

Precision, Single Supply Op Amp

FEATURES

- Single Supply Operation
 Input Voltage Range Extends to Ground
 Output Swings to Ground while Sinking Current
- Guaranteed Offset Voltage: 50μV Max
- Guaranteed Low Drift: 1.3µV/°C Max
- Guaranteed Offset Current: 0.5nA Max
- Guaranteed High Gain
 5mA Load Current: 1.5 Million Min
 17mA Load Current: 0.8 Million Min
- Guaranteed Low Supply Current: 520µA Max
- Supply Current can be Reduced by a Factor of 4
- Low Voltage Noise, 0.1Hz to 10Hz: 0.55μV_{P-P} Low Current Noise— Better than OP-07: 0.07pA/√Hz at 10Hz
- High Input Impedance: 250MΩ Min
- Minimum Supply Voltage: 2.7V Min

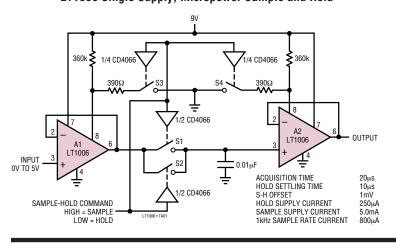
APPLICATIONS

- Low Power Sample-and-Hold Circuits
- Battery-Powered Precision Instrumentation Strain Gauge Signal Conditioners Thermocouple Amplifiers
- 4mA to 20mA Current Loop Transmitters
- Active Filters

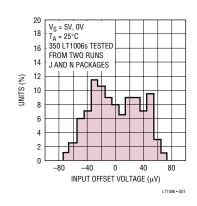
DESCRIPTION

The LT $^{\odot}$ 1006 is the first precision single supply operational amplifier. Its design has been optimized for single supply operation with a full set of specifications at 5V. Specifications at ± 15 V are also provided.

The LT1006 has a low offset voltage of $20\mu V$, drift of $0.2\mu V/^{\circ}C$, offset current of 120pA, gain of 2.5 million, common mode rejection of 114dB and power supply rejection of 126dB.

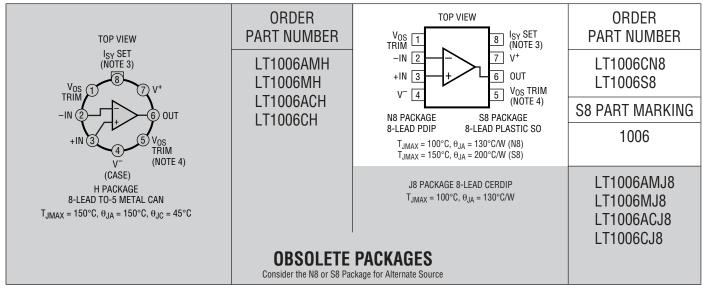

Although supply current is only $340\mu A$, a novel output stage can source or sink in excess of 20mA while retaining high voltage gain. Common mode input range includes ground to accommodate low ground-referenced inputs from strain gauges or thermocouples, and output can swing to within a few millivolts of ground. If a higher slew rate (in excess of $1V/\mu s$) or micropower operation (supply current down to $90\mu A$) is required, the operating currents can be modified by connecting an external optional resistor to Pin 8.

For similar single supply precision dual and quad op amps, please see the LT1013/LT1014 data sheet. For micropower dual and quad op amps, please see the LT1078/LT1079 data sheet.


17, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION

LT1006 Single Supply, Micropower Sample and Hold


Distribution of Input Offset Voltage

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage		±22V
Input Voltage	Equal to Positive Supply V	oltage
Input Voltage	.5V Below Negative Supply V	oltage
Differential Input Vol	tage	30V
Output Short-Circuit	Duration Ind	efinite

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $V_S = 5V$, $V_{CM} = 0V$, $V_{OUT} = 1.4V$, $T_A = 25$ °C, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	.T1006AM// TYP	AC MAX	MIN	LT1006M/C	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1006S8	I	20	50	I	30 80	80 400	μV μV
$\frac{\Delta V_{0S}}{\Delta Time}$	Long-Term Input Offset Voltage Stability	LT1006S8		0.4			0.5 0.7	400	μV/M0 μV/M0
I _{OS}	Input Offset Current			0.12	0.5		0.15	0.9	nA
I _B	Input Bias Current			9	15		10	25	nA
e _n	Input Noise Voltage	0.1Hz to 10Hz		0.55			0.55		μV _{P-P}
	Input Noise Voltage Density	f ₀ = 10Hz f ₀ = 1000Hz		23 22	32 25		23 22	32 25	nV/√Hz nV/√Hz
i _n	Input Noise Current Density	f ₀ = 10Hz		0.07			0.08		pA/√Hz
	Input Resistance Differential Mode Common Mode	(Note 2)	180	400 5		100	300 4		MΩ GΩ

T LINEAR

ELECTRICAL CHARACTERISTICS $V_S = 5V$, $V_{CM} = 0V$, $V_{OUT} = 1.4V$, $T_A = 25^{\circ}C$, unless otherwise noted.

			L	T1006AM//	AC		LT1006M/C		
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	Input Voltage Range		3.5 0	3.8 -0.3		3.5 0	3.8 -0.3		V
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3.5V	100	114		97	112		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V \text{ to } \pm 18V, V_0 = 0V$	106	126		103	124		dB
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 0.03V$ to 4V, $R_L = 10k$ $V_0 = 0.03V$ to 3.5V, $R_L = 2k$	1.0 0.5	2.5 2.0		0.7 0.3	2.0 1.8		V/μV V/μV
	Maximum Output Voltage Swing	Output Low, No Load Output Low, 600Ω to GND Output Low, $I_{SINK} = 1$ mA Output High, No Load Output High, 600Ω to GND	4.0 3.4	15 5 220 4.4 4.0	25 10 350	4.0 3.4	15 5 220 4.4 4.0	25 10 350	mV mV mV V
SR	Slew Rate		0.25	0.4		0.25	0.4		V/µs
Is	Supply Current	$R_{SET} = \infty$ $R_{SET} = 180k \text{ Pin 8 to Pin 7 (Note 3)}$		340 90	520		350 90	570	μA μA
	Minimum Supply Voltage		2.7			2.7			V

The ullet denotes the specifications which apply over the full operating temperature range. $V_S = 5V$, 0V; $V_{CM} = 0.1V$; $V_0 = 1.4V$; $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	LT1006AM TYP	MAX	MIN	LT1006M TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		40	180		60	250	μV
$\frac{\Delta V_{OS}}{\Delta Temp}$	Input Offset Voltage Drift		•		0.2	1.3		0.3	1.8	μV/°C
I _{OS}	Input Offset Current		•		0.4	2.0		0.5	4.0	nA
I _B	Input Bias Current		•		13	25		16	40	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 0.05V \text{ to } 3.5V, R_L = 2k$	•	0.25	0.8		0.15	0.7		V/µV
CMRR	Common Mode Rejection Ratio	V _{CM} = 0.1V to 3.2V	•	90	103		87	102		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V \text{ to } \pm 18V, V_0 = 0V$	•	100	117		97	116		dB
	Maximum Output Voltage Swing	Output Low, 600Ω to GND Output High, 600Ω to GND	•	3.2	6 3.8	15	3.1	6 3.8	18	mV V
Is	Supply Current		•		380	630		400	680	μΑ

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range. $V_S = 5V$, 0V; $V_{CM} = 0V$; $V_0 = 1.4V$; $0^{\circ}C \leq T_A \leq 70^{\circ}C$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	LT1006AC TYP	MAX	MIN	LT1006C TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	J8/H Package N8 Package S8 Package	•		30	110		45 50 110	160 190 560	μV μV μV
ΔV _{OS} ΔTemp	Input Offset Voltage Drift	J8/H Package N8 Package S8 Package	•		0.2	1.3		0.3 0.5 0.7	1.8 2.5 3.5	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current		•		0.25	1.2		0.3	2.5	nA
I _B	Input Bias Current		•		11	20		12	30	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = 0.04V \text{ to } 3.5V, R_L = 2k$	•	0.35	1.3		0.25	1.2		V/µV
CMRR	Common Mode Rejection Ratio	V _{CM} = 0V to 3.4V	•	96	109		92	108		dB
ΔTemp I _{OS} I I _B I AVOL I CMRR CMRR I PSRR I	Power Supply Rejection Ratio	$V_S = \pm 2V \text{ to } \pm 18V, V_0 = 0V$	•	101	120		97	118		dB
	Maximum Output Voltage Swing	Output Low, 600Ω to GND Output High, 600Ω to GND	•	3.3	6 3.9	13	3.2	6 3.9	13	mV V
I _S	Supply Current		•		350	570		360	620	μА

$V_S=\pm 15 V, \; T_A=25^{\circ}C, \; unless \; otherwise \; noted.$

			L	.T1006AM/	AC		LT1006M/C	;	
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	LT1006S8		30	100		50 100	180 525	μV μV
I _{OS}	Input Offset Current			0.1	0.5		0.15	0.9	nA
I _B	Input Bias Current			7.5	12.0		8	20	nA
-6	Input Voltage Range		13.5 -15.0	13.8 -15.3		13.5 -15.0	13.8 -15.3		V
CMRR	Common Mode Rejection Ratio	V _{CM} = +13.5V, -15V	100	117		97	116		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V \text{ to } \pm 18V, V_0 = 0V$	106	126		103	124		dB
A _{VOL}	Large Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$ $V_0 = \pm 10V, R_L = 600\Omega$	1.5 0.8	5.0 1.5		1.2 0.5	4.0 1.0		V/μV V/μV
V _{OUT}	Maximum Output Voltage Swing	R _L = 2k	±13	±14		±12.5	±14		V
SR	Slew Rate	$R_{SET} = \infty$ $R_{SET} = 390\Omega$ Pin 8 to Pin 4	0.25 1.0	0.4 1.2		0.25 1.0	0.4 1.2		V/µs V/µs
Is	Supply Current			360	540		360	600	μА

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range. $V_S = \pm 15V$, $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted.

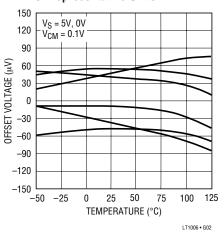
SYMBOL	PARAMETER	CONDITIONS		MIN	LT1006AM TYP	MAX	MIN	LT1006M TYP	MAX	UNITS
V _{OS}	Input Offset Voltage		•		80	320		110	460	μV
$\Delta V_{OS} \over \Delta Temp$	Input Offset Voltage Drift		•		0.5	2.2		0.6	2.8	μV/°C
I _{OS}	Input Offset Current		•		0.2	2.0		0.3	3.0	nA
I _B	Input Bias Current		•		9	18		11	27	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$	•	0.5	1.5		0.25	1.0		V/µV
CMRR	Common Mode Rejection Ratio	V _{CM} = +13V, -14.9V	•	97	114		94	113		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V \text{ to } \pm 18V, V_0 = 0V$	•	100	117		97	116		dB
	Maximum Output Voltage Swing	R _L = 2k	•	±12	±13.8		±11.5	±13.8		V
Is	Supply Current		•		400	650		400	750	μA

The ullet denotes the specifications which apply over the full operating temperature range. $V_S = \pm 15V$, $0^{\circ}C \le T_A \le 70^{\circ}C$, unless otherwise noted.

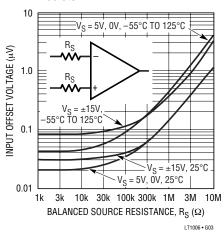
SYMBOL	PARAMETER	CONDITIONS		MIN	LT1006AC TYP	MAX	MIN	LT1006C TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	J8/H Package N8 Package S8 Package	•		50	200		75 80 150	300 330 730	μV μV μV
ΔV _{OS} ΔTemp	Input Offset Voltage Drift	J8/H Package N8 Package S8 Package	•		0.5	2.2		0.6 0.7 1.0	2.8 3.5 4.5	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current		•		0.15	1		0.25	2	nA
I _B	Input Bias Current		•		8	15		10	23	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = \pm 10V, R_L = 2k$	•	1	3		0.7	2.5		V/µV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13V, -15V	•	98	116		94	114		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2V \text{ to } \pm 18V, V_0 = 0V$	•	101	120		97	118		dB
	Maximum Output Voltage Swing	R _L = 2k	•	±12.5	±13.9		±11.5	±13.8		V
Is	Supply Current		•		370	600		380	660	μА

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

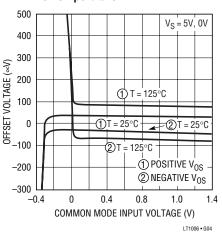
Note 2: This parameter is guaranteed by design and is not tested.

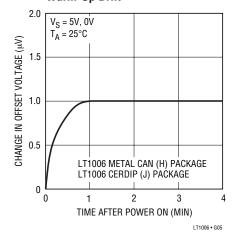

Note 3: Regular operation does not require an external resistor. In order to program the supply current for low power or high speed operation, connect an external resistor from Pin 8 to Pin 7 or from Pin 8 to Pin 4, respectively. Supply current specifications (for $R_{SET} = 180k$) do not include current in R_{SET} .

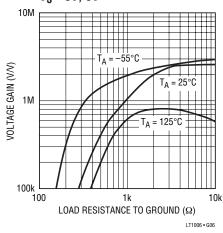
Note 4: Optional offset nulling is accomplished with a potentiometer connected between the trim terminals and the wiper to V^- . A 10k pot (providing a null range of $\pm 6 \text{mV}$) is recommended for minimum drift of nulled offset voltage with temperature. For increased trim resolution and accuracy, two fixed resistors can be used in conjunction with a smaller potentiometer. For example, two 4.7 k resistors tied to Pins 1 and 5, with a 500Ω pot in the middle, will have a null range of $\pm 150 \mu V$.

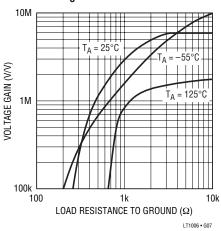


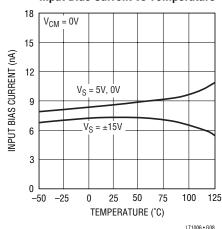
TYPICAL PERFORMANCE CHARACTERISTICS

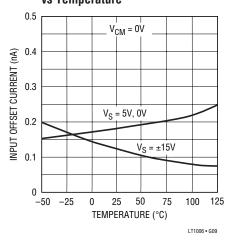

Offset Voltage Drift with Temperature of Representative Units

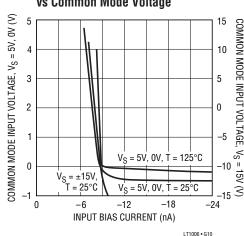

Offset Voltage vs Balanced Source Resistor


V_{OS} vs Common Mode Voltage vs Temperature

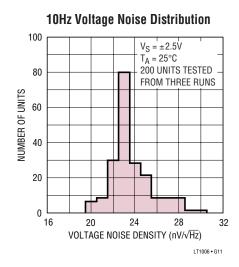

Warm-Up Drift

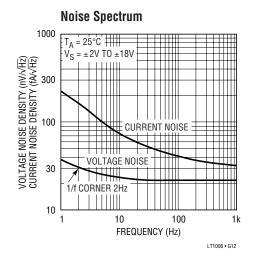

Voltage Gain vs Load Resistance, $V_S = 5V$, 0V

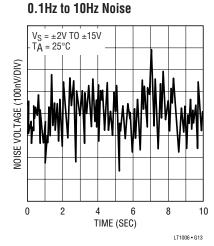

Voltage Gain vs Load Resistance with $V_S = \pm 15V$

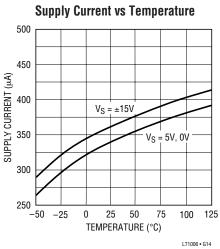

Input Bias Current vs Temperature

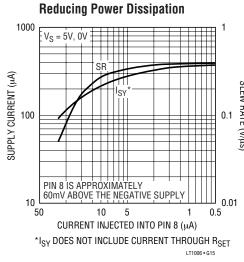
Input Offset Current vs Temperature

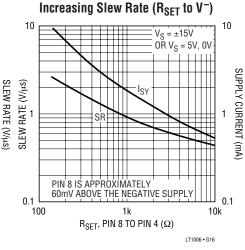


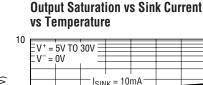

Input Bias Current vs Common Mode Voltage

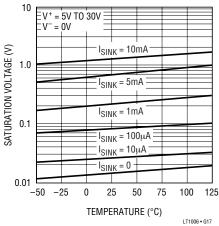


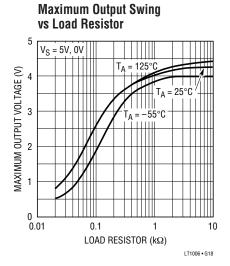


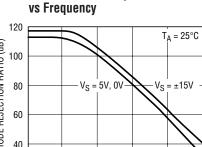

TYPICAL PERFORMANCE CHARACTERISTICS

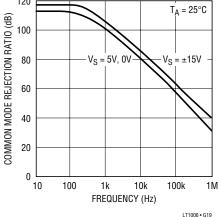


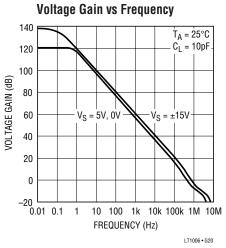




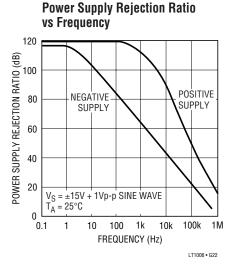


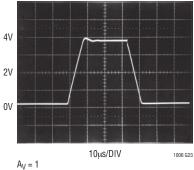




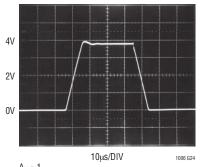


Common Mode Rejection Ratio

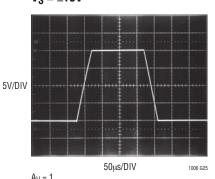



TYPICAL PERFORMANCE CHARACTERISTICS

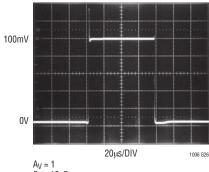
Gain, Phase vs Frequency T_A = 25°C 20 $V_{CM} = 0V$ 100 C_L = 10pF VOLTAGE GAIN (dB) 10 GAIN 0 5۷, -10 0.1 0.3 10 FREQUENCY (MHz) LT1006 • G21



Large Transient Response, $V_S = 5V, 0V$

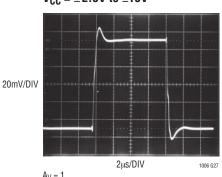


Large-Signal Transient Response, $V_S = 5V, 0V$



R_L = 4.7k TO GROUND INPUT = 0V TO 3.8V

Large-Signal Transient Response, $V_S = \pm 15V$



Small-Signal Transient Response, $V_S = 5V$, 0V

 $C_L = 10pF$ $R_L = 600\Omega \text{ TO GND}$ INPUT = 0V TO 100mV PULSE

Small-Signal Transient Response, $V_{CC} = \pm 2.5V \text{ to } \pm 15V$

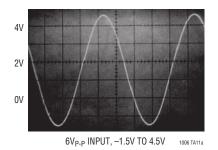
 $A_V = 1$ $C_L = 10pF$

APPLICATIONS INFORMATION

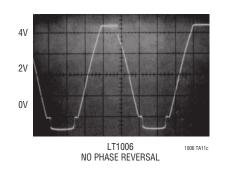
The LT1006 is fully specified for single supply operation, (i.e., when the negative supply is OV). Input common mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1006 has specific circuitry which addresses these problems.

At the input, the driving signal can fall below 0V—inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct problems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420:

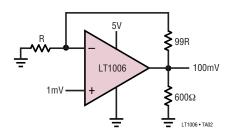
- a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V $^-$ terminal) to the input. This can destroy the unit. On the LT1006, the 400Ω resistors, in series with the input (see Schematic Diagram), protect the devices even when the input is 5V below ground.
- b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and

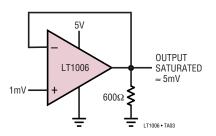

Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1006's output does not reverse, as illustrated below, even when the inputs are at -1.5V.


At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1006's all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated.


In dual supply operations, the output stage is crossover distortion free.

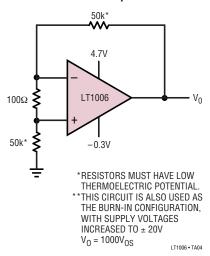
Since the output cannot go exactly to ground, but can only approach ground to within a few millivolts, care should be exercised to ensure that the output is not saturated. For example, a 1mV input signal will cause the amplifier to set up in its linear region in the gain 100 configuration shown below, but is not enough to make the amplifier function properly in the voltage follower mode.

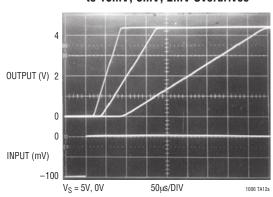

Voltage Follower with Input Exceeding the Negative Common Mode Range ($V_S = 5V$, 0V)



Gain 100 Amplifier

Voltage Follower




APPLICATIONS INFORMATION

In automated production testing the output is forced to 1.4V by the test loop; offset voltage is measured with a common mode voltage of zero and the negative supply at zero (Pin 4). Without the test loop, these exact conditions cannot be achieved. The test circuit shown ensures that the output will never saturate even with worst-case offset voltages ($-250\mu V$ over the $-55^{\circ}C$ to $125^{\circ}C$ range). The effective common mode input is 0.3V with respect to the negative supply. As indicated by the common mode rejection specifications the difference is only a few microvolts between the two methods of offset voltage measurement.

Test Circuit for Offset Voltage and Offset Drift with Temperature

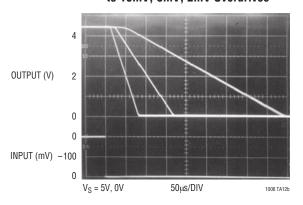
Comparator Rise Response Time to 10mV, 5mV, 2mV Overdrives

Low Supply Operation

The minimum guaranteed supply voltage for proper operation of the LT1006 is 2.7V. Typical supply current at this voltage is $320\mu A$; therefore, power dissipation is only $860\mu W$.

Noise Testing

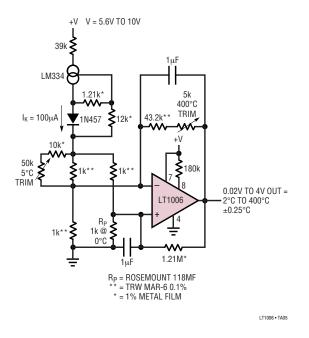
For application information on noise testing and calculations, please see the LT1007 or LT1028 data sheet.

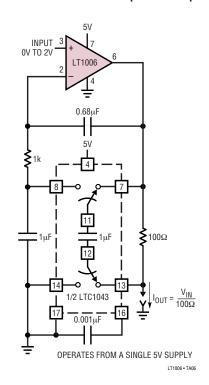

Supply Current Programming

Connecting an optional external resistor to Pin 8 changes the biasing of the LT1006 in order to increase its speed or to decrease its power consumption. If a higher slew rate is required, connect the external resistor for Pin 8 to Pin 4 [see performance curves for Increasing Slew Rate (R_{SET} to V⁻)]. For lower power consumption, inject a current into Pin 8 (which is approximately 60mV above V⁻) as shown on the Reducing Power Dissipation plot. This can be accomplished by connecting R_{SET} to the positive supply, or to save additional power, by obtaining the injected current from a low voltage battery.

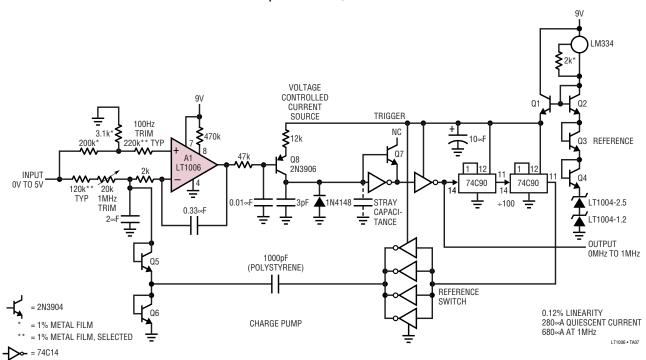
Comparator Applications

The single supply operation of the LT1006 and its ability to swing close to ground while sinking current lends itself to use as a precision comparator with TTL compatible output.

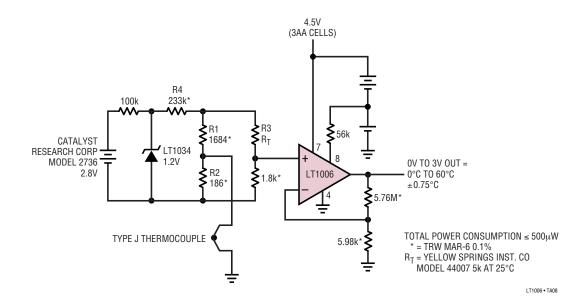

Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives

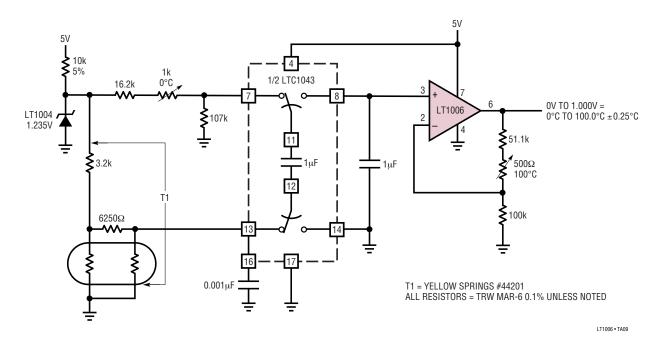


TYPICAL APPLICATIONS


Platinum RTD Signal Conditioner with Curvature Correction

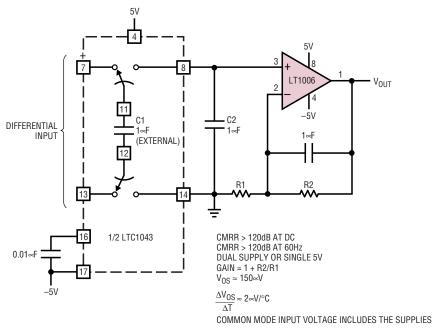
Voltage Controlled Current Source with Ground Referred Input and Output


Micropower 1MHz V/F Converter

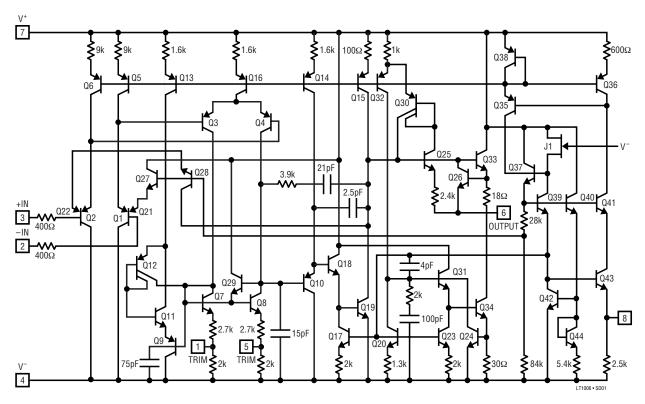


TYPICAL APPLICATIONS

Micropower Thermocouple Signal Conditioner with Cold Junction Compensation


Linear Thermometer

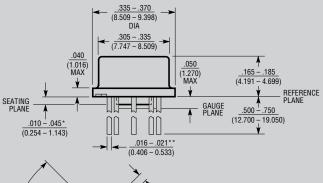
LINEAR

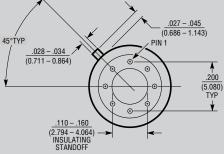

TYPICAL APPLICATIONS

±5V Precision Instrumentation Amplifier

LT1006 • TA10

SCHEMATIC DIAGRAM

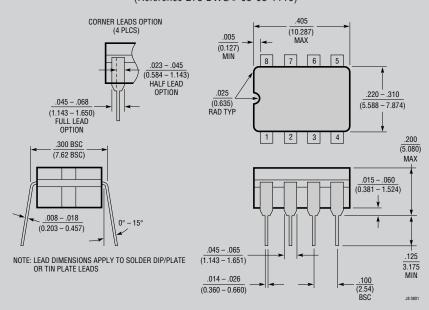




PACKAGE DESCRIPTION

H Package 8-Lead TO-5 Metal Can (.200 Inch PCD)

(Reference LTC DWG # 05-08-1320)

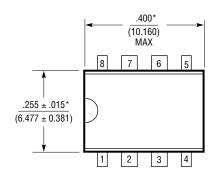


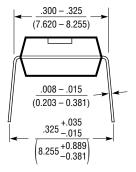
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND THE SEATING PLANE

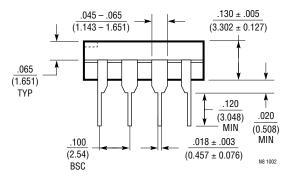
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS $\frac{.016 - .024}{(0.406 - 0.610)}$

J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic)

(Reference LTC DWG # 05-08-1110)

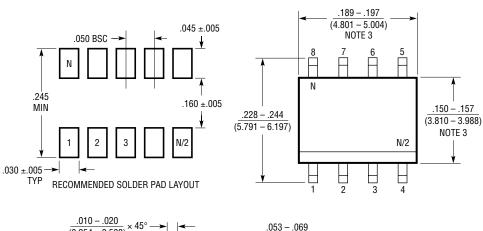

OBSOLETE PACKAGES

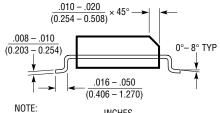

/ LINEAR

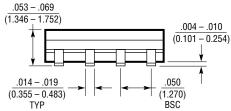

PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)


NOTE: 1. DIMENSIONS ARE $\frac{\text{INCHES}}{\text{MILLIMETERS}}$


^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)


PACKAGE DESCRIPTION

\$8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

- 1. DIMENSIONS IN INCHES (MILLIMETERS)
- 2. DRAWING NOT TO SCALE
- 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

S08 050