

CY62136VN MoBL[®]

2-Mbit (128K x 16) Static RAM

portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not

toggling. The device can also be put into standby mode when

deselected (CE HIGH). The input/output pins (I/O0 through

I/O15) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE

are disabled (BHE, BLE HIGH), or during a write operation (CE

Writing to the device is accomplished by taking Chip Enable

(CE) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇), is

written into the location specified on the address pins (A₀

through A₁₆). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location

Reading from the device is accomplished by taking Chip

Enable (CE) and Output Enable (OE) LOW while forcing the

Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address

pins will appear on I/O_0 to I/O_7 . If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See

the Truth Table at the back of this data sheet for a complete

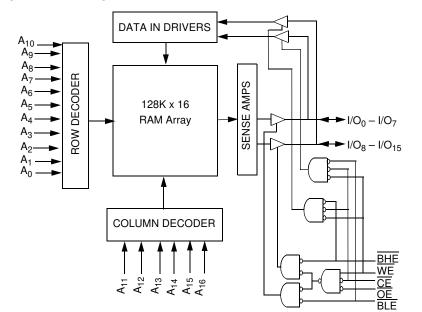
specified on the address pins (A_0°) through A_{16}).

description of read and write modes.

LOW, and WE LOW).

Features

- Temperature Ranges
 - Industrial: –40°C to 85°C
 - Automotive-A: –40°C to 85°C
 - Automotive-E: –40°C to 125°C
- High speed: 55 ns
- Wide voltage range: 2.7V–3.6V
- Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power
- Available in standard Pb-free 44-pin TSOP Type II. Pb-free and non Pb-free 48-ball FBGA packages


Functional Description^[1]

The CY62136VN is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL[®]) in

Logic Block Diagram

TSOP II (Forward)

PinConfigurations^[3]

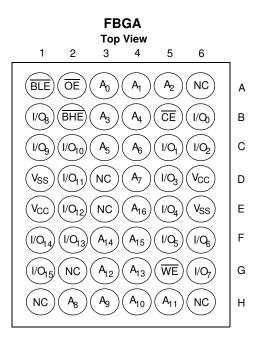
		Top Vie	w		,
A ₄ A ₂ A ₂ A ₂ A ₁₀ II	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22		14 43 42 41 40 39 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 29 22 5 22 5 22 5 22 5 22 5 22 5 22 5	,הממתמממממממממממממממממ	A ₅ A ₆ A <u>7</u> BLE 15 I/O 14 I/O 12 VSC 11 I/O 9 NC A ₈ A ₁₀ NC

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 001-06510 Rev. *A

198 Champion Court •


San Jose, CA 95134-1709 • 408-943-2600 Revised August 3, 2006

Product Portfolio

						Power Dissipation			
	V ₀	_{CC} Range	(V)			Operatin	ig, I _{CC} (mA)	Standby, I _{SB2} (µA)	
Product	Min	Typ. ^[2]	Max	Speed	Ranges	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62136VNLL	2.7	3.0	3.6	55	Industrial	7	20	1	15
				55	Automotive-A	7	20	1	15
				70	Industrial	7	15	1	15
				70	Automotive-A	7	15	1	15
				70	Automotive-E	7	20	1	20

Pin Configurations^[3]

Notes:

2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC}$ Typ, $T_A = 25^{\circ}$ C. 3. NC pins are not connected on the die.

CY62136VN MoBL®

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +4.6V
DC Voltage Applied to Outputs in High-Z State $^{[4]}$ 0.5V to V_{CC} + 0.5V
DC Input Voltage ^[4] 0.5V to V _{CC} + 0.5V

Output Current into Outputs (LOW) 2	20 mA
Static Discharge Voltage>2 (per MIL-STD-883, Method 3015)	2001V
Latch-up Current> 20)0 mA

Operating Range

Range	Ambient Temperature [T _A] ^[5]	
Industrial	-40°C to +85°C	2.7V to
Automotive-A	-40°C to +85°C	3.6V
Automotive-E	-40°C to +125°C	

Electrical Characteristics Over the Operating Range

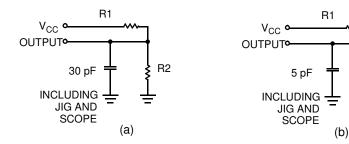
		-55				-70					
Parameter	Description	Те	st Condition	S	Min.	Typ. ^[2]	Max.	Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{\rm CC} = 2.7$	/, I _{OH} = −1.0 r	mA	2.4			2.4			V
V _{OL}	Output LOW Voltage	$V_{\rm CC} = 2.7$	/, I _{OL} = 2.1 m	A			0.4			0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 3.6V	/		2.2		V _{CC} + 0.5V	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage	$V_{\rm CC} = 2.7$	/		-0.5		0.8	-0.5		0.8	V
I _{IX}	Input Leakage	$GND \leq V_{ }$	< V _{CC}	Ind'l	-1		+1	-1		+1	μA
	Current			Auto-A	-1		+1	-1		+1	μA
				Auto-E				-10		+10	μA
I _{OZ}	Output Leakage	$GND \leq V_O$	$GND \leq V_O \leq V_{CC}$,		-1		+1	-1		+1	μA
	Current	Output Disabled		Auto-A	-1		+1	-1		+1	μA
				Auto-E				-10		+10	μA
I _{CC}	V _{CC} Operating	$f = f_{MAX}$	$V_{\rm CC} = 3.6 V,$	Ind'l		7	20		7	15	mA
	Supply Current	= 1/t _{RC}	I _{OUT} = 0 mA, CMOS	Auto-A		7	20		7	15	
			Levels	Auto-E					7	20	
		f = 1 MHz		Ind'l		1	2		1	2	mA
				Auto-A		1	2		1	2	
				Auto-E					1	2	
I _{SB1}	Automatic CE	$\overline{CE} \ge V_{CC}$	– 0.3V,	Ind'l			100			100	μA
	Power-down Current—	$V_{IN} \ge V_{CC}$ $V_{IN} \le 0.3V$	-0.3V or	Auto-A			100			100	μA
	CMOS Inputs	- 111 - 0.0 -		Auto-E						100	μA
I _{SB2}	Automatic CE	$\overline{CE} \ge V_{CC}$	– 0.3V	Ind'l		1	15		1	15	μA
	Power-down Current—		– 0.3V or . f = 0	Auto-A		1	15		1	15	
	CMOS Inputs	<u> </u>	, -	Auto-E					1	20	

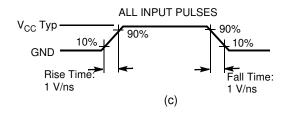
Capacitance^[6]

Parameter	Description	Test Conditions	Max.	Unit	
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, f = 1 MHz,	6	pF	
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF	
M. C.					

Notes:

4. V_{IL} (min) = -2.0V for pulse durations less than 20 ns. 5. T_A is the "Instant-On" case temperature. 6. Tested initially and after any design or process changes that may affect these parameters.



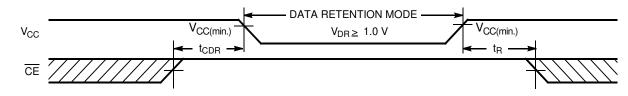

Thermal Resistance^[6]

Parameter	Description	Description Test Conditions			Unit	
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	60	55	°C/W	
Θ _{JC}	Thermal Resistance (Junction to Case)		22	16	°C/W	

R2

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT



Parameters	Value	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[9]	Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.0			V
I _{CCDR}	Data Retention Current	$\begin{split} & V_{CC} = 1.0V, \overline{CE} \geq V_{CC} - 0.3V, \\ & V_{IN} \geq V_{CC} - 0.3V \text{ or } V_{IN} \leq 0.3V, \end{split}$		0.5	7.5	μA
t _{CDR} ^[6]	Chip Deselect to Data Retention Time		0			ns
t _R ^[7]	Operation Recovery Time		70			ns

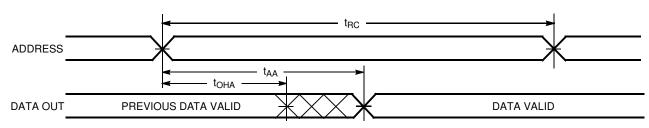
Data Retention Waveform

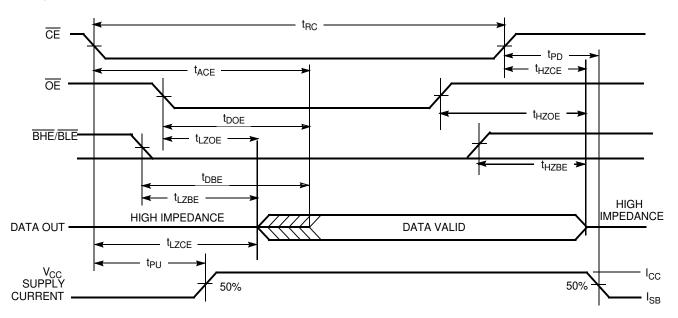
Note: 7. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} \geq 100 ms or stable at V_{CC(min)} \geq 100 ms. 8. No input may exceed V_{CC} + 0.3V

Switching Characteristics Over the Operating Range [9]

		55	5 ns	70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle				•	•	•
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low-Z ^[10]	5		5		ns
t _{HZOE}	OE HIGH to High-Z ^[10, 11]		25		25	ns
t _{LZCE}	CE LOW to Low-Z ^[10]	10		10		ns
t _{HZCE}	CE HIGH to High-Z ^[10, 11]		25		25	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		55		70	ns
t _{DBE}	BLE / BHE LOW to Data Valid		25		35	ns
t _{LZBE}	BLE / BHE LOW to Low-Z ^[10, 11]	5		5		ns
t _{HZBE}	BLE / BHE HIGH to High-Z ^[12]		25		25	ns
Write Cycle ^[12, 13]						
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BLE / BHE LOW to Write End	50		60		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[10, 11]		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[10]	5		10		ns

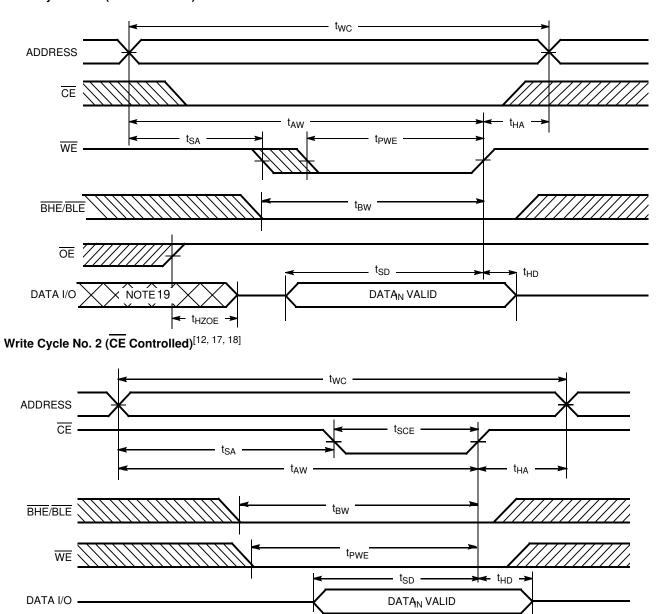
Notes:


Notes:
9. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified l_{QL}/l_{OH} and 30-pF load capacitance.
10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
11. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of A<u>C</u> Test Loads. <u>Transition</u> is measured ±500 mV from steady-state voltage.
12. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
13. The minimum write cycle time for write cycle 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.


CY62136VN MoBL[®]

Switching Waveforms

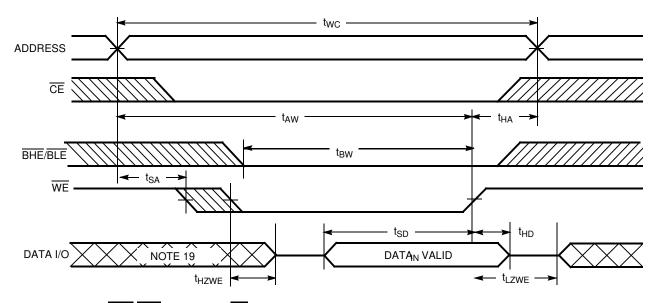
Read Cycle No. 1^[14, 15]



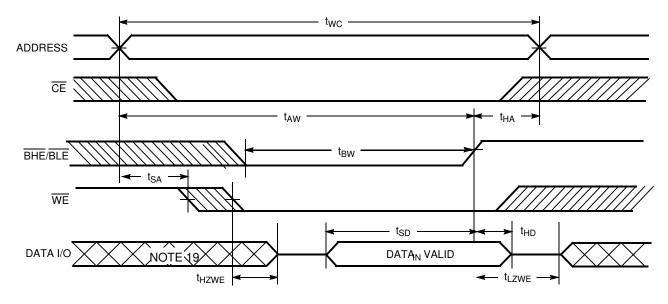
Notes: 14. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 15. WE is HIGH for read cycle. 16. Address valid prior to or coincident with \overline{CE} transition LOW.

Switching Waveforms (continued)

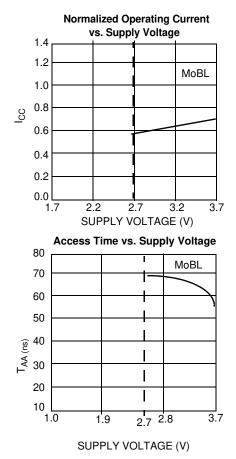
Write Cycle No. 1 (WE Controlled)^[12, 17, 18]

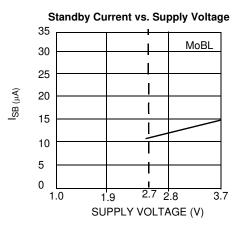

Notes:

17. Data I/O is high impedance if OE = V_{IH}.
18. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
19. During this period, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)





Typical DC and AC Characteristics

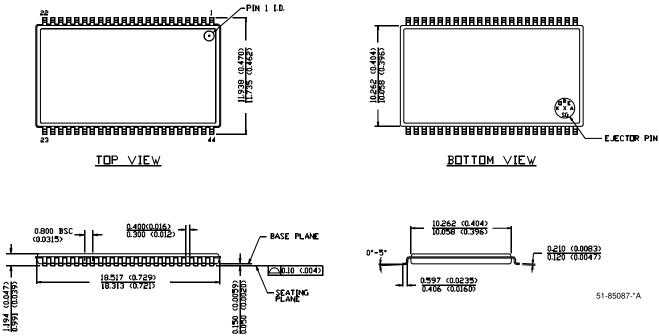
Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Read	Active (I _{CC})
L	Н	L	Н	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I _{CC})

Ordering Information

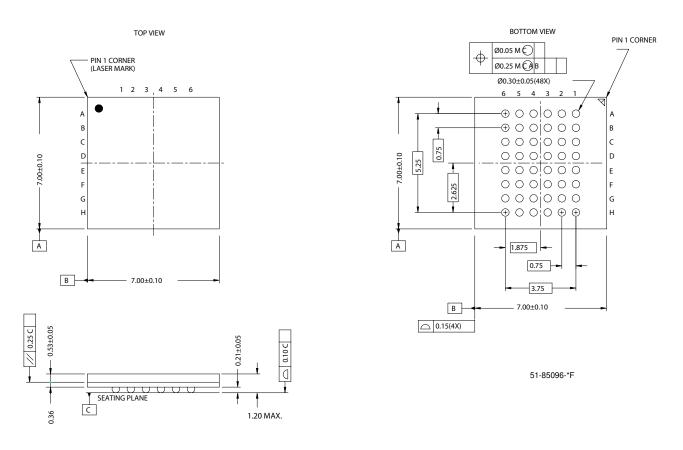
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62136VNLL-55ZXI	51-85087	44-pin TSOP II (Pb-Free)	Industrial
	CY62136VNLL-55BAI	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA	
	CY62136VNLL-55ZSXA	51-85087	44-pin TSOP II (Pb-Free)	Automotive-A
70	CY62136VNLL-70ZXI	51-85087	44-pin TSOP II (Pb-Free)	Industrial
	CY62136VNLL-70BAI	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA	
	CY62136VNLL-70BAXA	51-85096	48-Ball (7.00 mm x 7.00 mm) FBGA (Pb-Free)	Automotive-A
	CY62136VNLL-70ZSXA	51-85087	44-pin TSOP II (Pb-Free)	
	CY62136VNLL-70ZSXE	51-85087	44-pin TSOP II (Pb-Free)	Automotive-E

Please contact your local Cypress sales representative for availability of these parts


Package Diagrams

ł

4



Dimension in MM (inch) Max Min

Package Diagrams (continued)

48-Ball (7.00 mm x 7.00 mm) FBGA (51-85096)

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the products of their respective holders.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY62136VN MoBL [®] 2-Mbit (128K x 16) Static RAM Document Number: 001-06510							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	426503	See ECN	RXU	New Data Sheet			
*A	488954	See ECN	NXR	Added Automotive product Updated ordering Information table			