

April 2008

U1897 **N-Channel JFET Switch**

Features

- · This device is designed for low level analog switching, sample and hold circuits and chopper stabalized amplifiers.
- · Sourced from Process 51.
- · See J111 for characteristics.

Absolute Maximum Ratings * $\ensuremath{\text{T}_{a}\text{=}25^{\circ}\text{C}}$ unless otherwise noted

Symbol	Parameter	Value	Units	
V_{DG}	Drain-Gate Voltage	40	V	
V_{GS}	Gate-Source Voltage	-40	٧	
I _{GF}	Forward Gate Current 50		mA	
T _J , T _{STG} Operating and Storage Junction Temperature Range		-55 ~ 150	°C	

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. NOTES:

1) These ratings are based on a maximum junction temperature of 150°C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics* T_a=25°C unless otherwise noted

Symbol	Parameter	Value	Units	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W	

1

^{*} Device mounted on FR-4 PCB 1.6" × 1.6" × 0.06"

Electrical Characteristics * $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Max	Units		
Off Charact	Off Characteristics						
V _{(BR)GS}	Gate-Source Breakdown Voltage	$I_G = -1.0 \mu A, V_{DS} = 0$	-40		V		
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 20 \text{ V}, I_{D} = 1.0 \text{ nA}$	-5.0	-10	V		
I _{DGO}	Drain-Gate Leakage Current	V _{DG} = 20 V, I _S = 0		-200	рА		
On Charact	eristics						
I _{DSS}	Zero-Gate Voltage Drain Current *	$V_{DS} = 20 \text{ V}, V_{GS} = 0$	30		mA		
r _{DS(on)}	Static Drain-Source On Resistance	$I_D = 1.0 \text{ mA}, V_{GS} = 0$		30	Ω		
Small Signa	al Characteristics						
r _{ds(on)}	Drain-Source On Resistance	$V_{DS} = V_{GS} = 0$, f= 1.0 kHz		30	Ω		
C _{iss}	Input Capacitance	$V_{DS} = 20, V_{GS} = 0, f = 1.0 \text{ MHz}$		16	pF		
C _{rss}	Reverse Transfer Capacitance	V _{GS} = -20 V, f = 1.0 MHz		3.5	pF		
Switching (Switching Characteristics						
t _{on}	Turn-On Time	$I_{D(on)} = 6.6 \text{ mA}$		25	ns		
t _{off}	Turn-Off Time	V _{GS(off)} = 12.0 V		40	ns		

^{*} Pulse Test: Pulse Width $\leq 300 \mu s,$ Duty Cycle $\leq 2.0\%$

- 1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

 2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

 3. These ratings are based on a maximum junction temperature of 150degrees C.

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® Build it Now™ CorePLUS™ CROSSVOLT™ $\mathsf{CTL^{TM}}$ Current Transfer Logic™ EcoSPARK® $\tilde{\mathsf{F}}$ airchild $^{\mathsf{B}}$ Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST® FastvCore™ **FPSTM** FRFET®

Green FPS™ e-Series™ GTO™ i-LoTM IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Motion-SPM™

OPTOLOGIC® OPTOPLANAR® PDP-SPM™ Power220®

Green FPS™

Power247® POWEREDGE® Power-SPM™ PowerTrench® Programmable Active Droop™

QFET® QSTM QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM[®]

STEALTH™ SuperFET™ SuperSOTTM-3 SuperSOT™-6 SuperSOT™-8 SyncFET™

p wer

The Power Franchise®

TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC® UniFET™ VCX^{TM}

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

Global Power ResourceSM

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I31