

TPS3813xxxQ1EVM for Processor Voltage Supervisor With Window-Watchdog User's Guide

This user's guide describes the TPS3813xxxQ1EVM evaluation module (EVM). This guide contains the EVM schematic, bill of materials (BOM), assembly drawing, and top and bottom board layouts.

Contents

1	Introduction	. 2
2	Setup and Operation	
3	EVM Setup	. 7
	List of Figures	
1	TPS3813xxxQ1EVM Board	. 2
2	TPS3813xxxQ1EVM Schematic	. 3
3	Composite - Top View	. 5
4	Layout Top View	. 5
5	Layout Bottom View	. 5
6	Top Layer	. 5
7	Bottom Layer	. 5
8	Top Solder Mask	. 5
9	Delay Time TPS3813K33-Q1	. 8
10	Delay Time TPS3813I50-Q1	. 8
11	Rise Time TPS3813K33-Q1	. 8
12	Rise Time TPS3813I50-Q1	. 8
13	Fall Time TPS3813K33-Q1	. 9
14	Fall Time TPS3813I50-Q1	. 9
15	TPS3813K33-Q1	10
16	TPS3813I50-Q1	10
17	Watchdog Window Boundary Violation TPS3813K33-Q1	10
	List of Tables	
1	TPS3813xxxQ1EVM BOM	. 4
2	Test Points	. 6
3	EVM Onboard Jumpers	. 7
4	EVM Electrical Characteristics	. 7
5	Jumper Settings	. 8
6	Jumper Settings	. 9

Introduction www.ti.com

Trademarks

1 Introduction

The TPS3813xxxQ1EVM is an evaluation module (EVM) for processor voltage supervisors with window-watchdog provided by Texas Instruments. The EVM has an operating voltage range of approximately 2 V to 6 V, and has added jumpers to tie the FAULT pin to the voltage it is supervising, as well as several jumpers to control timing of the window-watchdog. Both 3.3 V and 5.0 V $V_{\rm DD}$ devices are broken out separately on the board, except for a common ground connection. Provided test points give users access to multiple ground points and all critical node voltages.

The top-side of the EVM board accepts two voltage supervisors in a SOT23-6 package. These devices have an input for supply voltage (V_{DD}), a watchdog rising edge input, and a reset output to monitor that V_{DD} does not drop below the threshold voltage, V_{IT} , and monitor the watchdog timing conditions.

Figure 1. TPS3813xxxQ1EVM Board

1.1 Related Documentation

The TPS3813-Q1 Processor Supervisory Circuits With Window-Watchdog datasheet (SPRS288)

1.2 TPS3813-Q1 Applications

The features of this EVM are as follows:

- Supply Monitoring for DSPs, Microcontrollers, or Microprocessors
- Safety Critical Systems
- · Automotive Systems

1.3 Schematics, Bill of Materials, and Layout

This section contains the TPS3813xxxQ1EVM schematic, bill of materials (BOM), and layout.

www.ti.com Introduction

1.3.1 EVM Schematic

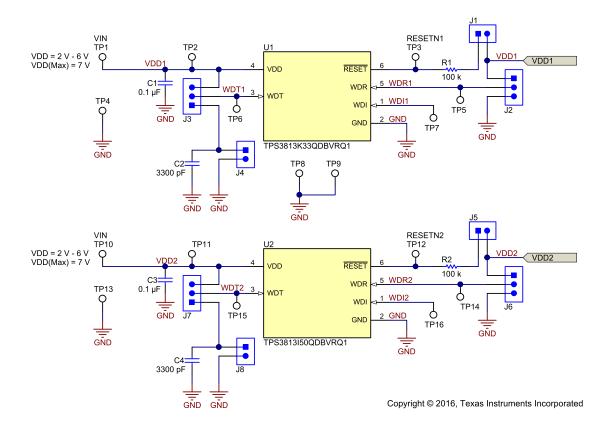


Figure 2. TPS3813xxxQ1EVM Schematic

1.3.2 EVM Bill of Materials

Table 1 lists the bill of materials (BOM) for the TPS3813xxxQ1EVM.

Introduction www.ti.com

Table 1. TPS3813xxxQ1EVM BOM

Designator	Quantity	Value	Description	Package Reference	Part Number	Manufacturer
!PCB1	1		Printed Circuit Board		MSA017	Any
C1, C3	2	0.1uF	CAP, CERM, 0.1 μF, 50 V, ±10%, X7R, AEC- Q200 Grade 1, 0603	0603	CGA3E2X7R1H104K0 80AA	TDK
C2, C4	2	3300pF	CAP, CERM, 3300 pF, 50 V, ±10%, X7R, AEC-Q200 Grade 1, 0402	0402	CGA2B2X7R1H332K0 50BA	TDK
J1, J4, J5, J8	4		Header, 2.54 mm, 2x1, Gold, R/A, SMT	Header, 2.54 mm, 2 x1, R/A, SMT	87898-0204	Molex
J2, J3, J6, J7	4		Header, 100 mil, 3x1, Gold, SMT	Samtec_TSM-103-01-X-SV	TSM-103-01-L-SV	Samtec
R1, R2	2	100k	RES, 100 k, 1%, 0.1 W, 0603	0603	CRCW0603100KFKE A	Vishay-Dale
SH-J1, SH-J2, SH-J5, SH-J6	4	1x2	Shunt, 100mil, Flash Gold, Black	Closed Top 100mil Shunt	SPC02SYAN	Sullins Connector Solutions
TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP13, TP14, TP15, TP16	16		Test Point, Compact, SMT	Testpoint_Keystone_Compact	5016	Keystone
U1	1		Processor Supervisory Circuits With Window-Watchdog, DBV0006A	DBV0006A	TPS3813K33QDBVR Q1	Texas Instruments
U2	1		Processor Supervisory Circuits With Window-Watchdog, DBV0006A	DBV0006A	TPS3813I50QDBVRQ 1	Texas Instruments
FID1, FID2, FID3	0		Fiducial mark. There is nothing to buy or mount.	Fiducial	N/A	N/A

www.ti.com Introduction

1.3.3 Layout and Component Placement

Figure 3 is the top assembly of the printed circuit board (PCB), which shows the component placement on the EVM. Figure 4 is the Layout Top View and Figure 5 is the Layout Bottom View, Figure 6 and Figure 7 show the top and bottom layers, and Figure 8 shows the top solder mask of the EVM.

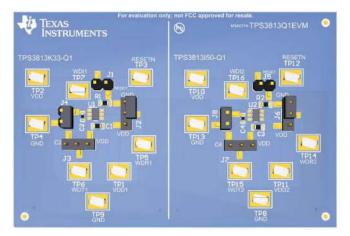


Figure 3. Composite - Top View

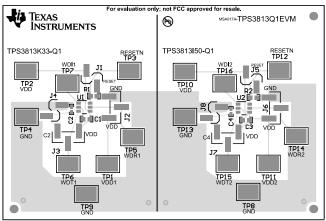


Figure 4. Layout Top View

Figure 5. Layout Bottom View

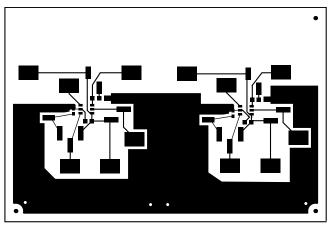


Figure 6. Top Layer

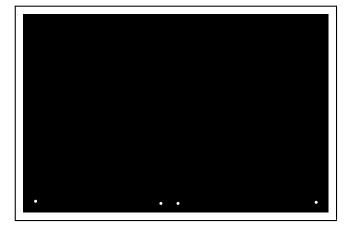


Figure 7. Bottom Layer

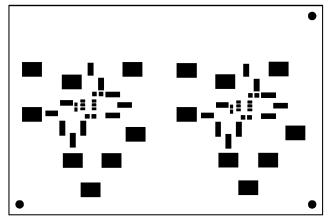


Figure 8. Top Solder Mask

Setup and Operation www.ti.com

2 Setup and Operation

This section describes the connectors, jumpers, and test points on the EVM as well as how to connect, set up, and properly use the EVM. This section also includes an example of EVM operation.

2.1 Connector Descriptions

There are several methods and types of I/O connections on the EVM including:

- · Test Points: for reset, WDR, WDT, WDI, VDD, and GND connected pins
- Two-Pin Jumpers: for holding the RESETN pin at a different voltage than V_{DD} and for using an optional external capacitor to adjust the watchdog window
- Three-Pin Jumpers: for manually setting WDT and WDR to V_{DD}, GND, or for using an external capacitor for a programmable window

Table 2 lists the test points and functional descriptions. All pins of the device are broken out to test points on the EVM.

Table 2. Test Points

Test Point Number	Device	Test Point Silkscreen Label	Function	Description
TP1	TPS3813K33	VDD	Voltage Input	Supply Voltage/ Voltage Supervisor Input
TP2	TPS3813K33	VDD1	Voltage Monitoring/ Probing	Voltage Probe Point for TPW3813
TP3	TPS3813K33	RESETN	Voltage Monitoring/ Probing	Active Low Reset Output
TP4	TPS3813K33	GND	Voltage Input	Supply Ground Connection
TP5	TPS3813K33	WDR1	Voltage Monitoring/ Probing	Watchdog Ratio Input (V _{DD} or GND)
TP6	TPS3813K33	WDT1	Voltage Monitoring/ Probing	Watchdog Delay Input (V_{DD} , GND, or C_{ext})
TP7	TPS3813K33	WDI1	Voltage Monitoring/ Probing	Watchdog Input Pin
TP8	Both	GND	Voltage Monitoring/ Probing	Common Ground Connection
TP9	Both	GND	Voltage Monitoring/ Probing	Common Ground Connection
TP10	TPS3813I50	VDD	Voltage Input	Supply Voltage/ Voltage Supervisor Input
TP11	TPS3813I50	VDD2	Voltage Monitoring/ Probing	Supply Voltage/ Voltage Supervisor Input
TP12	TPS3813I50	RESETN	Voltage Monitoring/ Probing	Active Low Reset Output
TP13	TPS3813I50	GND	Voltage Input	Supply Ground Connection
TP14	TPS3813I50	WDR2	Voltage Monitoring/ Probing	Watchdog Ratio Input (V _{DD} or GND)
TP15	TPS3813I50	WDT2	Voltage Monitoring/ Probing	Watchdog Delay Input (V_{DD} , GND, or C_{ext})
TP16	TPS3813I50	WDI2	Voltage Monitoring/ Probing	Watch-Dog Input Pin

www.ti.com EVM Setup

The descriptions for the jumpers onboard the TPS3813xxQ1EVM are in Table 3. The three pin jumpers control the two settings of the WDR pin, and two of the three settings of the WDT pin. The two pin jumpers are for the option of pulling the RESETN pin up to V_{DD} and for pulling the WDT pin to GND. The RESETN pin is an open drain, so it needs to be pulled high to assert an active low output. The WDT and WDR pins control the length of the programmable watchdog window and the length of the lower boundary prior to the watchdog window. The capacitor onboard the EVM is set to give a midpoint between the smallest and largest settings of this window. A Window Watchdog Calculator is provided for sizing the programmable watchdog window, use the link to go to the folder to download. For more information regarding the operation and functionality of the window-watchdog feature, refer to the TPS3813-Q1 datasheet.

Table 3. EVM Onboard Jumpers

Jumper	Device	Setting (On, VDD, GND, or C2)	Description
J1	TPS3813K33	On	Pulls RESET pin to supply voltage VDD.
J4	TPS3813K33	On	Pulls the WDT pin low, lowest lower window boundary and window.
J5	TPS3813I50	On	Pulls RESET pin to supply voltage VDD.
J8	TPS3813I50	On	Pulls the WDT pin low, lowest lower window boundary and window.
J2	TPS3813K33	GND	Pulls the WDR pin low, smaller lower window boundary and window.
		VDD	Pulls the WDR pin high, larger lower window boundary and window.
J3	TPS3813K33	C _{ext}	Applies external capacitor to the WDT pin for programmable window.
		V_{DD}	Pulls WDT pin high, largest lower window boundaries and frames.
J6	TPS3813I50	GND	Pulls the WDR pin low, smaller lower window boundary and window.
		V_{DD}	Pulls the WDR pin high, larger lower window boundary and window.
J7	TPS3813I50	C _{ext}	Applies external capacitor to the WDT pin for programmable window.
		V_{DD}	Pulls WDT pin high, largest lower window boundary and window.

Table 4 includes abridged EVM electrical characteristics. For a full functional description of the TPS3813-Q1 device, refer to the TPS3813-Q1 datasheet.

Table 4. EVM Electrical Characteristics

PARAMETER	CONDITION	DEVICE	MIN	TYP	MAX	UNIT
Supply Voltage, VDD	J2	Both	2	_	6	٧
Negative-going input threshold	J2	TPS3813K33	2.87	2.93	3	V
voltage, VIT	J2	TPS3813I50	4.45	4.55	4.65	٧

3 EVM Setup

The EVM setup section details what test equipment the user needs to evaluate the EVM and how to properly setup the EVM environment. The user should read the TPS3813Q1 Datasheet before using the EVM.

EVM Setup www.ti.com

3.1 Recommended Test Equipment

The following is the recommended test equipment:

- · Two-channel storage oscilloscope
- · Current probe
- Voltage probe
- Adjustable DC power supply with at least 2.5-V to 6.5-V output and 10-A current limit
- Digital Multimeter or Volt-Ohmmeter
- A passive or active load capable of handling up to 3 A

3.2 Measuring Delay Time and Rise/Fall Time

An internal clock delays the return of the output to the inactive (high) state to ensure proper system reset. The delay time, t_d = 25 ms typical, begins after the VDD1 voltage rises above the threshold voltage (V_{IT}) as specified in the TPS3813-Q1 datasheet. To perform this test, the user must set the jumpers according to Jumper Settings, Table 5. A stable 5-V DC supply must also be readily available.

Table 5. Jumper Settings

Jumper	Setting
J1 to J5	VDD1
J2 to J6	VDD1
J3 to J7	VDD1
J4 to J8	OFF

The jumper settings previously described will pull the WDT and WDR pin up to VDD, setting the Watchdog window to a default with window frame minimum of 15.6 ms and maximum of 3000 ms. Figure 9 through Figure 14 display the delay time as well for the rise and fall time of the RESETN pin when the VDD voltage falls above or below the negative going threshold voltage as outlined in the EVM Electrical Characteristics, Table 4.

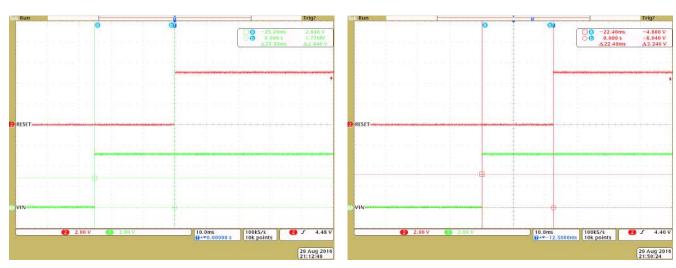


Figure 9. Delay Time TPS3813K33-Q1

Figure 10. Delay Time TPS3813I50-Q1

www.ti.com EVM Setup

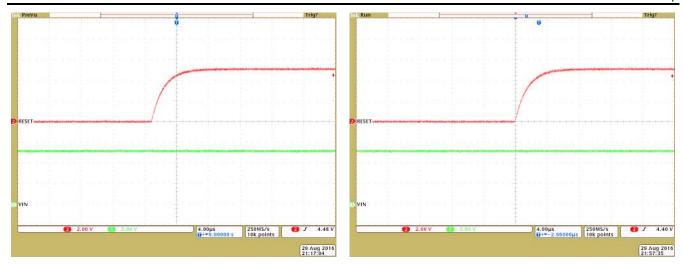


Figure 11. Rise Time TPS3813K33-Q1

Figure 12. Rise Time TPS3813I50-Q1

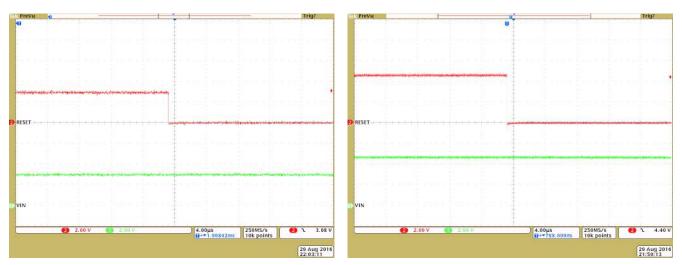


Figure 13. Fall Time TPS3813K33-Q1

Figure 14. Fall Time TPS3813I50-Q1

3.3 Programming Watchdog Timer

The TPS3813-Q1EVM allows users to program the watchdog window using the WDT and WDR pins with several different configurations to set the window timeout and ratio, which are explained in the Implemented Window-Watchdog Settings section of the TPS3813Q1 datasheet. On board the EVM, the WDT pin can be connected to ground through the C2 capacitor using the J4 and J6 jumpers to set the upper boundary of the watchdog window. Jumpers must be set as in Table 6.

Table 6. Jumper Settings

Jumper	Setting
J1 to J5	VDD1
J2 to J6	VDDI
J3 to J7	C2
J4 to J8	ON

Revision History www.ti.com

If the device does not detect a rising edge at the WDI pin, it will reset delay approximately 25 ms and return back to normal operation. This behavior is shown in Figure 15 and Figure 16.

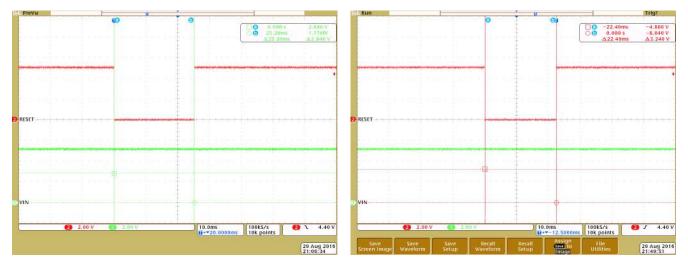


Figure 15. TPS3813K33-Q1

Figure 16. TPS3813I50-Q1

The watchdog window settings can be calculated and verified using the Window Watchdog Calculator and Visualizer tool as seen in Figure 17. Therefore, by using the jumpers as outlined above in Table 6 the WDT pin is tied to ground through a 3300-pF capacitor. The former results in a watchdog window with limits of $t_{boundary,max} = 35$ ms and $t_{window, min} = 895.3$ ms. Once the window has been configured, the watchdog timer should re-trigger to use the Watchdog Timer Input (WDI) pin with an external signal that fits within the watchdog window to avoid a timeout and RESETN pin is asserted. Care must be taken to avoid a boundary violation, which results from a trigger pulse in the lower or upper boundary of the watchdog window. Figure 17 shows a boundary violation that causes the RESETN pin to pull low. The WDI pulse seen at the falling edge of RESETN triggers at the lower boundary. Therefore, the user must adjust the pulse signal properly.

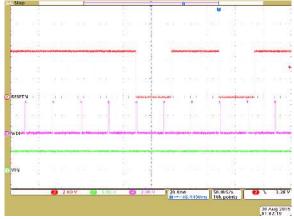


Figure 17. Watchdog Window Boundary Violation TPS3813K33-Q1

Revision History

DATE	REVISION	NOTES
November 2016	*	Initial Release

STANDARD TERMS AND CONDITIONS FOR EVALUATION MODULES

- 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms and conditions set forth herein. Acceptance of the EVM is expressly subject to the following terms and conditions.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms and conditions that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms and conditions do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for any defects that are caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI. Moreover, TI shall not be liable for any defects that result from User's design, specifications or instructions for such EVMs. Testing and other quality control techniques are used to the extent TI deems necessary or as mandated by government requirements. TI does not test all parameters of each EVM.
 - 2.3 If any EVM fails to conform to the warranty set forth above, Tl's sole liability shall be at its option to repair or replace such EVM, or credit User's account for such EVM. Tl's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by Tl and that are determined by Tl not to conform to such warranty. If Tl elects to repair or replace such EVM, Tl shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.
- 3 Regulatory Notices:
 - 3.1 United States
 - 3.1.1 Notice applicable to EVMs not FCC-Approved:

This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC - FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- · Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

- 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。
 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
- 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required by Radio Law of Japan to follow the instructions below with respect to EVMs:

- Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

ンスツルメンツ株式会社

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
- 4 EVM Use Restrictions and Warnings:
 - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
 - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
 - 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
 - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. Disclaimers:

- 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY WRITTEN DESIGN MATERIALS PROVIDED WITH THE EVM (AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
- 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS AND CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF THE EVM
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS AND CONDITIONS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS ANDCONDITIONS OR THE USE OF THE EVMS PROVIDED HEREUNDER, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY WARRANTY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS, OR ANY USE OF ANY TI EVM PROVIDED HEREUNDER, EXCEED THE TOTAL AMOUNT PAID TO TI FOR THE PARTICULAR UNITS SOLD UNDER THESE TERMS AND CONDITIONS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM AGAINST THE PARTICULAR UNITS SOLD TO USER UNDER THESE TERMS AND CONDITIONS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity