.5	μA
Ц	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μA
ICC	$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	5.5 V			4		80		40	μA
ΔI_{CC}^{\ddagger}	One input at 3.4 V, Other inputs at GND or V_{CC}	5.5 V		0.6			1.6		1.5	mA
Ci	$V_I = V_{CC}$ or GND	5 V		4.5						pF
Co	$V_{O} = V_{CC}$ or GND	5 V		15						pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 2 ms.

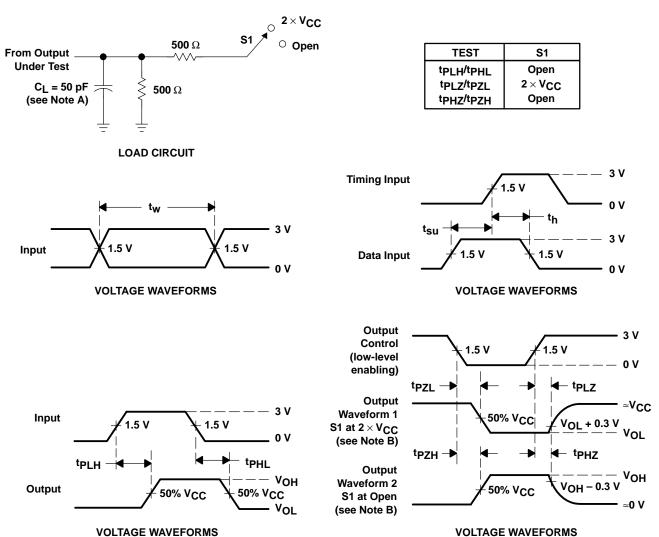
[‡]This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

SCAS549B - NOVEMBER 1995 - REVISED NOVEMBER 2002

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

		T _A = 25°C		SN54ACT564	SN74ACT564		UNIT
		MIN	MAX	MIN MAX	MIN	MAX	UNIT
fclock	Clock frequency		85	65		75	MHz
tw	Pulse duration, CLK high or low	3		6	3.5		ns
t _{su}	Setup time, data before CLK [↑]	2.5		3.5	3		ns
th	Hold time, data after CLK1	1		2.5	1		ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)


PARAMETER	FROM	то	T,	α = 25°C	;	SN54A	CT564	SN74A	CT564	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
fmax			85	90		65	N:	75		MHz
^t PLH	CLK	IQ	2	6.5	10.5	1	12.5	1.5	11.5	ns
^t PHL		Q	1.5	6	9.5	16	11.5	1.5	10.5	115
^t PZH	OE		1.5	5.5	9	20	10.5	1.5	9.5	ns
^t PZL			1.5	5.5	8.5	A 1	10.5	1	9.5	115
^t PHZ	OE	Q	1.5	7	10.5	× 1	12.5	1.5	11.5	ns
^t PLZ	0E	Ŷ	1.5	5	8	1	9.5	1	8.5	115

operating characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER		TEST CO	TYP	UNIT	
Cpd	Power dissipation capacitance	C _L = 50 pF,	f = 1 MHz	50	pF

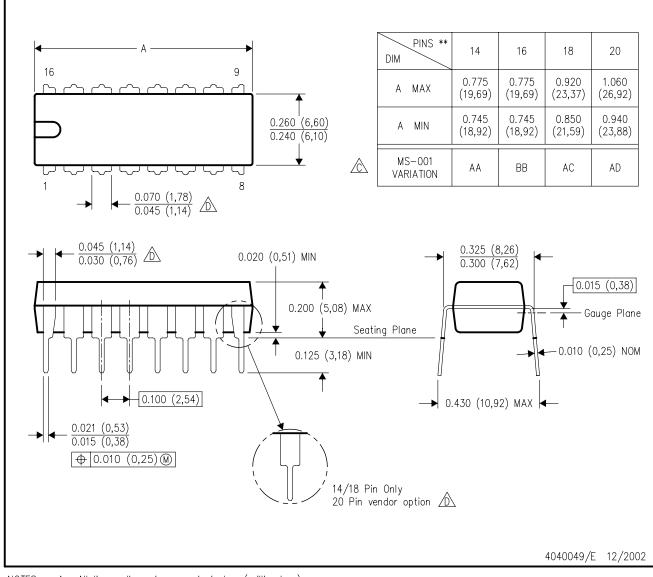
SCAS549B - NOVEMBER 1995 - REVISED NOVEMBER 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

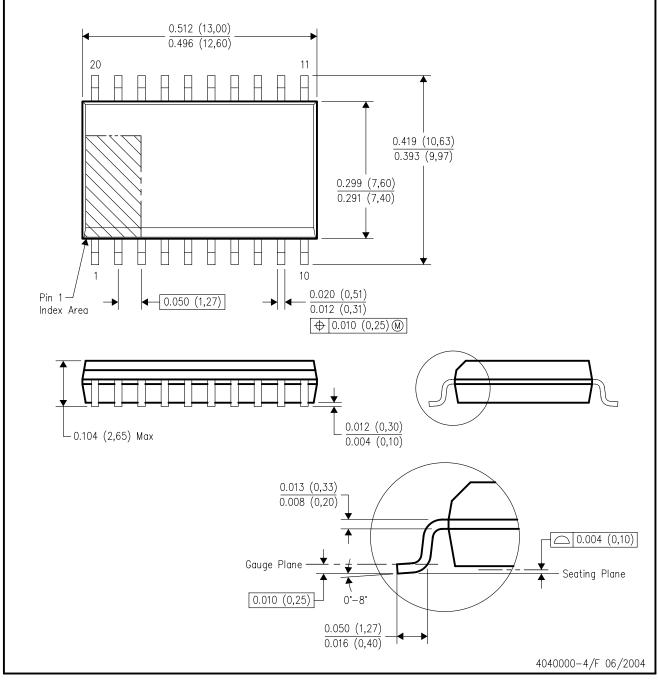
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one input transition per measurement.


Figure 1. Load Circuit and Voltage Waveforms

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AC.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

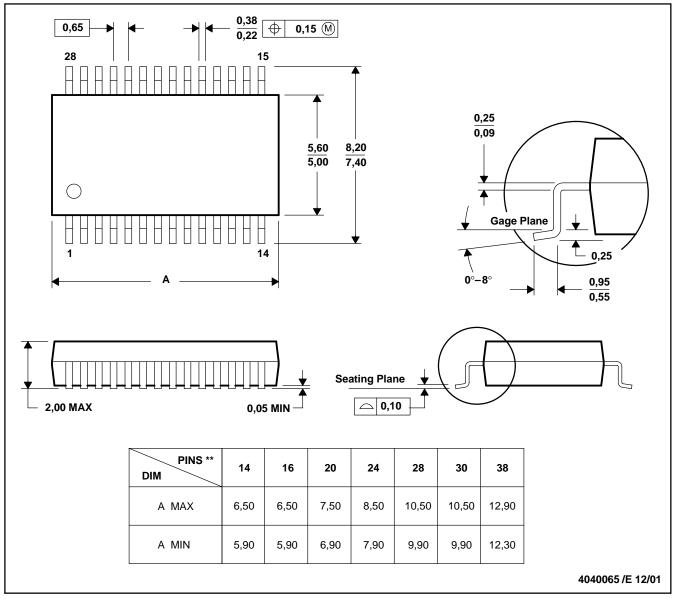
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

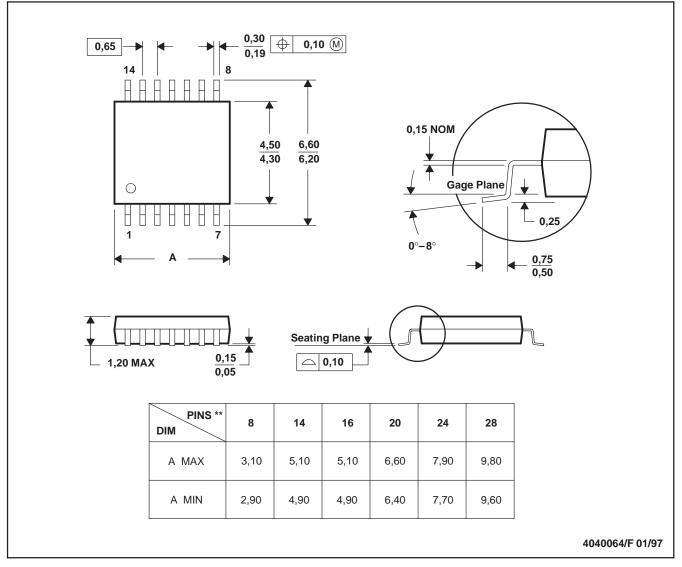
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated