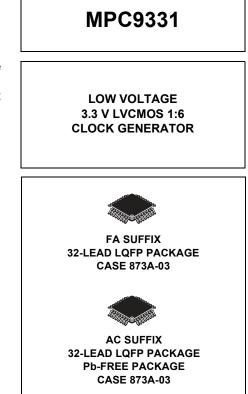
Freescale Semiconductor Technical Data

MPC9331 Rev. 7, 1/2005

3.3 V 1:6 LVCMOS PLL Clock Generator

The MPC9331 is a 3.3 V compatible, 1:6 PLL based clock generator targeted for high performance low-skew clock distribution in mid-range to high-performance telecom, networking, and computing applications. With output frequencies up to 240 MHz and output skews less than 150 ps, the device meets the needs of most the demanding clock applications. The MPC9331 is specified for the temperature range of 0°C to +70°C.

Features


- 1:6 PLL based low-voltage clock generator
- 3.3 V power supply
- Generates clock signals up to 240 MHz
- Maximum output skew of 150 ps
- Differential LVPECL reference clock input
- Alternative LVCMOS PLL reference clock input
- Internal and external PLL feedback
- · Supports zero-delay operation in external feedback mode
- PLL multiplies the reference clock by 4x, 3x, 2x, 1x, 4/3x, 3/2x, 2/3x, x/2, x/3 or x/4
- Synchronous output clock stop in logic low eliminates output runt pulses
- · Power_down feature reduces output clock frequency
- Drives up to 12 clock lines
- 32-lead LQFP packaging
- 32-lead Pb-free Package Available
- Ambient temperature range 0°C to +70°C
- Internal Power-Up Reset
- Pin and function compatible to the MPC931

Functional Description

The MPC9331 utilizes PLL technology to frequency lock its outputs onto an input reference clock. Normal operation of the MPC9331 requires either the selection of internal PLL feedback or the connection of one of the device outputs to the feedback input to close the PLL feedback path in external feedback mode. The reference clock frequency and the divider for the feedback path determine the VCO frequency. Both must be selected to match the VCO frequency range. In external PLL feedback configuration and with the available post-PLL dividers (divide-by-2, divide-by-4, and divide-by-6), the internal VCO of the MPC9331 is running at either 2x, 4x, 6x, 8x, or 12x of the reference clock frequency. In internal feedback configuration (divide-by-8) the internal VCO is running 8x of the reference frequency. The frequency of the QA, QB, QC output banks is a division of the VCO frequency and can be configured independently for each output bank using the FSELA, FSELB, and FSELC pins, respectively. The available output to input frequency ratios are 4x, 3x, 2x, 1x, 4/3x, 3/2x, 2/3x, x/2, x/3, or x/4.

The REF_SEL pin selects the differential LVPECL or the LVCMOS compatible input as the reference clock signal. The PLL_EN control selects the PLL bypass configuration for test and diagnosis. In this configuration, the selected input reference clock is routed directly to the output dividers bypassing the PLL. The PLL bypass is fully static and the minimum clock frequency specification and all other PLL characteristics do not apply. The outputs can be disabled (high-impedance) by deasserting the OE/MR pin. In the PLL configuration with external feedback selected, deasserting OE/MR causes the PLL to loose lock due to missing feedback signal presence at FB_IN. Asserting OE/MR will enable the outputs and close the phase locked loop, enabling the PLL to recover to normal operation. The MPC9331 output clock stop control allows the outputs to start and stop synchronously in logic low state, without the potential generation of runt pulses.

The MPC9331 is fully 3.3 V compatible and requires no external loop filter components. The inputs (except PCLK) accept LVCMOS except signals while the outputs provide LVCMOS compatible levels with the capability to drive terminated 50 Ω transmission lines. For series terminated transmission lines, each of the MPC9331 outputs can drive one or two traces giving the devices an effective fanout of 1:12. The device is packaged in a 7x7 mm² 32-lead LQFP package.

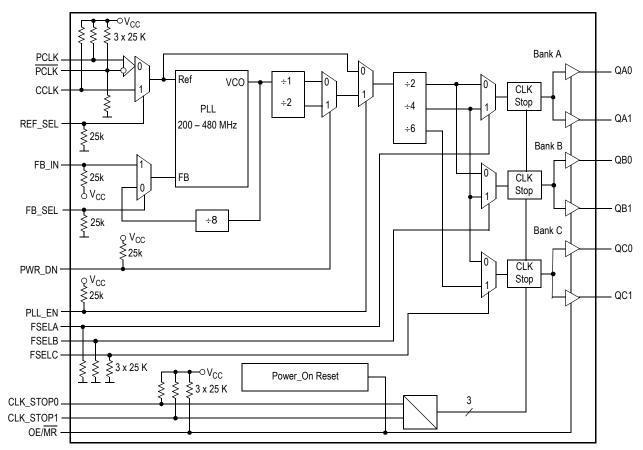


Figure 1. MPC9331 Logic Diagram

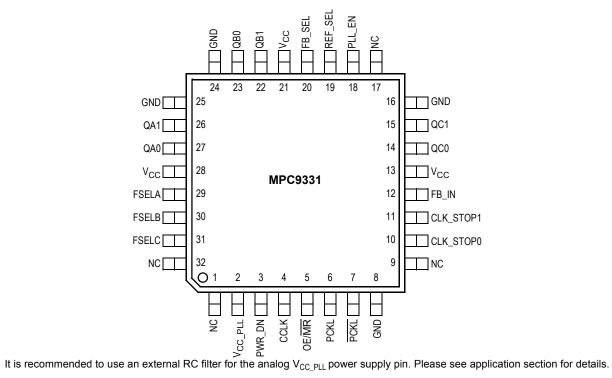


Figure 2. MPC9331 32-Lead Package Pinout (Top View)

Table 1. Pin Configuration

Pin	I/O	Туре	Function
CCLK	Input	LVCMOS	PLL reference clock signal
PCLK, PCLK	Input	LVPECL	Differential PECL reference clock signal
FB_IN	Input	LVCMOS	PLL feedback signal input, connect to an output
FB_SEL	Input	LVCMOS	Feedback select
REF_SEL	Input	LVCMOS	Reference clock select
PWR_DN	Input	LVCMOS	Output frequency and power down select
FSELA	Input	LVCMOS	Frequency divider select for bank A outputs
FSELB	Input	LVCMOS	Frequency divider select for bank B outputs
FSELC	Input	LVCMOS	Frequency divider select for bank C outputs
PLL_EN	Input	LVCMOS	PLL enable/disable
CLK_STOP0-1	Input	LVCMOS	Clock output enable/disable
OE/MR	Input	LVCMOS	Output enable/disable (high-impedance tristate) and device reset
QA0-1, QB0-1, QC0-1	Output	LVCMOS	Clock outputs
GND	Supply	Ground	Negative power supply (GND)
V _{CC_PLL}	Supply	V _{CC}	PLL positive power supply (analog power supply). It is recommended to use external RC filter for the analog power supply pin V_{CC_PLL} . Please see applications section for details.
V _{CC}	Supply	V _{CC}	Positive power supply for I/O and core. All V_{CC} pins must be connected to the positive power supply for correct operation

Table 2. Function Table

Control	Default	0	1
REF_SEL	0	PCLK is the PLL reference clock	CCLK is the PLL reference clock
FB_SEL	1	Internal PLL feedback of 8. f_{VCO} = 8 * f_{ref}	External feedback. Zero-delay operation enabled for CCLK or PCLK as reference clock
PLL_EN	1	Test mode with PLL disabled. The reference clock is substituted for the internal VCO output. MPC9331 is fully static and no minimum frequency limit applies. All PLL related AC characteristics are not applicable.	Normal operation mode with PLL enabled.
PWR_DN	1	VCO ÷ 1 (High output frequency range)	VCO ÷ 2 (Low output frequency range)
FSELA	0	Output divider ÷ 2	Output divider ÷ 4
FSELB	0	Output divider ÷ 2	Output divider ÷ 4
FSELC	0	Output divider ÷ 4	Output divider ÷ 6
OE/MR	1	Outputs disabled (high-impedance state) and reset of the device. During reset in external feedback configuration, the PLL feedback loop is open. The VCO is tied to its lowest frequency. The MPC9331 requires reset after any loss of PLL lock. Loss of PLL lock may occur when the external feedback path is interrupted. The length of the reset pulse should be greater than one reference clock cycle (CCLK or PCLK). Reset does not affect PLL lock in internal feedback configuration.	Outputs enabled (active)
CLK_STOP[0:1]	11	See Table 3	

PWR_DN, FSELA, FSELB and FSELC control the operating PLL frequency range and input/output frequency ratios. See Table 8 through Table 10 for supported frequency ranges and output to input frequency ratios.

Table 3. Clock Output Synchronous Disable (CLK_STOP) Function Table⁽¹⁾

CLK_STOP0	CLK_STOP1	QA[0:1]	QB[0:1]	QC[0:1]		
0	0	Active	Stopped in logic L state	Stopped in logic L state		
0	1	Active	Stopped in logic L state	Active		
1	0	Stopped in logic L state	Stopped in logic L state	Active		
1	1	Active	Active	Active		

1. Output operation for OE/MR=1 (outputs enabled). OE/MR=0 will disable (high-impedance state) all outputs independent on CLK_STOP[0:1].

Table 4. General Specifications

Symbol	Characteristics	Min	Тур	Мах	Unit	Condition
V_{TT}	Output Termination Voltage		$V_{CC} \div 2$		V	
MM	ESD Protection (Machine Model)	200			V	
HBM	ESD Protection (Human Body Model)	2000			V	
LU	Latch-Up Immunity	200			mA	
C _{PD}	Power Dissipation Capacitance		10		pF	Per output
C _{IN}	Input Capacitance		4.0		pF	Inputs

Table 5. Absolute Maximum Ratings⁽¹⁾

Symbol	Characteristics	Min	Мах	Unit	Condition
V _{CC}	Supply Voltage	-0.3	3.9	V	
V _{IN}	DC Input Voltage	-0.3	V _{CC} + 0.3	V	
V _{OUT}	DC Output Voltage	-0.3	V _{CC} + 0.3	V	
I _{IN}	DC Input Current		±20	mA	
I _{OUT}	DC Output Current		±50	mA	
Τ _S	Storage Temperature	-65	125	°C	

1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Symbol	Characteristics	Min	Тур	Мах	Unit	Condition
V _{IH}	Input high voltage	2.0		V _{CC} + 0.3	V	LVCMOS
V _{IL}	Input low voltage			0.8	V	LVCMOS
V _{PP}	Peak-to-peak input voltage PCLK, PCLK	250			mV	LVPECL
V _{CMR} ⁽¹⁾	Common Mode Range PCLK, PCLK	1.0		$V_{CC} - 0.6$	V	LVPECL
V _{OH}	Output High Voltage	2.4			V	I _{OH} = -24 mA ⁽²⁾
V _{OL}	Output Low Voltage			0.55 0.30	V V	I _{OL} = 24 mA I _{OL} = 12 mA
Z _{OUT}	Output impedance		14 – 17		Ω	
I _{IN}	Input Current ⁽³⁾			±200	μA	$V_{IN} = V_{CC}$ or GND
I _{CC_PLL}	Maximum PLL Supply Current		8.0	12	mA	V _{CC_PLL} Pin
I _{CCQ}	Maximum Quiescent Supply Current ⁽⁴⁾			26	mA	All V_{CC} Pins

Table 6. DC Characteristics (V_{CC} = 3.3 V \pm 5%, T_A = 0°C to 70°C)

1. V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the V_{PP} (DC) specification.

2. The MPC9331 is capable of driving 50 Ω transmission lines on the incident edge. Each output drives one 50 Ω parallel terminated transmission line to a termination voltage of V_{TT}. Alternatively, the device drives up to two 50 Ω series terminated transmission lines.

Inputs have pull-down or pull-up resistors affecting the input current.
 OE/MR=0 (outputs in high-impedance state).

MPC9331

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
f _{REF}	Input reference frequency -2 feedbac PLL mode, external feedback -4 feedbac -6 feedbac +8 feedbac +12 feedbac PLL mode, internal feedback (+8 feedbac Input reference frequency in PLL bypass mode ⁽²⁾	k 50.0 k 33.3 k 25.0 k 16.67		240.0 120.0 80.0 60.0 40.0 60.0 240	MHz MHz MHz MHz MHz MHz MHz	PLL locked
f _{VCO}	VCO lock frequency range ⁽³⁾	200		480	MHz	
f _{MAX}	Output Frequency ÷2 output ÷4 output ÷4 output ÷6 output ÷8 output ÷12 output ÷12 output	ut 50.0 ut 33.3 ut 25.0		240.0 120.0 80.0 60.0 40.0	MHz MHz MHz MHz MHz	PLL locked
V _{PP}	Peak-to-peak input voltage PCLK, PCL	K 400		1000	mV	LVPECL
$V_{CMR}^{(4)}$	Common Mode Range PCLK, PCL	K 1.2		V _{CC} - 0.9	V	LVPECL
t _{PW,MIN}	Input Reference Pulse Width ⁽⁵⁾	2.0			ns	
t _R , t _F	CCLK Input Rise/Fall Time ⁽⁶⁾			1.0	ns	0.8 to 2.0 V
t _(∅)	Propagation Delay CCLK to FB_IN ⁽ (static phase offset) PCLK to FB_IN ⁽ CCLK or PCLK to FB_IN ⁽	⁷⁾ –180	-130 -30	-50 +120 +3.0	ps ps °	FB_SEL = 1 and PLL locke
t _{sk(O)}	Output-to-output Skew			150	ps	
DC	Output duty cycle ⁽⁹⁾	(T÷2)–500	T÷2	(T÷2)+500	ps	
t _R , t _F	Output Rise/Fall Time	0.1		1.0	ns	0.55 to 2.4 V
t _{PLZ, HZ}	Output Disable Time			8.0	ns	
t _{PZL, LZ}	Output Enable Time			10	ns	
t _{JIT(CC)}	Cycle-to-cycle jitter ⁽¹⁰⁾			200	ps	
t _{JIT(PER)}	Period Jitter			125	ps	
t _{JIT(∅)}	I/O Phase Jitter RMS (1 o	5)		25	ps	
BW	PLL closed loop bandwidth ⁽¹¹⁾ ÷ 4 feedback PLL mode, external feedback ÷ 6 feedback ÷ 8 feedback ÷ 12 feedback	k k	2.0-8.0 1.2-4.0 1.0-3.0 0.7-2.0		MHz MHz MHz MHz	
t _{LOCK}	Maximum PLL Lock Time			10	ms	

Table 7. AC Characteristics (V_{CC} = $3.3V \pm 5\%$, T_A = 0°C to 70°C)⁽¹⁾

1. AC characteristics apply for parallel output termination of 50 Ω to V_{TT}.

2. In bypass mode, the MPC9331 divides the input reference clock.

3. The input frequency f_{REF} must match the VCO frequency range divided by the feedback divider ratio FB: f_{REF} = f_{VCO} ÷ FB.

4. V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} range and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} or V_{PP} impacts static phase offset $t_{(O)}$.

5. Calculation of reference duty cycle limits: $DC_{REF,MIN} = t_{PW,MIN} \cdot f_{REF} \cdot 100\%$ and $DC_{REF,MAX} = 100\% - DC_{REF,MIN}$. 6. The MPC9331 will operate with input rise/fall times up to 3.0 ns, but the AC characteristics, specifically $t_{(\emptyset)}$, $t_{PW,MIN}$, DC and f_{MAX} can only be guaranteed if t_R , t_F are within the specified range.

7. Data valid for f_{REF} = 50 MHz and a PLL feedback of +8 (e.g. QAx connected to FB_IN and FSELA=1, PWR_DN=1).

8. Data valid for 16.67 MHz < f_{REF} < 100 MHz and any feedback divider. $t_{sk(O)}$ [s] = $t_{sk(O)}$ [°] ÷ ($f_{REF} \cdot 360^{\circ}$).

9. Output duty cycle is DC = ($0.5 \pm 500 \text{ ps} \cdot f_{OUT}$) · 100%. (e.g. the DC range at f_{OUT} = 100 MHz is 45% < DC < 55%).

10. All outputs in ÷4 divider configuration.

11. -3 dB point of PLL transfer characteristics.

APPLICATIONS INFORMATION

Output Power Down (PWR_DN) Timing Diagram
PWR_DWN
QBx (÷4)
QCx (÷6)
Output Clock Stop (CLK_STOP) Timing Diagram
$QAx\left(\div 2\right) \verb"\\ \square \verb \square $
QCx (÷6)
CLK_STOP0
CLK_STOP1
$QAx(\div 2) \ \begin{tabular}{c}{\label{eq:QAx}} \ \begin{tabular}{c}{\label{eq:QAx}} \ \end{tabular} \end{tabular} \ \end{tabular} \ \end{tabular} \$
QBx (÷4)
QCx (÷6)

Programming the MPC9331

The MPC9331 supports output clock frequencies from 16.67 to 240 MHz. Different feedback and output divider configurations can be used to achieve the desired input to output frequency relationship. The feedback frequency and divider should be used to situate the VCO in the frequency lock range between 200 and 480 MHz for stable and optimal operation. The FSELA, FSELB, FSELC and PWR_DN pins select the desired output clock frequencies. Possible frequency ratios of the reference clock input to the outputs are 4:1, 3:1, 2:1, 1:1, 1:2, 2:3 and 3:2. Table 8 illustrates the various output configurations and frequency ratios supported by the MPC9331. See also Table 9 and Table 10 for further reference.

fref ⁽¹⁾ [MHz]	PWR_DN	FSELA	FSELB	FSELC	QA[0:1]:fref ratio	QB[0:1]:fref ratio	QC[0:1]:fref ratio
25.0 - 60.0	0	0	0	0	fref · 4 (100-240 MHz)	fref · 4 (100-240 MHz)	fref · 2 (50-120 MHz)
	0	0	0	1	fref · 4 (100-240 MHz)	fref · 4 (100-240 MHz)	fref ·4÷3 (33.3-80 MHz)
	0	0	1	0	fref · 4 (100-240 MHz)	fref · 2 (50-120 MHz)	fref · 2 (50-120 MHz)
	0	0	1	1	fref · 4 (100-240 MHz)	fref · 2 (50-120 MHz)	fref ·4÷3 (33.3-80 MHz)
	0	1	0	0	fref · 2 (50-120 MHz)	fref · 4 (100-240 MHz)	fref · 2 (50-120 MHz)
	0	1	0	1	fref · 2 (50-120 MHz)	fref · 4 (100-240 MHz)	fref ·4÷3 (33.3-80 MHz)
	0	1	1	0	fref · 2 (50-120 MHz)	fref · 2 (50-120 MHz)	fref · 2 (50-120 MHz)
	0	1	1	1	fref · 2 (50-120 MHz)	fref · 2 (50-120 MHz)	fref ·4÷3 (33.3-80 MHz)
	1	0	0	0	fref · 2 (50-120 MHz)	fref · 2 (50-120 MHz)	fref (25.0-60 MHz)
	1	0	0	1	fref · 2 (50-120 MHz)	fref · 2 (50-120 MHz)	fref ·2÷3 (16.67-40 MHz)
	1	0	1	0	fref · 2 (50-120 MHz)	fref (25.0-60 MHz)	fref (25.0-60 MHz)
	1	0	1	1	fref · 2 (50-120 MHz)	fref (25.0-60 MHz)	fref ·2÷3 (16.67-40 MHz)
	1	1	0	0	fref (25.0-60 MHz)	fref · 2 (50-120 MHz)	fref (25.0-60 MHz)
	1	1	0	1	fref (25.0-60 MHz)	fref · 2 (50-120 MHz)	fref ·2÷3 (16.67-40 MHz)
	1	1	1	0	fref (25.0-60 MHz)	fref (25.0-60 MHz)	fref (25.0-60 MHz)
	1	1	1	1	fref (25.0-60 MHz)	fref (25.0-60 MHz)	fref ·2÷3 (16.67-40 MHz)

Table 8. MPC9331 Example Configurations (Internal Feedback: FB_SEL = 0)

1. fref is the input clock reference frequency (CCLK or PCLK).

PLL Feedback	fref ⁽¹⁾ [MHz]	FSELA	FSELB	FSELC	QA[0:1]:fref ratio		QB[0:1]:fref ratio		QC[0:1]:fref ratio	
VCO ÷ 2 ⁽²⁾	100 – 240	0	0	0	fref	(100-240 MHz)	fref	(100-240 MHz)	fref ÷ 2	(50-120 MHz)
		0	0	1	fref	(100-240 MHz)	fref	(100-240 MHz)	fref ÷ 3	(33.3-80 MHz)
		0	1	0	fref	(100-240 MHz)	fref ÷ 2	(50-120 MHz)	fref ÷ 2	(50-120 MHz)
		0	1	1	fref	(100-240 MHz)	fref ÷ 2	(50-120 MHz)	fref ÷ 3	(33.3-80 MHz)
VCO ÷ 4 ⁽³⁾	50 –120	1	0	0	fref	(50-120 MHz)	fref ·2	(100-240 MHz)	fref	(50-120 MHz)
		1	0	1	fref	(50-120 MHz)	fref ·2	(100-240 MHz)	fref ·2÷3	(33.3-80 MHz)
		1	1	0	fref	(50-120 MHz)	fref	(100-240 MHz)	fref	(50-120 MHz)
		1	1	1	fref	(50-120 MHz)	fref	(100-240 MHz)	fref $\cdot 2 \div 3$	(33.3-80 MHz)
VCO ÷ 6 ⁽⁴⁾	33.3 – 80	0	0	1	fref ·3	(100-240 MHz)	fref ·3	(100-240 MHz)	fref	(33.3-80 MHz)
		0	1	1	fref ·3	(100-240 MHz)	fref $\cdot 3 \div 2$	(50-120 MHz)	fref	(33.3-80 MHz)
		1	0	1	fref ·3 -	÷ 2 (50-120 MHz)	fref ·3	(100-240 MHz)	fref	(33.3-80 MHz)
		1	1	1	fref ·3 -	÷ 2 (50-120 MHz)	fref ·3 ÷ 2	(50-120 MHz)	fref	(33.3-80 MHz)

1. fref is the input clock reference frequency (CCLK or PCLK).

2. QAx connected to FB_IN and FSELA=0, PWR_DN=0.

3. QAx connected to FB_IN and FSELA=1, PWR_DN=0.

4. QCx connected to FB_IN and FSELC=1, PWR_DN=0.

Table 10. MPC9331 Example Configurations (External Feedback and PWR_DN = 1)

PLL Feedback	fref ⁽¹⁾ [MHz]	FSELA	FSELB	FSELC	QA[0:1]:fref ratio		QB[0:1]:fref ratio		QC[0:1]:fref ratio	
VCO ÷ 8 ⁽²⁾	25.0 - 60.0	1	0	0	fref	25-60 MHz)	fref ·2	(50-120 MHz)	fref	(2.25-60 MHz)
		1	0	1	fref	(25-60 MHz)	fref ·2	(50-120 MHz)	fref ·2÷3	(16.6-40 MHz)
		1	1	0	fref	(25-60 MHz)	fref	(25-60 MHz)	fref	(25-60 MHz)
		1	1	1	fref	(25-60 MHz)	fref	(25-60 MHz)	fref ·2÷3	(16.6-40 MHz)
VCO ÷ 12 ⁽³⁾	16.67 – 40	0	0	1	fref ·3	(50-120 MHz)	fref ·3	(50-120 MHz)	fref	(16.67-40 MHz)
		0	1	1	fref ·3	(50-120 MHz)	fref ·3 ÷	2 (25-60 MHz)	fref	(16.67-40 MHz)
		1	0	1	fref ·3 ÷ 2	2 (25-60 MHz)	fref ·3	(50-120 MHz)	fref	(16.67-40 MHz)
		1	1	1	fref ·3 ÷ 2	2 (25-60 MHz)	fref ·3 ÷	2 (25-60 MHz)	fref	(16.67-40 MHz)

1. fref is the input clock reference frequency (CCLK or PCLK).

2. QAx connected to FB_IN and FSELA=1, PWR_DN=1.

3. QCx connected to FB_IN and FSELC=1, PWR_DN=1.

APPLICATIONS INFORMATION

Power Supply Filtering

The MPC9331 is a mixed analog/digital product. Its analog circuitry is naturally susceptible to random noise, especially if this noise is seen on the power supply pins. Random noise on the V_{CC PLL} power supply impacts the device characteristics, for instance, I/O jitter. The MPC9331 provides separate power supplies for the output buffers (V_{CC}) and the phase-locked loop (V_{CC PLL}) of the device. The purpose of this design technique is to isolate the high switching noise digital outputs from the relatively sensitive internal analog phase-locked loop. In a digital system environment where it is more difficult to minimize noise on the power supplies, a second level of isolation may be required. The simple but effective form of isolation is a power supply filter on the V_{CC PLL} pin for the MPC9331. Figure 3 illustrates a typical power supply filter scheme. The MPC9331 frequency and phase stability is most susceptible to noise with spectral content in the 100 kHz to 20 MHz range. Therefore the filter should be designed to target this range. The key parameter that needs to be met in the final filter design is the DC voltage drop across the series filter resistor R_F. From the data sheet, the I_{CC_PLL} current (the current sourced through the V_{CC_PLL} pin) is typically 8 mA (12 mA maximum), assuming that a minimum of 3.0 V must be maintained on the V_{CC} PLL pin.

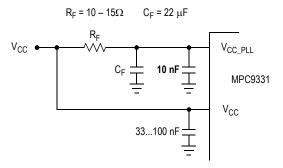


Figure 3. V_{CC_PLL} Power Supply Filter

The minimum values for RF and the filter capacitor C_F are defined by the required filter characteristics: the RC filter should provide an attenuation greater than 40 dB for noise whose spectral content is above 100 kHz. In the example RC filter shown in Figure 3, the filter cut-off frequency is around 3-5 kHz and the noise attenuation at 100 kHz is better than 42 dB.

As the noise frequency crosses the series resonant point of an individual capacitor its overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the bandwidth of the PLL. Although the MPC9331 has several design features to minimize the susceptibility to power supply noise (isolated power and grounds and fully differential PLL) there still may be applications in which overall performance is being degraded due to system power supply noise. The power supply filter schemes discussed in this section should be adequate to eliminate power supply noise related problems in most designs.

Driving Transmission Lines

The MPC9331 clock driver was designed to drive highspeed signals in a terminated transmission line environment. To provide the optimum flexibility to the user, the output drivers were designed to exhibit the lowest impedance possible. With an output impedance of less than 20 Ω , the drivers can drive either parallel or series terminated transmission lines. For more information on transmission lines, the reader is referred to Freescale application note AN1091. In most high performance clock networks, point-to-point distribution of signals is the method of choice. In a point-to-point scheme, either series terminated or parallel terminated transmission lines can be used. The parallel technique terminates the signal at the end of the line with a 50 Ω resistance to V_{CC}÷2.

This technique draws a fairly high level of DC current and thus only a single terminated line can be driven by each output of the MPC9331 clock driver. For the series terminated case, however, there is no DC current draw, thus the outputs can drive multiple series terminated lines. Figure 4 illustrates an output driving a single series terminated line versus two series terminated lines in parallel. When taken to its extreme the fanout of the MPC9331 clock driver is effectively doubled due to its capability to drive multiple lines.

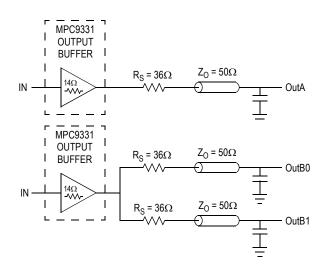


Figure 4. Single versus Dual Transmission Lines

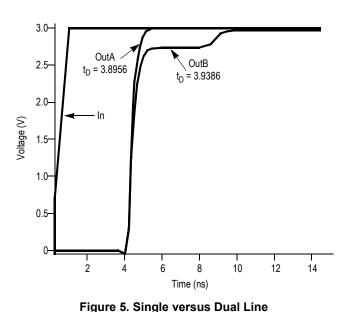
The waveform plots in Figure 5 show the simulation results of an output driving a single line versus two lines. In both cases, the drive capability of the MPC9331 output buffer is more than sufficient to drive 50 Ω transmission lines on the incident edge. Note from the delay measurements in the simulations, a delta of only 43 ps exists between the two differently loaded outputs. This suggests that the dual line driving need not be used exclusively to maintain the tight output-to-output skew of the MPC9331. The output waveform in Figure 5 shows a step in the waveform; this step is caused by the impedance mismatch seen looking into the driver. The parallel combination of the 36 Ω series resistor plus the output impedances. The voltage wave launched down the two lines will equal:

MPC9331

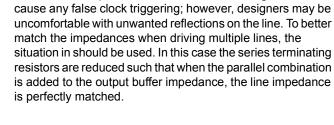
$$V_{L} = V_{S} (Z_{0} \div (R_{S}+R_{0}+Z_{0}))$$

$$Z_{0} = 50 \Omega || 50 \Omega$$

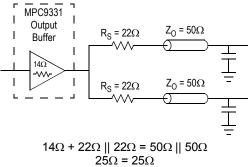
$$R_{S} = 36 \Omega || 36 \Omega$$


$$R_{0} = 14 \Omega$$

$$V_{L} = 3.0 (25 \div (18+14+25))$$


$$= 1.31 V$$

At the load end, the voltage will double due to the near unity reflection coefficient, to 2.6 V. It will then increment towards the quiescent 3.0 V in steps separated by one round trip delay (in this case 4.0 ns).


1. Final skew data pending specification.

Termination Waveforms

Since this step is well above the threshold region it will not

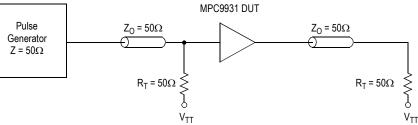
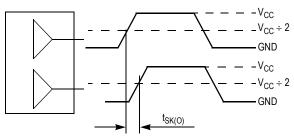
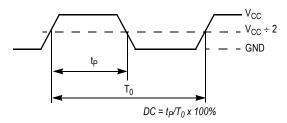




Figure 7. CCLK MPC9331 AC Test Reference for V_{cc} = 3.3 V

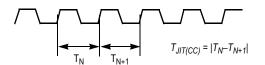

The pin-to-pin skew is defined as the worst case difference in propagation delay between any similar delay path within a single device

Figure 8. Output-to-Output Skew t_{SK(O)}

The time from the PLL controlled edge to the non controlled edge, divided by the time between PLL controlled edges, expressed as a percentage

Figure 10. Output Duty Cycle (DC)

The variation in cycle time of a signal between adjacent cycles, over a random sample of adjacent cycle pairs

Figure 12. Cycle-to-Cycle Jitter

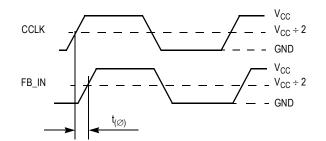
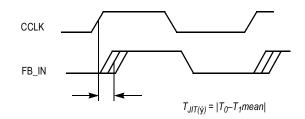
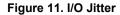
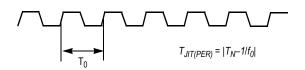





Figure 9. Propagation Delay (t_{(\oslash)}, Static Phase offset) Test Reference

The deviation in t_0 for a controlled edge with respect to a t_0 mean in a random sample of cycles

The deviation in cycle time of a signal with respect to the ideal period over a random sample of cycles

Figure 13. Period Jitter

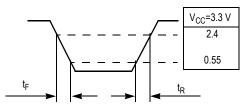
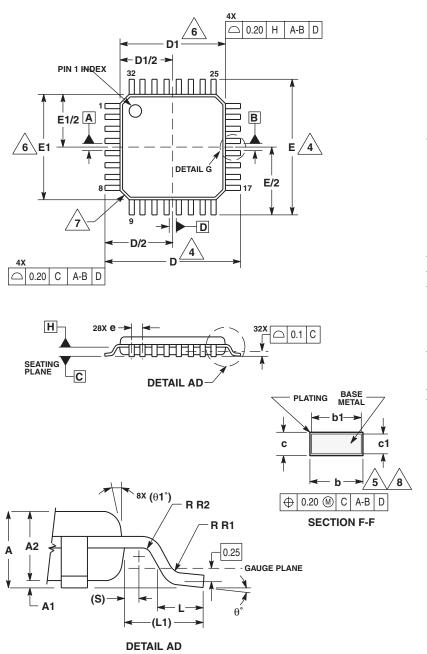
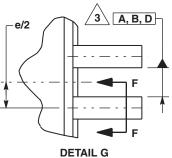




Figure 14. Output Transition Time Test Reference

PACKAGE DIMENSIONS

- NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H. 4. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE C. 5. DIMENSION b DOES NOT INCLUE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE MAXIMUM b DIMENSION BY MORE THAN 0.06-mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS ON THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND DAJACENT LEAD OR PROTRUSION. ALLOWABLE DAMDAR CANNOT 6. DIMENSIONS DI AND E 1 DO NOT INCLUE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25-mm PER SIDE. DI AND E1 TO NOT INCLUDE MOLD MOLD MISMATCH. EXECUTE SHAPE OF EACH CORNER IS OPTIONAL. 8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1-mm AND 0.25-mm FROM THE LEAD BETWEEN 0.1-mm AND 0.25-mm FROM THE LEAD TIP.

	MILLIMETERS	
DIM	MIN	MAX
Α	1.40	1.60
A1	0.05	0.15
A2	1.35	1.45
b	0.30	0.45
b1	0.30	0.40
С	0.09	0.20
c1	0.09	0.16
D	9.00 BSC	
D1	7.00 BSC	
е	0.80 BSC	
E	9.00 BSC	
E1	7.00 BSC	
L	0.50	0.70
L1	1.00 REF	
q	0°	7°
q1	12 REF	
R1	0.08	0.20
R2	0.08	
S	0.20 REF	

CASE 873A-03 **ISSUE B** 32-LEAD LQFP PACKAGE

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.

