

Eight Output Differential Buffer for PCI-Express

Recommended Application:

DB800 Intel Yellow Cover part with PCI-Express support.

Output Features:

- 8 0.7V current-mode differential output pairs
- Supports zero delay buffer mode and fanout mode
- Bandwidth programming available

Key Specifications:

- Outputs cycle-cycle jitter < 50ps
- Outputs skew: 50ps
- +/- 300ppm frequency accuracy on output clocks

Features/Benefits:

- Supports tight ppm accuracy clocks for Serial-ATA
- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread
- Supports undriven differential output pair in PD# and SRC_STOP# for power management.

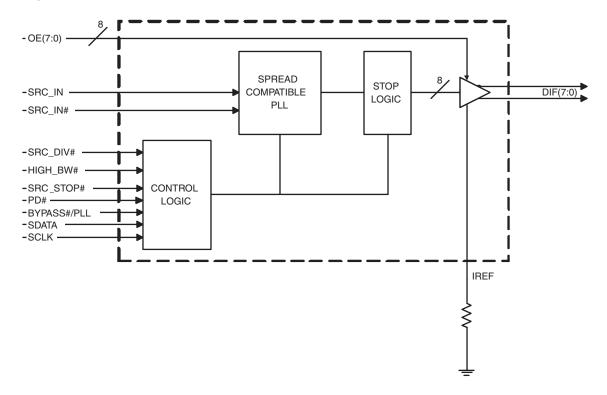
Pin Configuration

Intel Yellow Cover part with PCI-Express support.	SRC_DIV# 1		18 VDDA
Features:	VDD 2		17 GNDA
0.7V current-mode differential output pairs	GND 3	4	16 IREF
pports zero delay buffer mode and fanout mode	SRC_IN 4	4	15 LOCK
ndwidth programming available	SRC_IN# 5	4	14 OE_7
The second secon	OE_0 6	4	13 OE_4
ecifications:	OE_3 7	4	12 DIF_7
tputs cycle-cycle jitter < 50ps	DIF_0 8		11 DIF_7#
tputs skew: 50ps	DIF_0# 9	4	10 GND
300ppm frequency accuracy on output clocks	GND 10	80	39 VDD
occppoquoo, uccui.uo, c cui.pui. c.coo	VDD 11	<u> </u>	38 DIF_6
es/Benefits:	DIF_1 12	ICS9DB1	37 DIF_6#
pports tight ppm accuracy clocks for Serial-ATA	DIF_1# 13) 	36 OE_6
read spectrum modulation tolerant, 0 to -0.5% down	OE_1 14	S S	35 OE_5
read and +/- 0.25% center spread	OE_2 15		34 DIF_5
pports undriven differential output pair in PD# and	DIF_2 16		33 DIF_5#
C_STOP# for power management.	DIF_2# 17		32 GND
	GND 18		31 VDD
	VDD 19		30 DIF_4
	DIF_3 20		29 DIF_4#
	DIF_3# 21		28 HIGH_BW#
	BYPASS#/PLL 22		27 SRC_STOP#
	SCLK 23		26 PD#
	SDATA 24	2	25 GND
	40 min	CCOD 0 TC	COD
	46-pm	SSOP & TS	30P
10			

Pin Description

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
			Active low Input for determining SRC output frequency SRC or
1	SRC_DIV#	IN	SRC/2.
			0 = SRC/2, 1= SRC
2	VDD	PWR	Power supply, nominal 3.3V
3	GND	PWR	Ground pin.
4	SRC_IN	IN	0.7 V Differential SRC TRUE input
5	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
6	OE 0	IN	Active high input for enabling outputs.
0	OL_0	1114	0 = tri-state outputs, 1= enable outputs
7	OE_3	IN	Active high input for enabling outputs.
,	OL_3	1111	0 = tri-state outputs, 1= enable outputs
8	DIF_0	OUT	0.7V differential true clock outputs
9	DIF_0#	OUT	0.7V differential complement clock outputs
10	GND	PWR	Ground pin.
11	VDD	PWR	Power supply, nominal 3.3V
12	DIF_1	OUT	0.7V differential true clock outputs
13	DIF_1#	OUT	0.7V differential complement clock outputs
14	OE_1	IN	Active high input for enabling outputs.
14	OL_I	IIN	0 = tri-state outputs, 1= enable outputs
15	OE_2	IN	Active high input for enabling outputs.
2	OL_Z	1111	0 = tri-state outputs, 1= enable outputs
16	DIF_2	OUT	0.7V differential true clock outputs
17	DIF_2#	OUT	0.7V differential complement clock outputs
18	GND	PWR	Ground pin.
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_3	OUT	0.7V differential true clock outputs
21	DIF_3#	OUT	0.7V differential complement clock outputs
22	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode
<i>_</i>	DIFASS#/FLL	IIN	0 = Bypass mode, 1= PLL mode
23	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
24	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.

Pin Description (Continued)


PIN#	PIN NAME	PIN TYPE	DESCRIPTION
25	GND	PWR	Ground pin.
26	PD#	IN	Asynchronous active low input pin used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped.
27	SRC_STOP#	IN	Active low input to stop diff outputs.
28	HIGH_BW#	PWR	3.3V input for selecting PLL Band Width 0 = High, 1= Low
29	DIF_4#	OUT	0.7V differential complement clock outputs
30	DIF_4	OUT	0.7V differential true clock outputs
31	VDD	PWR	Power supply, nominal 3.3V
32	GND	PWR	Ground pin.
33	DIF_5#	OUT	0.7V differential complement clock outputs
34	DIF_5	OUT	0.7V differential true clock outputs
35	OE_5	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
36	OE_6	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
37	DIF 6#	OUT	0.7V differential complement clock outputs
38	DIF 6	OUT	0.7V differential true clock outputs
39	VDD	PWR	Power supply, nominal 3.3V
40	GND	PWR	Ground pin.
41	DIF_7#	OUT	0.7V differential complement clock outputs
42	DIF_7	OUT	0.7V differential true clock outputs
43	OE_4	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
44	OE_7	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs
45	LOCK	OUT	3.3V output indicating PLL Lock Status. This pin goes high when lock is achieved.
46	IREF	IN	This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.
47	GNDA	PWR	Ground pin for the PLL core.
48	VDDA	PWR	3.3V power for the PLL core.

General Description

ICS9DB108 follows the Intel DB400 Differential Buffer Specification. This buffer provides four SRC clocks for PCI-Express, next generation I/O devices. ICS9DB108 is driven by a differential input pair from a CK409/CK410 main clock generator, such as the ICS952601 or ICS954101. ICS9DB108 can run at speeds up to 200MHz. It provides ouputs meeting tight cycle-to-cycle jitter (50ps) and output-to-output skew (50ps) requirements.

Block Diagram

Absolute Max

Symbol	Parameter	Min	Max	Units
VDD_A	3.3V Core Supply Voltage		4.6	V
VDD_In	3.3V Logic Supply Voltage		4.6	V
V_{IL}	Input Low Voltage	GND-0.5		V
V_{IH}	Input High Voltage		$V_{DD}+0.5V$	V
Ts	Storage Temperature	-65	150	°C
Tambient	Ambient Operating Temp	0	70	°C
Tcase	Case Temperature		115	°C
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V _{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	
Input Low Voltage	V_{IL}	3.3 V +/-5%	GND - 0.3		0.8	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
lament lame Commant	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			uA	
Input Low Current	I _{IL2}	$V_{IN} = 0 V$; Inputs with pull-up resistors	-200			uA	
Operating Supply Current	I _{DD3.3OP}	Full Active, $C_L = Full load$;			250	mA	
Powerdown Current	I _{DD3.3PD}	all diff pairs driven			60	mA	
1 GWGIGGWII GGITGIR	*DD3.3PD	all differential pairs tri-stated			12	mA	
Input Frequency ³	F_{i}	$V_{DD} = 3.3 \text{ V}$	80	100/133 166/200	220	MHz	3
Pin Inductance ¹	L_{pin}				7	nΗ	1
Innut Conscitones ¹	C_{IN}	Logic Inputs	1.5		5	pF	1
Input Capacitance ¹	C _{OUT}	Output pin capacitance			6	рF	1
		PLL Bandwidth when		4		MHz	1
PLL Bandwidth	BW	PLL_BW=0				IVII IZ	'
i LE Bariawidin	5 W	PLL Bandwidth when PLL_BW=1		2		MHz	1
		From V _{DD} Power-Up and after					
Clk Stabilization ^{1,2}	T_{STAB}	input clock stabilization or de-			1	ms	1,2
		assertion of PD# to 1st clock					
Modulation Frequency		Triangular Modulation	30		33	kHz	1
Tdrive_SRC_STOP#		DIF output enable after			10	ns	1,3
141110_0110_0101 #		SRC_Stop# de-assertion			. 0	110	1,0
Tdrive_PD#		DIF output enable after			300	us	1,3
		PD# de-assertion					,
Tfall		Fall time of PD# and SRC_STOP#			5	ns	1
		Rise time of PD# and			_		
Trise		SRC_STOP#			5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

0723G—12/02/08

²See timing diagrams for timing requirements. ³Time from deassertion until outputs are >200 mV

Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 $\textbf{T}_{\text{A}} = \textbf{0 - 70}^{\circ}\text{C}; \ \textbf{V}_{\text{DD}} = \textbf{3.3 V +/-5\%}; \ \textbf{C}_{\text{L}} = 2 \text{pF}, \ \textbf{R}_{\text{S}} = \textbf{33.2}\Omega, \ \textbf{R}_{\text{P}} = \textbf{49.9}\Omega, \ \textbf{I}_{\text{REF}} = \textbf{475}\Omega$

		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope	660		850	mV	1,3
Voltage Low	VLow	math function.	-150		150	111 V	1,3
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300			IIIV	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
		200MHz nominal	4.9985		5.0015	ns	2
		200MHz spread	4.9985		5.0266	ns	2
	Tperiod	166.66MHz nominal	5.9982		6.0018	ns	2
Average period		166.66MHz spread	5.9982		6.0320	ns	2
Average period		133.33MHz nominal	7.4978		7.5023	ns	2
		133.33MHz spread	7.4978		5.4000	ns	2
		100.00MHz nominal	9.9970		10.0030	ns	2
		100.00MHz spread	9.9970		10.0533	ns	2
		200MHz nominal	4.8735			ns	1,2
Absolute min period	т	166.66MHz nominal/spread	5.8732			ns	1,2
Absolute IIIII period	T _{absmin}	133.33MHz nominal/spread	7.3728			ns	1,2
		100.00MHz nominal/spread	9.8720			ns	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525 V V_{OL} = 0.175 V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skew	t _{sk3}	V _T = 50%			50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode, Measurement from differential wavefrom			50	ps	1
		BYPASS mode as additive jitter			50	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that the input clock complies with CK409/CK410 accuracy requirements

 $^{^{3}}I_{REF} = V_{DD}/(3xR_{R})$. For $R_{R} = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6~x~I_{REF}$ and $V_{OH} = 0.7V~@~Z_{O} = 50\Omega$.

General SMBus serial interface information for the ICS9DB108

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will *acknowledge* each byte *one at a time*
- Controller (host) sends a Stop bit

Index Block Write Operation									
Cor	ntroller (Host)	ICS (Slave/Receiver)							
T	starT bit								
Slave	e Address DC _(h)								
WR	WRite								
			ACK						
Begi	nning Byte = N								
			ACK						
Data	Byte Count = X								
			ACK						
Begir	ning Byte N								
			ACK						
	\Diamond	ţe.							
	\Diamond	X Byte	\Diamond						
	\Diamond	×	\Diamond						
			\Q						
Byte	e N + X - 1								
			ACK						
Р	stoP bit								

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will *acknowledge*
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD_(h)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	ex Block Rea	ad	Operation	
Con	troller (Host)	IC	S (Slave/Receiver)	
Т	starT bit			
Slave	e Address DC _(h)			
WR	WRite			
		ACK		
Begii	nning Byte = N			
			ACK	
RT	Repeat starT			
Slave	Address DD _(h)			
RD	ReaD			
		ACK		
		D	ata Byte Count = X	
	ACK			
			Beginning Byte N	
	ACK			
		/te	\Q	
	Q	X Byte	\Q	
Q			\Q	
	\rightarrow			
			Byte N + X - 1	
N	Not acknowledge			
Р	stoP bit			

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

Ву	Byte 0 Pin #		Byte 0 Pin # Name Control Function		Туре	0	1	PWD
Bit 7	-		PD#	t drive mode	RW	driven	Hi-Z	0
Bit 6	-		SRC_S	top# drive mode	RW	driven	Hi-Z	0
Bit 5	5 -		ſ	Reserved	ved RW Reserved		erved	Χ
Bit 4	-		i	Reserved	RW	Reserved		Χ
Bit 3	-		ſ	Reserved	RW	Res	erved	Χ
Bit 2	-		PLL	_BW# adjust	RW	High BW	Low BW	1
Bit 1	-		BY	PASS#/PLL	RW	fan-out	ZDB	1
Bit 0	-		S	SRC_DIV#	RW	x/2	1x	1

SMBus Table: Output Control Register

Ombao								
By	Byte 1 Pin #		Name	Control Function	Туре	0	1	PWD
Bit 7	42,	41	DIF_7	Output Control	RW	Disable	Enable	1
Bit 6	38,	37	DIF_6	Output Control	RW	Disable	Enable	1
Bit 5	34,	33	DIF_5	Output Control	RW	Disable	Enable	1
Bit 4	30,	29	DIF_4	Output Control	RW	Disable	Enable	1
Bit 3	20,	21	DIF_3	Output Control	RW	Disable	Enable	1
Bit 2	16,	17	DIF_2	Output Control	RW	Disable	Enable	1
Bit 1	12,	13	DIF_1	Output Control	RW	Disable	Enable	1
Bit 0	8,	9	DIF_0	Output Control	RW	Disable	Enable	1

SMBus Table: Output Control Register

		_						
Byt	te 2	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	42	,41	DIF_7	Output Control	RW	Res	erved	0
Bit 6	38,	,37	DIF_6	Output Control	RW	Free-run	Stoppable	0
Bit 5	34	,33	DIF_5	Output Control	RW	Free-run	Stoppable	0
Bit 4	30	,29	DIF_4	Output Control	RW	Res	erved	0
Bit 3	20	,21	DIF_3	Output Control	RW	Res	erved	0
Bit 2	16	,17	DIF_2	Output Control	RW	Free-run	Stoppable	0
Bit 1	12,	,13	DIF_1	Output Control	RW	Free-run	Stoppable	0
Bit 0	8,	,9	DIF_0	Output Control	RW	Res	erved	0

SMBus Table: Output Control Register

Byt	te 3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7				Reserved	RW	Res	erved	Х
Bit 6				Reserved	RW	Res	erved	Х
Bit 5				Reserved	RW	Res	erved	Х
Bit 4				Reserved	RW	Res	erved	Х
Bit 3				Reserved	RW	Res	erved	Х
Bit 2				Reserved	RW	Res	erved	Х
Bit 1				Reserved	RW	Res	erved	Х
Bit 0		·		Reserved	RW	Res	erved	Х

SMBus Table: Vendor & Revision ID Register

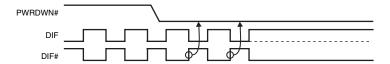
	ompute radio remain a revision in register							
By	te 4	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		RID3	REVISION ID	R	-	-	0
Bit 6	-		RID2		R	•	-	0
Bit 5	-		RID1		R	•	-	0
Bit 4	-		RID0		R	•	-	1
Bit 3	-		VID3		R	•	-	0
Bit 2	-		VID2	VENDOR ID	R	•	-	0
Bit 1	-		VID1		R	•	-	0
Bit 0	-		VID0		R	-	-	1

SMBus Table: DEVICE ID

Byt	te 5	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		Device ID 7 (MSB)		RW	Reserved		0
Bit 6	-		Device ID 6		RW	Reserved		0
Bit 5	-		Device ID 5		RW	Reserved		0
Bit 4	-		Device ID 4		RW	Res	erved	0
Bit 3	-		D	evice ID 3	RW	Res	erved	1
Bit 2	-		D	evice ID 2	RW	Res	erved	0
Bit 1	-		Device ID 1		RW	Res	erved	0
Bit 0	-		D	evice ID 0	RW	Res	erved	0

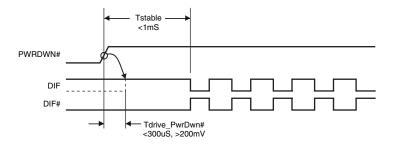
SMBus Table: Byte Count Register

OIIIDGO	Simbus Table: Byte Count Hegister							
Ву	te 6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		BC7		RW	•	-	0
Bit 6	-		BC6		RW	•	-	0
Bit 5	-		BC5	Writing to this	RW	•	-	0
Bit 4	-		BC4	register configures	RW	•	-	0
Bit 3	-		BC3	how many bytes	RW	•	-	0
Bit 2			BC2	will be read back.	RW	•	-	1
Bit 1	-		BC1		RW	-	-	0
Bit 0	-		BC0		RW	-	-	1



PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

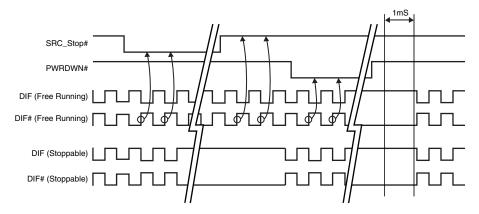
When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

PD# De-assertion

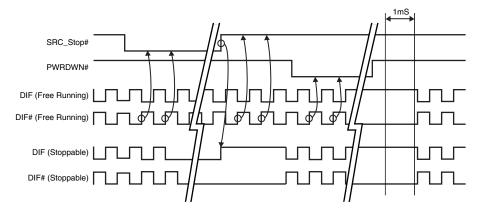
Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 ms of PD# de-assertion.

SRC_STOP#

The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

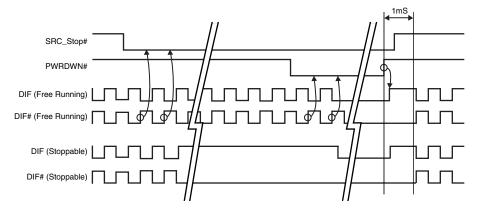

SRC STOP# - Assertion

Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xI_{REF} DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.

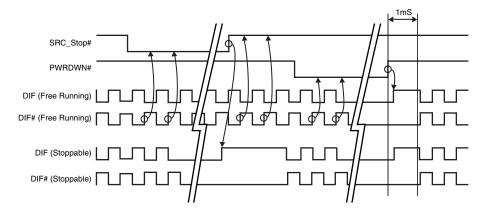

SRC_STOP# - De-assertion (transition from '0' to '1')

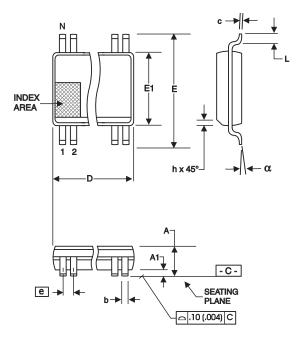
All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.

SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)



SRC STOP 2 (SRC Stop =Tristate, PD = Driven)

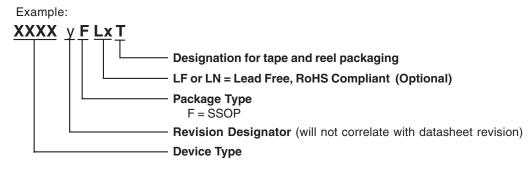



SRC_STOP_3 (SRC_Stop = Driven, PD = Tristate)

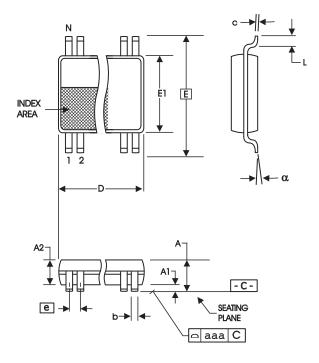
SRC_STOP_4 (SRC_Stop = Tristate, PD = Tristate)

	In Millir	motoro	ln lı	achaa	
	In Millir		In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α	2.41	2.80	.095	.110	
A1	0.20	0.40	.008	.016	
b	0.20	0.34	.008	.0135	
С	0.13	0.25 .005		.010	
D	SEE VAR	IATIONS	SEE VARIATIONS		
E	10.03	10.68	.395	.420	
E1	7.40	7.60	.291	.299	
е	0.635 E	BASIC	0.025 BASIC		
h	0.38	0.64	.015	.025	
L	0.50	1.02	.020	.040	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	

VARIATIONS


N	Dm	nm.	D (inch)		
N	MIN	MAX	MIN	MAX	
48	15.75	16.00	.620	.630	

Reference Doc.: JEDEC Publication 95, MO-118


10-0034

Ordering Information

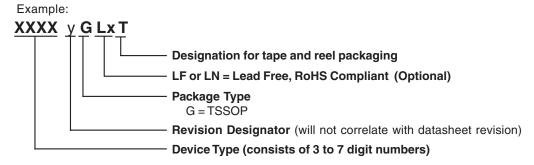
9DB108yFLxT

0723G—12/02/08

48-Lead, 6.10 mm. Body, 0.50 mm. Pitch TSSOP (240 mil) (20 mil)

SYMBOL		meters IMENSIONS	In Inches COMMON DIMENSIONS		
01202	MIN	MAX	MIN	MAX	
Α		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VAF	RIATIONS	SEE VARIATIONS		
E	8.10 E	BASIC	0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 E	BASIC	0.020 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VARIATIONS		
а	0°	8°	0°	8°	
aaa	1	0.10		.004	

VARIATIONS


N	D n	nm.	D (inch)		
IN	MIN	MAX	MIN	MAX	
48	12.40	12.60	.488	.496	

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

 $9DB108\underline{y}GLxT$

0723G—12/02/08

Revision History

Rev.	Issue Date	Description	
Е	10/26/2005	Updated LF Ordering Information to LF or LN.	14, 15
F	12/17/2000	Updated SMBus Serial Interface Information.	7
G	12/2/2008	removed Ics prefix from ordering information	14-15

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/