
T
M

S
32

0F
28

37
9D

 E
nD

at
 2

.2
 M

as
te

r

Motor
EnDat 2.2

Position Encoder

Connector
M12, 8-pin

DATA+
DATA-

CLOCK+
CLOCK-

Up (Power)
Un (Ground)
Up* (Power)
Un* (Ground)

Encoder Power
Enable

(TPS22918)

RS485
(SN65HVD78)

RS485
(SN65HVD78)

5-V IN
(J6)

Power
Supply

(TLV70233)

A
bs

-E
nc

1
(J

7)

B
oo

st
er

P
ac

k�
 C

on
ne

ct
or

(J

1J
3

+
 J

4J
2)

TIDM-1008

8-Wire Cable,
Single Shielded

Copyright © 2017, Texas Instruments Incorporated

1TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

TI Designs: TIDM-1008

EnDat 2.2 Absolute Encoder Master Interface Reference
Design for C2000™ MCUs

Description

C2000™ microcontroller (MCU) Position Manager
technology offers an integrated solution to interface to
the most popular digital and analog position sensors,
which eliminates the necessity for external field
programmable gate arrays (FPGAs) or application
specific integrated circuit (ASICs). The Position
Manager BoosterPack™ is a flexible, cost-effective
platform intended for evaluating various encoder
interfaces and is designed to work with multiple C2000
MCU LaunchPad™ development kits. This reference
design's software specifically targets implementation of
EnDat 2.2, which is a digital, bidirectional interface for
position encoders. The highly-optimized and easy-to-
use software library and examples included in this
reference design enable EnDat2.2 position encoder
operation using the Position Manager BoosterPack.

Resources

TIDM-1008 Design Folder

LAUNCHXL-F28379D Tools Folder

SN65HVD78 Product Folder

TLV702 Product Folder

TPS22918-Q1 Product Folder

ASK Our E2E Experts

Features

• Flexible, Low-Voltage BoosterPack Evaluation
Platform for Position Encoder Interfaces

• Integrated MCU Solution for EnDat 2.2 Without
Additional FPGA Requirements

• Easy Interface-to-EnDat 2.2 Commands Through
Driver Functions and Data Structure Provided by
Library

• Library Support for Unpacking Received Data and
Optimized Cyclic Redundancy Check (CRC)
Algorithm

• Supports Clock Frequency up to 8 MHz and
Verified Operation up to 100-m Cable Length

• Includes Evaluation Board and Software Example
Showcasing EnDat22 Software Library

Applications

• Industrial

• Motor Drives

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A
http://www.ti.com/tool/TIDM-1008
http://www.ti.com/tool/launchxl-f28379d
http://www.ti.com/product/SN65HVD78
http://www.ti.com/product/TLV702
http://www.ti.com/product/TPS22918-q1
http://e2e.ti.com
http://e2e.ti.com/support/applications/ti_designs/
http://www.ti.com/lsds/ti/applications/industrial/overview.page
http://www.ti.com/lsds/ti/applications/industrial/motor-drives/overview.page

T
M

S
32

0F
28

37
9D

 E
nD

at
 2

.2
 M

as
te

rEncoder Power
Enable

(TPS22918)

RS485
(SN65HVD78)

RS485
(SN65HVD78)

5-V IN
(J6)

Power
Supply

(TLV70233)

A
bs

-E
nc

1
(J

7)

B
oo

st
er

P
ac

k�
 C

on
ne

ct
or

(J

1J
3

+
 J

4J
2)

TIDM-1008

Copyright © 2017, Texas Instruments Incorporated

System Description www.ti.com

2 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

1 System Description

Industrial drives, like servo drives, require accurate, highly-reliable, and low-latency position feedback. The
EnDat 2.2 interface from HEIDENHAIN™ is a digital, bidirectional interface standard for position or rotary
encoders. The EnDat 2.2 is a pure serial, digital interface based on the RS-485 standard. The interface
transmits position values or additional physical quantities and also allows reading and writing of the
encoder’s internal memory. The transmitted data types include absolute position, turns, temperature,
parameters, diagnostics, and so on. Mode commands that the subsequent electronics, often referred to as
EnDat 2.2 master, send to the encoder select the transmitted data types. TIDM-1008 acts as an EnDat 2.2
master and provides the subsequent electronics to interface an EnDat encoder with the F28379D
LaunchPad. Figure 1 shows the major hardware blocks used in this design.

Figure 1. TIDM-1008 Hardware Blocks and Connectors

The position encoder with EnDat 2.2 connects to TIDM-1008 through a single, 8-wire, shielded cable. The
eight wires used for communication include two wires for CLOCK+ and CLOCK- transmitted in differential
format, two wires for DATA+ and DATA- that are transmitted in differential format, two wires Up and Un
that are used for the encoder power supply and ground, and two wires Up* and Un* that are used for
battery buffering or for parallel power supply lines to reduce the cables losses.

Texas Instruments' C2000 Position Manager EnDat22 (PM_endat22) library provides support for
implementing the EnDat interface in subsequent electronics. The library makes up the software portion of
TIDM-1008. The EnDat22 Library features an integrated MCU solution for the EnDat interface that meets
HEIDENHAIN EnDat 2.1 and 2.2 digital interface protocol requirements. The library can support up to 8-
MHz clock frequency independent of cable length—verified up to 100 m. This support is due to the
integrated cable propagation delay compensation algorithm that is user configurable. The driver functions
and data structure provided by the library allows other commands to be easily used. The library also uses
an efficient and optimized CRC algorithm for both position and data CRC calculations with the capability of
unpacking the received data and reversing the position data that is incorporated into library functions. This
library solution is tuned for position control applications where position information is obtained from
encoders every control cycle with better control of modular functions and timing.

There are several key concepts to note while using the EnDat22 Library. The library only supports the
basic interface drivers for commands defined in EnDat22 specification. All the higher-level application
software needs to be developed by users using the basic interface provided by this library. Clock
frequency for the EnDat Clock is limited to a maximum of SYSCLOCK/24. This limitation applies
irrespective of the cable length and encoder type. For any additional functionality or encoder usage not
specified in this reference design, contact TI support team or refer to the TI E2E™community.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

T
M

S
32

0F
28

37
9D

 E
nD

at
 2

.2
 M

as
te

r

Motor
EnDat 2.2

Position Encoder

Connector
M12, 8-pin

DATA+
DATA-

CLOCK+
CLOCK-

Up (Power)
Un (Ground)
Up* (Power)
Un* (Ground)

Encoder Power
Enable

(TPS22918)

RS485
(SN65HVD78)

RS485
(SN65HVD78)

5-V IN
(J6)

Power
Supply

(TLV70233)

A
bs

-E
nc

1
(J

7)

B
oo

st
er

P
ac

k�
 C

on
ne

ct
or

(J

1J
3

+
 J

4J
2)

TIDM-1008

8-Wire Cable,
Single Shielded

Copyright © 2017, Texas Instruments Incorporated

www.ti.com System Description

3TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

1.1 Key System Specifications

(1) The time of the encoder connected to the TIDM-1008 determines the current limit of this supply. A generic, bench-top, adjustable
power supply with an adjustable current limit is recommended.

Table 1. Key System Specifications

PARAMETER SPECIFICATIONS DETAILS

Input voltage 5 V (1) Section 3.2.1.1

Output voltage (encoder) 5 V Section 3.2.1.1

Protocol supported EnDat 2.2 Heidenhain

Frequency (encoder interface) Approximately 8 MHz Section 2.3.2

Encoder bits EnDat 2.2 protocol standard Heidenhain

CPU cycles — Section 2.3.3.2

Maximum cable length (tested) 100 m —

2 System Overview

2.1 Block Diagram

Figure 2. TIDM-1008 System Block Diagram

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A
https://www.heidenhain.de/de_EN/
https://www.heidenhain.de/de_EN/

System Overview www.ti.com

4 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

2.2 Highlighted Products

2.2.1 LAUNCHXL-F28379D

This development kit is based on the Delfino™ TMS320F28379D MCU, which provides 800MIPS of total
system performance between dual 200-MHz, C28x CPUs and dual 200-MHz, real-time-control
coprocessors (CLA). This powerful MCU contains 1MB of onboard flash and includes highly-differentiated
peripherals, such as 16-bit or 12-bit analog-to-digital converters (ADCs), comparators, 12-bit digital-to-
analog converters (DACs), delta-sigma sinc filters, HRPWMs, eCAPs, eQEPs, CANs, and more.

2.2.2 SN65HVD78

The SN65HVD78 combines a differential driver and a differential receiver, which operate from a single,
3.3-V power supply. The driver differential outputs and the receiver differential inputs are connected
internally to form a bus port suitable for half-duplex (two-wire bus) communication. These devices feature
a wide, common-mode voltage range, which make the devices suitable for multipoint applications over
long cable runs.

2.2.3 TLV702

The TLV702 series of low-dropout (LDO) linear regulators are low-quiescent current devices with excellent
line and load transient performance. All device versions have thermal shutdown and current limit for
safety. The devices regulate to specified accuracy with no output load.

2.2.4 TPS22918-Q1

The TPS22918-Q1 is a single-channel load switch with configurable rise time and configurable quick
output discharge. The device contains an N-channel MOSFET that can support a maximum continuous
current of 2 A. The switch is controlled by an on and off input, which is capable of interfacing directly with
low-voltage control signals.

2.3 Design Considerations

2.3.1 TIDM-1008 Board Implementation

The TIDM-1008 board is identical to the Position Manager BoosterPack (BOOSTXL-POSMGR), which
means the TIDM-1008 board is capable of interfacing with several other position encoder types. The
board is fully-populated by default for future compatability. This reference design focuses on EnDat 2.2
and the hardware blocks not mentioned in this document should be ignored. Software support for the
other types of position encoder interfaces will be the subject of future reference designs. Table 2
describes the connectors on TIDM-1008 and BOOSTXL-POSMGR and their functions.

Table 2. TIDM-1008 Board and BOOSTXL-POSMGR Connectors

CONNECTOR DESCRIPTION RELEVANT TI DESIGNS AND
HARDWARE

Abs-Enc-1 (J7) EnDat 2.1, EnDat 2.2, other absolute
encoders

TIDM-1008, BOOSTXL-POSMGR

Abs-Enc-2 (J8) EnDat 2.1, EnDat 2.2, other absolute
encoders

Future TID + BOOSTXL-POSMGR

Abs-Enc-2 Breakout (J10) Allows x2 absolute encoders at site two
using jumpers

Future TID + BOOSTXL-POSMGR

SinCos (J14) SinCos encoder Future TID + BOOSTXL-POSMGR

Resolver (J14 + J15) Resolver interface with 15-V excitation
circuitry

Future TID + BOOSTXL-POSMGR

PTO (J17) Pulse train output Future TID + BOOSTXL-POSMGR

J1 J3 + J4 J2 BoosterPack connector All Designs, BOOSTXL-POSMGR

J6 5-V DC supply input All Designs, BOOSTXL-POSMGR

J16 15-V DC resolver excitation input Future TID + BOOSTXL-POSMGR

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

Site 1 (J1 J3 + J4 J2)

x� x1 EnDat 2.1/2.2 or other Absolute
Encoder and PTO

x� x2 EnDat 2.2/2.2 or other Absolute
Encoder (simultaneously)

x� x1 PTO

x� x1 Resolver and PTO

x� x1 Absolute SinCos (Channels C and D,
requires two BOOSTXL-POSMGR)

Site 2 (J5 J7 + J8 J6)

x� X1 SinCos Encoder

x� x1 EnDat 2.1/2.2 or other Absolute
Encoder and PTO

x� x1 Resolver and PTO

x� x1 PTO

x� x1 Absolute SinCos (Channels A, B, I,
requires two BOOSTXL-POSMGR)

www.ti.com System Overview

5TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

Figure 3 describes the encoder support on each site of the LaunchPad.

Figure 3. TIDM-1008 Board and BOOSTXL-POSMGR Encoder Support

2.3.2 PM EnDat22 Master Details

This section gives a brief overview of how the EnDat interface is implemented on TMS320F28379D
devices. By design the TIDM-1008 works with multiple C2000 LaunchPad development kits. This
reference design focuses on the F28379D LaunchPad as the main example.

Communication over EnDat interface is achieved primarily by the following components:

• CPU (C28x)

• Configurable logic block (CLB)

• Serial peripheral interface (SPI)

• Device interconnects (XBARs)

While SPI performs the encoder data transmit and receive functions, clock generation is controlled by
CLB. Note that the CLB module can only be accessed through library functions provided in the PM
EnDat22 Library and not otherwise configurable by users. The following functions are implemented inside
the CLB module:

• Ability to generate two different clocks:

– to the SPI on chip (on GPI065, looped back from SPI-1-CLK generated on GPIO7)

– to the encoder (on GPIO6, ENC-1-CLK)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

CLB

TIDM-1008

ENC-1-CLK

OUTPUT
XBAR

GPIO9 ENDAT_DIR

SPI-1-CLK

GPIO6

GPIO7

INPUT
XBAR

TX-1-EN

C28x
CPU

SPI-B
Slave

SPICLKB

SPISMOB

SPISOMIB

SPISTEB

GPIO65

GPIO63

GPIO64

GPIO66

GPIO139

ENDAT_DIN

ENDAT_DOUT

GND

PWREN1
TMS320F28379D EnDat 2.2 Master

EnDat Encoder

Copyright © 2017, Texas Instruments Incorporated

System Overview www.ti.com

6 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

• Ability to adjust the delay between the two clocks

• Identification of the critical delay between the clock edges sent to the encoder and the received data

• Monitoring the data coming from encoder through SPISIMO and poll for start pulse

• Ability to measure the propagation delay at a specific interval as required by the interface

• Ability to configure the block and adjust the propagation delay through software

Figure 4. EnDat Implementation Diagram Inside TMS320F28379D

Figure 4 depicts how EnDat transaction works in the system. For every EnDat transaction initiated using
the PM EnDat22 Library command:

• CPU configures the SPITXFIFO with the command and other data required for transmission to the
encoder as per the specific requirements of the current EnDat command.

• CPU sets up configurable logic block to generate clocks for the encoder and SPI.

• Number of clock pulses and edge placement for these two clocks are different and precisely controlled
by CLB, as configured by CPU software for the current EnDat command.

• CLB also generates the direction control signal for data line transceiver. This signal is required to
change the direction of the data line in order to receive data from the encoder after sending the mode
command

• CLB also monitor the SPISIMO signal (as necessary) for detecting the start pulse and adjusts the
phase of the receive clock accordingly.

• CPU configures CLB to generate continuous clocking for the encoder while waiting for the start pulse
from the encoder.

• CPU configures CLB to generate a predefined number of clock pulses needed for SPI (as per the
current command requirements), and continuous clocking for SPI is disabled while waiting for the start
pulse from the encoder.

• CLB also provides hooks to perform cable propagation delay compensation using library functions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com System Overview

7TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

• The full MCU resource usage is highlighted in Table 3.

Table 3. TIDM-1008 MCU Resource Requirements

RESOURCE NAME TYPE PURPOSE USAGE RESTRICTIONS

DEDICATED RESOURCES

GPIO6 IO EnDat Clock from master to
Encoder

IO dedicated for EnDat

GPIO7 IO SPI clock generated by MCU IO dedicated for EnDat

EPWM4 IO Internally for clock generation EPWM4 dedicated for EnDat

GPIO9 IO EnDat direction control for data
on LaunchPad

Dedicated IO for EnDat
Direction control

GPIO139 IO For EnDat power control on
LaunchPad

Dedicated IO for encoder
power enable

CONFIGURABLE RESOURCES

SPI Module and IOs One SPI instance to emulate
EnDat interface (SPIB on

LaunchPad)

Any instance of SPI can be
chosen—module and

corresponding IOs will be
dedicated for EnDat

SHARED RESOURCES

CPU and memory Module Check CPU and memory
utilization for various functions

Application to ensure enough
CPU cycles and memory are

allocated

Input XBAR Module, IO To be connected to SPISIMOB
of the corresponding SPI

instance dedicated for EnDat

INPUTXBAR1 is used for
EnDat implementation,

remaining inputs are available
for application use

Output XBAR Module, IO Bringing out EnDat TxEn
(direction control) signal on
GPIO9 using OUTPUT6 of

output

OUTPUT6 is used for EnDat
implementation, remaining
outputs are available for

application use

2.3.3 PM EnDat22 Software Library

The EnDat22 Library provides a host of commands and functions for interfacing C2000 devices with
EnDat 2.2 position encoders. This section provides some documentation on the library and describes the
commands and functions the library offers. If the latest version of controlSUITE is installed, the library is in
the following directory:

C:\ti\controlSUITE\development_kits\BOOSTXL_POSMGR

Software delivered on controlSuite for TIDM-1008 uses the above hardware resources and the Position
Manager BoosterPack is expected to be plugged on Site-2 as shown in Figure 9

The following sub-directory structure is used:

<base>\Doc Documentation

<base>\Float Contains implementation of the library and corresponding include file

<base>\examples Example using EnDat22 library

NOTE: The software example included with TIDM-1008 takes care of properly configuring and

including the EnDat22 Library in the CCS project. To learn how to use the library for other

applications, refer to the Position Manager EnDat22 Library Module User's Guide [1].

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

System Overview www.ti.com

8 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

2.3.3.1 PM EnDat22 Library Commands

Details of the EnDat protocol and commands supported in different modes can be obtained from
Heidenhain. Table 4 and Table 5 show the commands supported by the EnDat22 Library.

Table 4. EnDat 2.1 Commands Supported

Encoder send position values ENCODER_SEND_POSITION_VALUES

Selection of the memory area SELECTION_OF_MEMORY_AREA

Encoder receive parameters ENCODER_RECEIVE_PARAMETER

Encoder send parameter ENCODER_SEND_PARAMETER

Encoder receive reset ENCODER_RECEIVE_RESET

Encoder send test values ENCODER_SEND_TEST_VALUES

Encoder receive test command ENCODER_RECEIVE_TEST_COMMAND

Table 5. EnDat 2.2 Commands Supported

Encoder send position value with additional information ENCODER_SEND_POSITION_VALUES_WITH_ADDITIONAL_
DATA

Encoder send position value and receive selection of memory ENCODER_SEND_POSITION_VALUES_AND_SELECTION_O
F_THE_ area MEMORY_AREA

Encoder send position value and receive parameters ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_PAR
AMETER

Encoder send position value and send parameters ENCODER_SEND_POSITION_VALUES_AND_SEND_PARAM
ETER

Encoder send position value and receive test command ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_TES
T_COMMAND

Encoder send position value and receive error reset ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_ERR
OR_RESET

Encoder receive communication command ENCODER_RECEIVE_COMMUNICATION_COMMAND

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A
https://www.heidenhain.de/de_EN/

www.ti.com System Overview

9TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

2.3.3.2 PM EnDat22 Library Functions

The EnDat22 Library consists of the following functions that enable the user to interface with EnDat
encoders. Table 6 lists the functions existing in the EnDat22 Library and a summary of cycles taken for
execution.

Detailed explanations of each function are explained at the end of Section 2.3.3.4.

Table 6. EnDat22 Library Functions

NAME DESCRIPTION CPU
CYCLES

TYPE

PM_endat22_generateCRCT
able

This function generates a table of 256 entries for a given CRC
polynomial (polynomial) with a specified number of bits (nBits).

Generated tables are stored at the address specified by pTable.

30226 Initialization
time

PM_endat22_getCrcPos To get the CRC of each byte, calculate the n-bit CRC of a message
buffer by using the lookup table. Use this function for calculating CRC

of the position data.

220 (1) Run time

PM_endat22_getCrcTest To get the CRC of each byte, calculate the n-bit CRC of a message
buffer by using the lookup table. Use this function for calculating CRC

of the test data.

183 Run time

PM_endat22_getCrcNormPM
_endat22_getCrcNorm

To get the CRC of each byte, calculate the n-bit CRC of a message
buffer by using the lookup table.

95 Run time

PM_endat22_setupCommand Setup an SPI and other modules for a given command to be
transmitted. All of the transactions should start with this command.

This function call sets up the peripherals for upcoming EnDat transfer,
but the call does not actually perform any transfer or activity on the

EnDat interface. This function call populates the sdata array of
ENDAT_DATA_STRUCT with the data to be transmitted to the

Encoder.

1160 Run time

PM_endat22_startOperation This function initiates the EnDat transfer to be called after the
PM_endat22_setupCommand. It performs the EnDat transaction

setup by previous commands. Note that the setup and start operation
are separate function calls. The user can setup the EnDat transfer

and start the actual transfer using this function call, as necessary, at a
different time.

46 Run time

PM_endat22_receiveData Function for unpacking and populating the EnDat data structure with
the data received from the encoder. This function is called when the

data from the encoder is available in the SPI data buffer and
transferred to the rdata array of ENDAT_DATA_STRUCT. Upon the
function call, received data is unpacked as per the current command

and unpacked results are stored accordingly.

500 Run time

PM_endat22_setupPeriph Setup for SPI, CLB, and other interconnect XBARs for EnDat are
performed with this function during system initialization. This function
must be called after every system reset. No EnDat transactions will

be performed until the setup peripheral function is called.

8822 Initialization
time

PM_endat22_setFreq This function sets the EnDat clock frequency. EnDat transfers,
typically start low frequency during initialization and switch to higher

frequency during on runtime.

220 Initialization
time

PM_endat22_getDelayComp
Val

This function is used while performing delay compensation when long
cables are used. This function returns the measured delay from the
rising edge of EnDat clock to the start bit received (see the provided
examples directory on usage and performing delay compensation).

For cable delays and propagation requirements, see the EnDat
documentation from Heidenhain.

21 Initialization
time

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

System Overview www.ti.com

10 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

2.3.3.3 PM EnDat22 Library Data Structures

The PM EnDat22 Library defines the EnDat data structure handle as:

Object definition:

typedef struct { // bit descriptions

uint32_t position_lo;

uint32_t position_hi;

uint16_t error1;

uint16_t error2;

uint16_t data_crc;

uint16_t address;

uint32_t additional_data1;

uint32_t additional_data2;

uint32_t additional_data1_crc;

uint32_t additional_data2_crc;

uint32_t test_lo;

uint32_t test_hi;

uint32_t position_clocks;

volatile struct SPI_REGS *spi;

uint32_t delay_comp;

uint32_t sdata[16];

uint32_t rdata[16];

uint16_t dataReady;

uint16_t fifo_level;

} ENDAT_DATA_STRUCT;

MODULE ELEMENT NAME DESCRIPTION TYPE

position_lo Lower 32 bits of the position data 32 bits

position_hi Upper 32 bits of the position data Maximum 16 bits

error1 Error1 status received in EnDat21 0 or 1

error2 Error2 status received in EnDat22 0 or 1

data_crc CRC for position and other commands (see each
command for details)

5-Bits CRC

address Received address in multiple commands 8-bit address

additional_data1 Additional data 1 received in EnDat22 32-bit unsigned int

additional_data2 Additional data 2 received in EnDat22 32-bit unsigned int

additional_data1_crc CRC for additional data 1 received in EnDat22 5-Bits CRC

additional_data2_crc CRC for additional data 2 received in EnDat22 5-Bits CRC

test_lo Lower 32 bits of the test data for encoder send test
values command

32 bits

test_hi Upper 32 bits of the test data for encoder send test
values command—test data is 40bits

Maximum 8 bits only

position_clocks Word 13 of the parameter area for the encoder
manufacturer to be read and stored in this. Number of

clock pulses for transfer of position value.

Maximum value 48

delay_comp Measured cable propagation delay to be updated in this
variable

Unsigned int

spi SPI instance used for EnDat22 implementation Pointer to Spi*Regs

dataReady Flag indicating dataReady—set by
PM_endat22_receiveData function, cleared by

PM_endat22_setupCommand function

0 or 1

0 or 1 Internal variables used by library—for debug purposes Array of 32-bit unsigned integers

rdata Internal variables used by library—for debug purposes Array of 32-bit unsigned integers

fifo_level Internal variables used by library—for debug purposes Maximum value 8

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com System Overview

11TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

2.3.3.4 PM EnDat22 Library Function Details

PM_endat22_generateCRCTable

Directions:

This function generates table of 256 entries for a given CRC polynomial (polynomial) with specified
number of bits (nBits). Generated tables are stored at the address specified by pTable.

Definition:

void PM_endat22_generateCRCTable(uint16_t nBits, uint16_t polynomial, uint16_t *pTable)

Parameters:

INPUT: —

nBits Number of bits of the given polynomial

polynomial Polynomial used for CRC calculations

pTable Pointer to the table where the CRC table values are stored

RETURN: —

None —

Usage:

#define NBITS_POLY1 5

#define POLY1 0x0B

#define SIZEOFTABLE 256

uint16_t table1[SIZEOFTABLE];

// Generate table for poly 1

PM_endat22_generateCRCTable(

NBITS_POLY1,

POLY1,

table1);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

System Overview www.ti.com

12 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

PM_endat22_getCrcPos

Directions:

To get the CRC of each byte, calculate the 5-bit CRC of a message buffer by using the lookup table. This
function should be used for calculating CRC of the position data:

• Encoder send position values (EnDat 2.1)

• Encoder send position values (EnDat 2.2)

Definition:

uint32_t PM_endat22_getCrcPos(uint32_t total_clocks,uint32_t endat22,uint32_t lowpos,uint32_t

highpos, uint32_t error1,uint32_t error2, uint16_t *crc_table);

Parameters:

INPUT: —

total_clocks Word 13 of the parameter area of the encoder manufacturer.
Number of clock pulses for transfer of position value.

endat22 1 for EnDat22, 0 for EnDat21 position CRC

lowpos Lower 32 bits of the position data

highpos Upper 32 bits of the position data

error1 Error1 status received in EnDat21

error2 Error2 status received in EnDat22

crc_table Pointer to the table where the CRC table values are stored

RETURN: —

crc 5-bit CRC value calculated

Usage:

Function call in 2.1 mode:

crc5_result = PM_endat22_getCrcPos (

endat22Data.position_clocks,

ENDAT21, //EnDat21 mode => ENDAT21=0

endat22Data.position_lo,

endat22Data.position_hi,

endat22Data.error1,

endat22Data.error2, // ignored in EnDat21 mode

table1); //crc table

Function call in 2.2 mode:

crc5_result = PM_endat22_getCrcPos (

endat22Data.position_clocks,

ENDAT22, //EnDat22 mode => ENDAT22=1

endat22Data.position_lo,

endat22Data.position_hi,

endat22Data.error1,

endat22Data.error2,

table1); //crc table

Example code:

Val = PM_endat22_setupCommand(ENCODER_SEND_POSITION_VALUES, 0, 0, 0);

PM_endat22_startOperation();

while (endat22Data.dataReady != 1) {}

Val = PM_endat22_receiveData(ENCODER_SEND_POSITION_VALUES, 0); crc5_result1 =

PM_endat22_getCrcPos(endat22Data.position_clocks, 0, endat22Data.position_lo,

endat22Data.position_hi, endat22Data.error1, endat22Data.error2, table1);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com System Overview

13TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

PM_endat22_getCrcTest

Directions:

To get the CRC of each byte, calculate the 5-bit CRC of a message buffer by using the lookup table. This
function should be used for calculating CRC of the test data:

• Encoder send test values

Definition:

uint32_t PM_endat22_getCrcTest(uint32_t lowtest,uint32_t hightest, uint32_t error1, uint16_t

*crc_table);

Parameters:

INPUT: —

lowtest Lower 32 bits of the test data

hightest Upper 32 bits of the test data

error1 Error1 status received in EnDat21

crc_table Pointer to the table where the CRC table values are stored

RETURN: —

crc 5-bit CRC value calculated

Usage:

Function call in 2.1 mode:

crc5_result1 = PM_endat22_getCrcTest(

endat22Data.test_lo,

endat22Data.test_hi,

endat22Data.error1,

table1); //crc table

This function is exclusively used for calculating CRC values for the ENCODER_SEND_TEST_VALUES
command. This is an EnDat2.1 mode command.

Example code:

Val = PM_endat22_setupCommand(ENCODER_SEND_TEST_VALUES, 0x0, 0x0, 0);

PM_endat22_startOperation();

while (endat22Data.dataReady != 1) {}

Val = PM_endat22_receiveData(ENCODER_SEND_TEST_VALUES, 0);

crc5_result1 = PM_endat22_getCrcTest(endat22Data.test_lo, endat22Data.test_hi,

endat22Data.error1, table1);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

System Overview www.ti.com

14 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

PM_endat22_getCrcNorm

Directions:

To get the CRC of each byte, calculate the 5-bit CRC of a message buffer by using the lookup table. This
function should be used for calculating CRC for the following commands:

• Selection of memory area

• Encoder receive parameter

• Encoder send parameter

• Encoder receive reset

• Encoder receive test command

• Additional data (EnDat 2.2)

Definition:

uint32_t PM_endat22_getCrcNorm (uint32_t param8,uint32_t param16, uint16_t *crc_table);

Parameters:

INPUT: —

param8 Typically 8-bit Address or MRS code, and so forth, depending on
the command

param16 Typically16-bit Data or Acknowledgment, and so forth,
depending on the command

crc_table Pointer to the table where the CRC table values are stored

RETURN: —

crc 5-bit CRC value calculated

Usage:

Example code:

Val = PM_endat22_setupCommand(SELECTION_OF_MEMORY_AREA, 0xA1, 0x5555, 0);

PM_endat22_startOperation();

while (endat22Data.dataReady != 1) {}

Val = PM_endat22_receiveData(SELECTION_OF_MEMORY_AREA, 0);

crc5_result1 = PM_endat22_getCrcNorm(endat22Data.address, endat22Data.data, table1);

For the details on where the data received, for different EnDat commands, is unpacked and stored, see
the PM_endat22_receiveData function. Below are few examples:

While checking CRC for the data received by using:

• SELECTION_OF_MEMORY_AREA

• ENCODER_SEND_PARAMETER

• ENCODER_RECEIVE_PARAMETER

• ENCODER_RECEIVE_TEST_COMMAND

crc5_result = PM_endat22_getCrcNorm(

endat22Data.address,

endat22Data.data,

table1); //crc table

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com System Overview

15TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

While checking CRC for additional data1 received using:

• ENCODER_SEND_POSITION_VALUES_WITH_ADDITIONAL_DATA

• ENCODER_SEND_POSITION_VALUES_AND_SELECTION_OF_THE_MEMORY_AREA

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_PARAMETER

• ENCODER_SEND_POSITION_VALUES_AND_SEND_PARAMETER

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_TEST_COMMAND

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_ERROR_RESET

crc5_result = PM_endat22_getCrcNorm(

endat22Data.additional_data1 >> 16, // top 8-

bits of additional data 1as param8

endat22Data.additional_data1, // Uses lower 16- bits of this field as param16

table1); //crc table

While checking CRC for additional data2 received using:

• ENCODER_SEND_POSITION_VALUES_WITH_ADDITIONAL_DATA

• ENCODER_SEND_POSITION_VALUES_AND_SELECTION_OF_THE_MEMORY_AREA

• ENCODER_SEND_POSITION_VALUES_AND_SELECTION_OF_THE_MEMORY_AREA

• ENCODER_SEND_POSITION_VALUES_AND_SEND_PARAMETER

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_TEST_COMMAND

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_ERROR_RESET

crc5_result = PM_endat22_getCrcNorm(

endat22Data.additional_data2 >> 16, // top 8-

bits of additional data 2 as param8

endat22Data.additional_data2, // Uses lower 16- bits of this field as param16

table1); //crc table

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

System Overview www.ti.com

16 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

PM_endat22_setupCommand

Directions:

Setup an SPI and other modules for a given command to be transmitted. All the transactions should start
with this command. This function call sets up the peripherals for upcoming EnDat transfer but does not
actually perform any transfer or activity on the EnDat interface. This function call populates the sdata array
of ENDAT_DATA_STRUCT with the data to be transmitted to the encoder.

Definition:

void Val = PM_endat22_setupCommand(uint16_t command, uint16_t data1, uint16_t data2, uint16_t

nAddData);

Parameters:

INPUT: —

command Mode command for the EnDat transfer to be done

data1 Typically18/6-bit Data or Address depending on the mode
command

data2 Typically18/6-bit Data or Address depending on the mode
command

nAddData Number of additional data enabled (0, 1 or 2 depending on the
number of additional data enabled or not)

RETURN: —

Val If incorrect, command value is passed to this function, which
would return zero. For all other cases function returns a value of

one.

Usage:

Example code:

Val = PM_endat22_setupCommand(SELECTION_OF_MEMORY_AREA, 0xA1, 0x5555, 0);

PM_endat22_startOperation();

while (endat22Data.dataReady != 1) {}

Val = PM_endat22_receiveData(SELECTION_OF_MEMORY_AREA, 0);

crc5_result1 = PM_endat22_getCrcNorm(endat22Data.address, endat22Data.data, table1);

Below are few examples of how the PM_endat22_setupCommand function is used with various mode
commands. For further details, see the Heidenhain documentation:

• SELECTION_OF_MEMORY_AREA In order to send or read parameters, the memory area must first
be selected. This selection is done with the mode command, followed by a code for the memory area
to be selected: the memory range select (MRS) code. The encoder acknowledges the command.

Val = PM_endat22_setupCommand(

SELECTION_OF_MEMORY_AREA,

0xA1, // MRS code

0x5555, // Any

0); // No. of additional data – 0 for EnDat21 commands

• ENCODER_SEND_PARAMETER This mode command is required for reading parameters of encoder.
The command is read from the memory area that was last selected as being valid. The encoder
acknowledges the command.

Val = PM_endat22_setupCommand(

ENCODER_SEND_PARAMETER,

0xD, // Address

0x5555, // Any

0); // No. of additional data – 0 for EnDat21 commands

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A
https://www.heidenhain.de/fileadmin/pdb/media/img/383942-27_EnDat_2-2_en.pdf

www.ti.com System Overview

17TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

• ENCODER_RECEIVE_PARAMETER This mode command is required for writing parameters of
encoder. The command is written to the memory area that was last selected as being valid. The
encoder acknowledges the command.

Val = PM_endat22_setupCommand(

ENCODER_RECEIVE_PARAMETER,

0xA1, // Address

0x5555, // Parameters

0); // No. of additional data – 0 for EnDat21 commands

• ENCODER_RECEIVE_RESET This mode command is required for executing encoder reset.

Val = PM_endat22_setupCommand(

ENCODER_RECEIVE_RESET,

0xA1, // Any

0x5555, // Any

0); // No. of additional data – 0 for EnDat21 commands

• ENCODER_SEND_POSITION_VALUES The following mode command requests position values
without additional data.

Val = PM_endat22_setupCommand(

ENCODER_SEND_POSITION_VALUES,

0x0, // Not applicable

0x0, // Not applicable

0); // No. of additional data – 0 for EnDat21 commands

• ENCODER_RECEIVE_TEST_COMMAND This command is used as first step in interrogating the test
values. Encoder receive test command sent along with the port address will to be interrogated for test
values.

Val = PM_endat22_setupCommand(

ENCODER_RECEIVE_TEST_COMMAND,

0x0, // Port address

0x0, // Any

0); // No. of additional data – 0 for EnDat21 commands

• ENCODER_SEND_TEST_VALUES The following mode is necessary to interrogate test values.

Val = PM_endat22_setupCommand(

ENCODER_SEND_TEST_VALUES,

0x0, // Not applicable

0x0, // Not applicable

0); // No. of additional data – 0 for EnDat21 commands

• ENCODER_SEND_POSITION_VALUES_WITH_ADDITIONAL_DATA This mode command can be
used to request additional data, such as diagnostic values, commutating values, acceleration values,
and so forth. See the encoder specifications to determine which additional data are supported by the
encoder. This information is also saved in the encoder memory for parameters according to EnDat 2.2
(word 0 and word 1).

Val = PM_endat22_setupCommand(ENCODER_SEND_POSITION_VALUES_WITH_ADDITIONAL_DATA,

0x0, // Not applicable

0x0, // Not applicable

0); // No. of additional data (0, 1 or 2 depending on no.of additional data enabled)

• ENCODER_SEND_POSITION_VALUES_AND_SELECTION_OF_THE_MEMORY_A REA This mode
command is necessary in order to request a position value and to select the memory area or block
address in the same cycle.

Val = PM_endat22_setupCommand(

ENCODER_SEND_POSITION_VALUES_AND_SELECTION_OF_THE_MEMORY_AREA, 0x0, // MRScode

0x0, // Block address

0); // No. of additional data (0, 1 or 2 depending on no.of additional data enabled)

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_PARAMETER This mode command is
necessary in order to request a position value and write parameters in the same cycle.

Val = PM_endat22_setupCommand(

ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_PARAMETER,

0x0, // Address

0x0, // Parameters

0); // No. of additional data (0, 1 or 2 depending on no.of additional data enabled)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

System Overview www.ti.com

18 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

• ENCODER_SEND_POSITION_VALUES_AND_SEND_PARAMETER This mode command is
necessary if the user wants to request a position value and in the same cycle send parameters
necessary for read access.

Val = PM_endat22_setupCommand(

ENCODER_SEND_POSITION_VALUES_AND_SEND_PARAMETER,

0x0, // Address

0x0, // Any

0); // No. of additional data (0, 1 or 2 depending on no.of additional data enabled)

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_TEST_COMMAND This mode command is
necessary in order to request position values and write a test command in the same cycle.

Val = PM_endat22_setupCommand(

ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_TEST_COMMAND,

0x0, // Port address

0x0, // Any

0); // No. of additional data (0, 1 or 2 depending on no.of additional data enabled)

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_ERROR_RESET This mode command is
necessary in order to request position values and reset errors in the same cycle.

Val = PM_endat22_setupCommand(

ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_ERROR_RESET,

0x0, // Any

0x0, // Any

0); // No. of additional data (0, 1 or 2 depending on no.of additional data enabled)

• ENCODER_RECEIVE_COMMUNICATION_COMMAND This mode command is necessary to send
communication data. After the address has been assigned with the Write parameters mode command,
all other mode commands for data exchange can be used. Only the encoder with the previously
selected address reacts to the following mode commands until a new address is given.

Val = PM_endat22_setupCommand(

ENCODER_RECEIVE_COMMUNICATION_COMMAND,

0x0, // Address

0x0, // Instructions

0); // Zero

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com System Overview

19TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

PM_endat22_receiveData

Directions:

Function for unpacking and populating the EnDat data structure with the data received from encoder. This
function will be called when the data from encoder is available in the SPI data buffer and transferred to
rdata array of ENDAT_DATA_STRUCT. Upon the function call, received data is unpacked as per the
current command and unpacked results are stored accordingly.

NOTE: The format for transfer of position values varies in length depending on the encoder model.

The number of clock pulses required for transferring the position value (without mode, start,

error, or CRC bits) must be read from the encoder manufacturer’s memory area. This

information should be stored in endat22Data.position_clocks. Encoder transmits the position

value with LSB first. The values stored in endat22Data.position_hi and

endat22Data.position_lo; however, the values are already bit reversed and right justified.

This is applicable to all the commands that receive position information in both EnDat21 and

EnDat22 formats. For further details, see the Heidenhain documentation.

Definition:

void PM_endat22_receiveData (uint16_t command, uint16_t nAddData);

Parameters:

INPUT: —

command Mode command for the EnDat transfer done. This function
should be called with the same mode command that was used

to initiate the transfer.

nAddData Number of additional data enabled (0, 1 or 2 depending on the
number of additional data enabled or not)

RETURN: —

val If the incorrect command value is passed to this function it will
return zero. For all other cases, function returns a value of one.

Usage:

Example code:

Val = PM_endat22_setupCommand(SELECTION_OF_MEMORY_AREA, 0xA1, 0x5555, 0);

PM_endat22_startOperation();

while (endat22Data.dataReady != 1) {}

Val = PM_endat22_receiveData(SELECTION_OF_MEMORY_AREA, 0);

crc5_result1 = PM_endat22_getCrcNorm(endat22Data.address,endat22Data.data, table1);

Below are a few examples of how the PM_endat22_setupData function is used with various mode
commands. For further details, see the Heidenhain documentation.

• SELECTION_OF_MEMORY_AREA In order to send or read parameters, the memory area must first
be selected. This is done with the mode command, followed by a code for the memory area to be
selected: the MRS code. The encoder acknowledges the command.

Val = PM_endat22_receiveData(SELECTION_OF_MEMORY_AREA, 0); // No. of additional data – 0 for

EnDat21 commands

Unpacked data stored in EnDat data structure for this command:

endat22Data.address = MRS code

endat22Data.data = Any

endat22Data.data_crc = CRC for the received data

• ENCODER_SEND_PARAMETER This mode command is required for reading parameters of the
encoder. The command is read from the memory area that was last selected as being valid. The
encoder acknowledges the command.

Val = PM_endat22_receiveData(ENCODER_SEND_PARAMETER, 0); // No. of additional data – 0 for

EnDat21 commands

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A
https://www.heidenhain.de/de_EN/
https://www.heidenhain.de/de_EN/

System Overview www.ti.com

20 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

Unpacked data stored in EnDat data structure for this command:

endat22Data.address = Address Acknowledgment

endat22Data.data = Parameters

endat22Data.data_crc = CRC for the received data

• ENCODER_RECEIVE_PARAMETER This mode command is required for writing parameters of the
encoder. The command is written to the memory area that was last selected as being valid. The
encoder acknowledges the command.

Val = PM_endat22_receiveData(ENCODER_SEND_PARAMETER, 0); // No. of additional data – 0 for

EnDat21 commands

Unpacked data stored in EnDat data structure for this command:

endat22Data.address = Address Acknowledgment

endat22Data.data = Parameter Acknowledgment

endat22Data.data_crc = CRC for the received data

• ENCODER_RECEIVE_RESET This mode command is required for executing encoder reset.

Val = PM_endat22_receiveData(ENCODER_RECEIVE_RESET, 0); // No. of additional data – 0 for

EnDat21 commands

Unpacked data stored in EnDat data structure for this command:

endat22Data.address = Any

endat22Data.data = Any

endat22Data.data_crc = CRC for the received data

• ENCODER_SEND_POSITION_VALUES The following mode command requests position values
without additional data.

Val = PM_endat22_receiveData(ENCODER_SEND_POSITION_VALUES, 0); // No. of additional data – 0 for

EnDat21 commands

Unpacked data stored in EnDat data structure for this command:

endat22Data.address = Higher 32 bits of position

endat22Data.data = Lower 32 bits of position

endat22Data.data_crc = CRC for the received position data

• ENCODER_RECEIVE_TEST_COMMAND This command is used as first step in interrogating the test
values. The encoder receive test command sent along with the port address will to be interrogated for
test values.

Val = PM_endat22_receiveData(ENCODER_RECEIVE_TEST_COMMAND, 0); // No. of additional data – 0 for

EnDat21 commands

Unpacked data stored in EnDat data structure for this command:

endat22Data.address = Port address acknowledgment

endat22Data.data = Any

endat22Data.data_crc = CRC for the received data

• ENCODER_SEND_TEST_VALUES The following mode is necessary to interrogate test values.

Val = PM_endat22_receiveData(ENCODER_SEND_TEST_VALUES, 0); // No. of additional data – 0 for

EnDat21 commands

Unpacked data stored in EnDat data structure for this command:

endat22Data.address = Higher 8 bits of test data

endat22Data.data = Lower 32 bits of test data

endat22Data.data_crc = CRC for the received test data

NOTE: Test values transmitted by the encoder are always 40 bits.

• ENCODER_SEND_POSITION_VALUES_WITH_ADDITIONAL_DATA This mode command can be
used to request additional data, such as diagnostic values, commutating values, acceleration values,
and so on. See the encoder specifications to determine which additional data are supported by the
encoder. This information is also saved in the encoder memory for parameters according to EnDat 2.2
(word 0 and word 1).

Val = PM_endat22_receiveData(ENCODER_SEND_POSITION_VALUES_WITH_ADDITIONAL_DATA, 0); // No. of

additional data (0, 1 or 2 depending on no.of additional data enabled)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com System Overview

21TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

Unpacked data stored in EnDat data structure for this command:

endat22Data.address = Higher 8 bits of test data

endat22Data.data = Lower 32 bits of test data

endat22Data.data_crc = CRC for the received position data

endat22Data.additional_data1 = Additional data 1 endat22Data.additional_data1_crc = CRC for

additional data 1 endat22Data.additional_data2 = Additional data 2

endat22Data.additional_data2_crc = CRC for additional data 2

• ENCODER_SEND_POSITION_VALUES_AND_SELECTION_OF_THE_MEMORY_A REA This mode
command is necessary in order to request a position value and to select the memory area or block
address in the same cycle.

Val = PM_endat22_receiveData(ENCODER_SEND_POSITION_VALUES_AND_SELECTION_OF_THE_MEMORY_AREA, 0);

// No. of additional data (0, 1 or 2 depending on no.of additional data enabled)

Unpacked data stored in EnDat data structure for this command:

endat22Data.position_hi = Higher 32 bits of position

endat22Data.position_lo = Lower 32 bits of position

endat22Data.data_crc = CRC for the received position data endat22Data.additional_data1 =

Additional data 1 endat22Data.additional_data1_crc = CRC for additional data 1

endat22Data.additional_data2 = Additional data 2 endat22Data.additional_data2_crc = CRC for

additional data 2

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_PARAMETER This mode command is
necessary in order to request a position value and write parameters in the same cycle.

Val = PM_endat22_receiveData(ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_PARAMETER, 0); // No. of

additional data (0, 1 or 2 depending on no.of additional data enabled)

Unpacked data stored in EnDat data structure for this command:

endat22Data.position_hi = Higher 32 bits of position

endat22Data.position_lo = Lower 32 bits of position

endat22Data.data_crc = CRC for the received position data endat22Data.additional_data1 =

Additional data 1 endat22Data.additional_data1_crc = CRC for additional data 1

endat22Data.additional_data2 = Additional data 2 endat22Data.additional_data2_crc = CRC for

additional data 2

• ENCODER_SEND_POSITION_VALUES_AND_SEND_PARAMETER This mode command is
necessary if the user wants to request a position value and in the same cycle send parameters
necessary for read access.

Val = PM_endat22_receiveData(ENCODER_SEND_POSITION_VALUES_AND_SEND_PARAMETER, 0); // No. of

additional data (0, 1 or 2 depending on no.of additional data enabled)

Unpacked data stored in EnDat data structure for this command:

endat22Data.position_hi = Higher 32 bits of position

endat22Data.position_lo = Lower 32 bits of position

endat22Data.data_crc = CRC for the received position data endat22Data.additional_data1 =

Additional data 1 endat22Data.additional_data1_crc = CRC for additional data 1

endat22Data.additional_data2 = Additional data 2 endat22Data.additional_data2_crc = CRC for

additional data 2

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_TEST_COMMAND This mode command is
necessary in order to request position values and write a test command in the same cycle.

Val = PM_endat22_receiveData(ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_TEST_COMMAND, 0); // No.

of additional data (0, 1 or 2 depending on no.of additional data enabled)

Unpacked data stored in EnDat data structure for this command:

endat22Data.position_hi = Higher 32 bits of position

endat22Data.position_lo = Lower 32 bits of position

endat22Data.data_crc = CRC for the received position data endat22Data.additional_data1 =

Additional data 1 endat22Data.additional_data1_crc = CRC for additional data 1

endat22Data.additional_data2 = Additional data 2 endat22Data.additional_data2_crc = CRC for

additional data 2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

System Overview www.ti.com

22 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

• ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_ERROR_RESET This mode command is
necessary in order to request position values and reset errors in the same cycle.

Val = PM_endat22_receiveData(ENCODER_SEND_POSITION_VALUES_AND_RECEIVE_ERROR_RESET, 0); // No. of

additional data (0, 1 or 2 depending on no.of additional data enabled)

Unpacked data stored in EnDat data structure for this command:

endat22Data.position_hi = Higher 32 bits of position

endat22Data.position_lo = Lower 32 bits of position

endat22Data.data_crc = CRC for the received position data endat22Data.additional_data1 =

Additional data 1 endat22Data.additional_data1_crc = CRC for additional data 1

endat22Data.additional_data2 = Additional data 2 endat22Data.additional_data2_crc = CRC for

additional data 2

• ENCODER_RECEIVE_COMMUNICATION_COMMAND This mode command is necessary to send
communication data. After the address has been assigned with the Write parameters mode command,
all other mode commands for data exchange can be used. Only the encoder with the previously
selected address reacts to the following mode commands until a new address is given.

Val = PM_endat22_receiveData(ENCODER_RECEIVE_COMMUNICATION_COMMAND, 0); // Zero

Unpacked data stored in EnDat data structure for this command:

endat22Data.position_hi = Address Acknowledgment

endat22Data.position_lo = Instructions Acknowledgment

endat22Data.data_crc = CRC for the received data

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com System Overview

23TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

PM_endat22_startOperation

Directions:

This function initiates the EnDat transfer. This function should only be called after
PM_endat22_setupCommand. Hence the PM_endat22_startOperation function kick starts the EnDat
transaction that was setup earlier by PM_endat22_setupCommand. Note that the setup up and start
operation are separate function calls. User can setup the EnDat transfer when required and start the
actual transfer using this function call, as necessary, at a different time.

Definition:

void PM_endat22_startOperation(void);

Parameters:

INPUT: —

— None

RETURN : —

— None

Usage:

Example code:

Val = PM_endat22_setupCommand(SELECTION_OF_MEMORY_AREA, 0xA1, 0x5555, 0);

PM_endat22_startOperation();

while (endat22Data.dataReady != 1) {}

Val = PM_endat22_receiveData(SELECTION_OF_MEMORY_AREA, 0);

crc5_result1 = PM_endat22_getCrcNorm(endat22Data.address, endat22Data.data, table1);

This function clears the endat22Data.dataReady flag zero when called. This flag should subsequently be
set by the SPI interrupt service routine when the data is received from the encoder. This flag can be polled
to know if the data from the encoder is successfully received after the PM_endat22_startOperation
function call.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

System Overview www.ti.com

24 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

PM_endat22_setupPeriph

Directions:

Setup for SPI, CLB, and other interconnect XBARs for EnDat are performed with this function during
system initialization. This function must be called after every system reset. No EnDat transactions will be
performed until the setup peripheral function is called.

Definition:

void PM_endat22_setupPeriph (void);

Parameters:

INPUT: —

— None

RETURN: —

— None

Usage:

Example code:

endat22Data.spi = &SpibRegs PM_endat22_setupPeriph();

This function clears the endat22Data.dataReady flag zero when called. This flag should subsequently be
set by the SPI Interrupt service routine when the data is received from the encoder. This flag can be
polled to know if the data from the encoder is successfully received after the PM_endat22_startOperation
function call.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com System Overview

25TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

PM_endat22_setFreq

Directions:

Function to set the EnDat clock frequency. EnDat transfers typically start with low frequency during
initialization and switch to higher frequency during runtime.

Typical frequencies used during initialization and runtime:

• Used during initialization (approximately 200 KHz)

• Used during application (approximately 8 MHz) C2000 EnDat implementation currently supports 8 MHz
only, irrespective of cable length.

Definition:

void PM_endat22_setFreq(uint32_t Freq_us);

Endat Clock Frequency = SYSCLK/(4* Freq_us;

Parameters:

INPUT: —

Freq_us A clock divider for the system clock sets EnDat Clock Frequency
= SYSCLK/(4* Freq_us)

RETURN: —

— None

Usage:

Example code:

endat22Data.spi = &SpibRegs PM_endat22_setupPeriph();

This function clears the endat22Data.dataReady flag zero when called. This flag should subsequently be
set by the SPI interrupt service routine when the data is received from the encoder. This flag can be polled
to know if the data from the encoder is successfully received after the PM_endat22_startOperation
function call.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

System Overview www.ti.com

26 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

PM_endat22_getDelayCompVal

Directions:

This function is used while performing delay compensation when long cables are used. This function
returns the measured delay from rising edge of EnDat clock to the start bit received. Refer to examples
provided on usage and performing delay compensation. Refer to EnDat documentation from Heidenhain
for cable delays and propagation requirements.

Definition:

uint16_t PM_endat22_getDelayCompVal(void);

Parameters:

INPUT: —

— None

RETURN: —

delay Delay value to be set for endat22Data.delay_comp parameter

Usage:

Example code:

//during initialization and delay compensation delay = PM_endat22_getDelayCompVal();

endat22Data.delay_comp = delay;

NOTE: Propagation delay should be measured using this function multiple times and the average

value must be updated into endat22Data.delay_comp field before switching to higher-

frequency operation. For delay compensation, see the TI provided examples on usage of this

function.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

Set J9 WR�³0DVWHU´

Supply 5-V DC and
GND to J6

Set J5 WR�³([WHUQDO´

www.ti.com Hardware, Software, Testing Requirements, and Test Results

27TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

3 Hardware, Software, Testing Requirements, and Test Results

3.1 Required Hardware and Software

3.1.1 Hardware

This section describes the hardware specifics of TIDM-1008 and how to get started with the EnDat22
Library in CCS.

To experiment with TIDM-1008, the following components are required:

• TIDM-1008 EVB

• External 5-V DC power supply (refer to key system specifications in Table 1)

• F28379D LaunchPad development kit (LAUNCHXL-F28379D)

• USB-B to A cable

• EnDat 2.2 encoder from Heidenhain (for example, ROC425 or ROC437)

• EnDat22 8-pin cable from Heidenhain—length as required by the application (maximum 100m)

• Custom adapter to connect HeidenhainCircular 8-position female terminated cable to wire leads
adapter

• PC with CCS (CCSv6 or greater) installed

3.1.1.1 TIDM-1008 Jumper Configuration

Figure 5 shows the jumper configuration for TIDM-1008.

Figure 5. TIDM-1008 Board Jumper Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

Hardware, Software, Testing Requirements, and Test Results www.ti.com

28 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

Table 7 lists the jumper configuration for the TIDM-1008 board.

(1) This configuration requires providing an external power source to J6 as shown in Figure 5.
(2) This jumper is for a future reference design.

Table 7. TIDM-1008 Board Jumper Details

JUMPER FUNCTION POSITION

J5 TIDM-1008 5-V power plane source
selection

External (1)

J9 Abs-Enc-1 master slave mode selection Master (2)

J11 Sine-Cosine encoder A signal enable Open

J12 Sine-Cosine encoder B signal enable Open[3]

J13 Sine-Cosine encoder index signal enable Open[3]

3.1.2 Software

This section describes how to configure the software environment for the F28379D LaunchPad.

3.1.2.1 Installing Code Composer Studio™ and controlSUITE™

1. Install CCS v6.x or later if it is not already on the PC.

2. Go to http://www.ti.com/controlsuite and run the controlSUITE™ installer. Allow the installer to
download and update any automatically checked software for C2000.

3. After installation, refer to Section 2.3.3 for more information on the EnDat22 Library.

3.1.2.2 Configure CCS for F28379D LaunchPad™

1. Open CCS. Note that this document assumes that version 6 or later is used.

2. Once CCS opens, the workspace launcher may appear that would ask to select a workspace location.
Note that workspace is a location on the hard drive where all the user settings for the IDE (which
projects are open), what configuration is selected, and so forth are saved. This workspace can be
anywhere on the disk, the location mentioned below is just for reference. Note that if this is not the
first-time running CCS, the dialog below may not appear.

a. Click the Browse… button.

b. Create the following path by making new folders as necessary:

C:\c2000 projects\CCSv6_workspaces\PM_endat22_eval_workspace

c. Uncheck the box that says Use this as the default and do not ask again.

d. Click OK.

3. A Getting Started tab will open with links to various tasks from creating a new project, importing an
existing project, and watching a tutorial on CCS. User can close the Getting Started Tab, and go to
next step.

4. CCS is configured in order to know which MCU the program will be connecting to. This configuration is
done by setting up the Target Configuration.

5. A new configuration file can be set by clicking View → Target Configuration. This procedure will open

the Target Configuration window. In this window, click on the icon. Give a name to the new
configuration file depending on the target device. If Use shared location checkbox is checked then this
configuration file can be stored in a common location by CCS for use by other projects as well. Then,
click Finish.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A
http://www.ti.com/tool/CCSTUDIO
http://www.ti.com/controlsuite

www.ti.com Hardware, Software, Testing Requirements, and Test Results

29TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

6. This step should open up a new tab as shown in Figure 6. Select and enter the following options:

a. Connection— Texas Instruments XDS100v2 USB Emulator or Texas Instruments XDS100v2 USB
Debug Probe

b. Device—the C2000 MCU on the control card, TMS320F28379D, for example

c. Click Save and close.

Figure 6. Configuring a New Target Configuration

7. Click View → Target Configurations. In the User Defined section, find the file that was created in steps
6 and 7. Right-click on this file, and select Set as Default. To use the configuration file supplied with
the project, click View → Target Configurations, expand Projects →
PM_endat22_BasicPosAcc_DelComp, and right-click on the xds100v2_F2837x.ccxml and Set as
Default files. This tab also allows the user to reuse the existing target configurations and links them to
specific projects.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

Hardware, Software, Testing Requirements, and Test Results www.ti.com

30 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

3.1.2.3 Configuring the TIDM-1008 Example Project

1. Add the PM EnDat22 evaluation example project into the current workspace by clicking Project →
Import CCS Project.

a. Select the project by browsing to:

C:\ti\controlSUITE\development_kits\BOOSTXL_POSMGR

b. Something similar to Figure 7 import will appear, and click Finish.

Figure 7. Adding PM EndDat22 Example Project to Workspace

NOTE: By default, CCS will not copy the project into the workspace. Any changes made to files

within CCS will thus be reflected in the files stored in the controlSUITE installation. If desired

to preserve the original files stored in controlSUITE, check the box Copy projects into

workspace, as seen in Figure 7.

2. Assuming this is the first time using CCS, the xds100v2-F2837x should have been set as the default
target configuration. Verify this by viewing the xds100v2-f2837x.ccxml file in the expanded project
structure and an Active or Default status written next to file. By going to View → Target Configurations,
the user can edit existing target configurations or change the default or active configuration. The user
can also link a target configuration to a project in the workspace by right-clicking on the target
configuration name and selecting Link to Project.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com Hardware, Software, Testing Requirements, and Test Results

31TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

3. The project can be configured to create code and run in either Flash or RAM. Either of the two can be
selected, however, RAM configuration is used most of the time for lab experiments and Flash
configuration for production. As shown in Figure 8, right-click on an individual project and select Active
Build Configuration → CPU1_RAM configuration.

Figure 8. Selecting F2837x_RAM Configuration

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

Hardware, Software, Testing Requirements, and Test Results www.ti.com

32 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

3.2 Testing and Results

3.2.1 Test Setup

3.2.1.1 Hardware Configuration

1. Ensure that the jumper configuration of TIDM-1008 is as described in Table 7.

2. Connect TIDM-1008 to the LaunchPad using the BoosterPack connector (J1-J3 and J4-J2). Make sure
TIDM-1008 is connected to site two of the LaunchPad as shown in Figure 9.

Figure 9. TIDM-1008 Board Connected to Site Two of LaunchPad™

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

J7

6

4

2

8

5

3

1

7 +5 V-Enc

NC

NC

GND

DATA-

DATA+

CLK-

CLK+

www.ti.com Hardware, Software, Testing Requirements, and Test Results

33TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

3. Connect the USB cable to the LaunchPad.

4. Connection to the encoder:

a. Prepare an adapter to connect the Heidenhain cable to the IDDK EnDat interface using the circular
8-position female to wire leads adapter (refer to the BOM for the header used for the encoder
connector—J7). Refer to Figure 10.

Figure 10. Adapter to Connect Heidenhain Cable to TIDM-1008 Board

b. Insert the header of the adaptor created in the previous step to connect to Abs-Enc-1 (J7). The
female end of the Heidenhain cable connect to the encoder. The pinout of J7 is shown Figure 11.

Figure 11. Abs-Enc-1 (J7) Pinout on TIDM-1008 Board

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

Hardware, Software, Testing Requirements, and Test Results www.ti.com

34 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

5. Supply 5-V DC and GND to J6 as shown in Figure 5. The board should now look like Figure 12. LED
D18 should light, which shows that the board has power.

Figure 12. TIDM-1008 Board Powered on and Connected to Heidenehain Encoder

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

Cinit_0

Initialize Modules-
EnDat_Init

x� Initialize and Configure CLB
x� Setup GPIO
x� Setup XBAR
x� Initialize SPI
x� Perform Encoder Reset

Read number of Clock pulses for shifting out
position information

Run Command Set

x� EnDat21 Command Set
x� EnDat22 Command Set, if enabled

EnDat_initDelayComp

x� Cable Propagation Delay Compensation
x� Switch to higher freq. of EnDat Clk

Back Ground Loop

x� Read Position Values (and additional data
for EnDat22) continuously

SPI INT

x� (EnDat Transaction) -
Copy SPIRXFIO to EnDat
Data Structure data

www.ti.com Hardware, Software, Testing Requirements, and Test Results

35TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

3.2.2 Test Results

This section will describe how to run the software example and detail the results in CCS. The software
flow diagram for this project is shown in Figure 13.

Figure 13. Software Flow Diagram for Example Project PM_endat22_BasicPosAcc_DelComp

3.2.2.1 Build and Load Project

1. Complete the software setup as described in Section 3.1.2 .

2. Open the endat.h file and make sure that ENDAT_RUNTIME_FREQ_DIVIDER and
ENDAT_INIT_FREQ_DIVIDER are set as necessary. Save this file. For more information refer to
Section 4.2 of Position Manager EnDat22 Library Module.

Right-click on the project name and select Rebuild Project, and watch the console window. Any errors
in the project will be displayed in the console window.

3. Right-click on the project name and select Rebuild Project,and watch the console window.

4. Upon successful completion of the build, click the Debug button on the top-left of the CCS window.
If a window appears prompting to select a CPU, make sure CPU1 is selected, and click OK.

5. The IDE will automatically connect to the target, load the output file into the device, and change to the
debug perspective.

6. Click the Tools → Debugger Options → Program / Memory Load Options. The debugger can be
enabled to reset the processor each time the debugtger reloads the program by checking Reset the
target on program load or restart, and click Remember My Settings to make this setting permanent.

7. Click on the Enable silicon real-time mode button , which autoselects the Enable polite real-time

mode button . This button allows the user to edit and view variables in real time.

8. Select YES to enable debug events, if a message box appears. This action will set bit 1 (DGBM bit) of
the status register 1 (ST1) to a 0. The DGBM is the debug enable mask bit. When the DGBM bit is set

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

Hardware, Software, Testing Requirements, and Test Results www.ti.com

36 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

to 0, memory and register values can be passed to the host processor for updating the debugger
windows.

NOTE: Do not reset the CPU without first disabling these real-time options

3.2.2.2 Using Watch Window

1. The best way to import all of the useful variables in the example is by right-clicking in the expressions
window and then clicking Import. Browse to the .txt file containing these variables.

2. For this project, browse to the root directory and select Pm_endat22_BasicPosAcc_DelComp_VAR.txt,
and click OK to import the variables as shown in Figure 14.

3. Click View → Expressions on the menu bar to open a watch window to view the variables being used
in the project. Additional variables can be added to the watch window as shown if desired.

Figure 14. Properly Configured Watch Window

4. Each variable uses the number format that the variable is associated with during declaration. The
variable can be changed to another number format right-clicking on it. Figure 14 shows a typical
expressions window.

5. Click on the Continuous Refresh button in the watch window. This enables the window to run with
real-time mode. By clicking the down arrow in this watch window, the user can select Customize
Continuous Refresh Interval and edit the refresh rate of the watch window.

NOTE: Choosing too fast of an interval may adversely effect performance.

3.2.2.3 Run the Example Code

1. Run the code by pressing the Runbutton in the Debug tab.

2. The project should run and the values in the watch window should continuously update. If the encoder
is not mounted on a spinning motor, the user can manually rotate the encoder shaft and observe the
variables change accordingly:

a. As the encoder sends the position information, observe the same in the watch window as
endat22Data.position_hi, endat22Data.position_lo variables.

b. The variable endat22Data.position_hi would only change if the encoder sends more than 32 bits of
position information.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

www.ti.com Hardware, Software, Testing Requirements, and Test Results

37TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

3. Once complete, reset the processor (Run → Reset → CPU Reset) and terminate the debug

session by clicking (Run → Terminate) . This action halts the program and disconnects CCS from
the MCU.

3.2.2.4 Cable Length Validation

Table 8 lists tests with various types of encoders; cable length tests are performed at Heidenhain Labs.
Tests include basic command set exercising and reading position values with additional data if applicable.

(1) Cable lengths up to 100m have also been tested with some of the encoders. Users can deploy longer cable lengths, perform
delay compensation, switch to higher EnDat clock frequencies and perform tests.

Table 8. Cable Length Test Report

ENCODER NAME TYPE RESOLUTION
(BITS)

CABLE LENGTH (1)

(m)
MAX EnDat

CLOCK (MHz)
TEST RESULTS

ROC425 Rotary 25 70 8 Pass

LC415 Linear 35 70 8 Pass

RCN8310 Rotary 29 70 8 Pass

ROQ437 Multi-turn 25, 12 (Turns) 70 8 Pass

LIC211 Linear 32 70 8 Pass

ROC413 Rotary 13 70 8 Pass

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

Design Files www.ti.com

38 TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™
MCUs

4 Design Files

To download the design files, see the product page TIDM-1008 .

5 Software Files

Refer to Section 3.1.2.3.

6 Related Documentation

1. Texas Instruments, Position Manager EnDat22 Library Module , User's Guide (SPRUI35)

2. EnDat 2.2 – Bidirectional Interface for Position Encoders, Heidenhain EnDat 2.2 Documentation

3. Texas Instruments, C2000 DesignDRIVE, Software for Industrial Drives and Motor Control

4. Texas Instruments, C2000 Position Manager SinCos Library , User's Guide (SPRUI54)

6.1 Trademarks

C2000, BoosterPack, LaunchPad, E2E, Delfino, controlSUITE are trademarks of Texas Instruments
Incorporated.
HEIDENHAIN is a trademark of DR. JOHANNES HEIDENHAIN GmbH.
All other trademarks are the property of their respective owners.

7 Terminology

TYPE DESCRIPTION

C28x Refers to devices with the C28x CPU core

CLB Configurable logic block

Position Manager
BoosterPack

Future EVM for interfacing with various position encoders. The TIDM-1008 board is identical to the
Position Manager BoosterPack EVM (refer to Section 2.3.1)

CRC Cyclic redundancy check

EnDat22 2.2 version of EnDat position encoder interface protocol by Heidenhain

EnDat21 2.1 version of EnDat position encoder interface protocol by Heidenhain

PM Position Manager—foundational hardware and software on C28x devices for position encoder
interfaces

PM_endat22 Prefix used for all the library functions

SPI Serial peripheral interface

8 About the Author

SUBRAHMANYA BHARATHI AKONDY has worked on architecture definition and design of several
C2000 MCU products and control peripherals. His interests include MCU architecture, applications, and
design aspects.

WILLIAM STEVERS has worked on the Industrial Drives Systems team of the C2000 MCU group for
several summers—first in Application Engineering role and more recently in a Systems Engineering role.
William is currently completing a Master's degree in Electrical Engineering at Michigan State University.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A
http://www.ti.com/tool/TIDM-001008
http://www.ti.com/lit/pdf/SPRUI35
https://www.heidenhain.de/fileadmin/pdb/media/img/383942-27_EnDat_2-2_en.pdf
http://www.ti.com/tool/designdrive
http://www.ti.com/lit/pdf/SPRUI54
https://www.heidenhain.de/de_EN/
https://www.heidenhain.de/de_EN/

www.ti.com Revision History

39TIDUDE3A–September 2017–Revised April 2018
Submit Documentation Feedback

Copyright © 2017–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (September 2017) to A Revision ... Page

• Changed part number TLV70233 to TLV702.. 1

• Changed part number TPS22918 to TPS22918-Q1.. 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDUDE3A

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.

TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	EnDat 2.2 Absolute Encoder Master Interface Reference Design for C2000™ MCUs
	1 System Description
	1.1 Key System Specifications

	2 System Overview
	2.1 Block Diagram
	2.2 Highlighted Products
	2.2.1 LAUNCHXL-F28379D
	2.2.2 SN65HVD78
	2.2.3 TLV702
	2.2.4 TPS22918-Q1

	2.3 Design Considerations
	2.3.1 TIDM-1008 Board Implementation
	2.3.2 PM EnDat22 Master Details
	2.3.3 PM EnDat22 Software Library
	2.3.3.1 PM EnDat22 Library Commands
	2.3.3.2 PM EnDat22 Library Functions
	2.3.3.3 PM EnDat22 Library Data Structures
	2.3.3.4  PM EnDat22 Library Function Details

	3 Hardware, Software, Testing Requirements, and Test Results
	3.1 Required Hardware and Software
	3.1.1 Hardware
	3.1.1.1 TIDM-1008 Jumper Configuration

	3.1.2 Software
	3.1.2.1 Installing Code Composer Studio™ and controlSUITE™
	3.1.2.2 Configure CCS for F28379D LaunchPad™
	3.1.2.3 Configuring the TIDM-1008 Example Project

	3.2 Testing and Results
	3.2.1 Test Setup
	3.2.1.1 Hardware Configuration

	3.2.2 Test Results
	3.2.2.1 Build and Load Project
	3.2.2.2 Using Watch Window
	3.2.2.3 Run the Example Code
	3.2.2.4 Cable Length Validation

	4 Design Files
	5 Software Files
	6 Related Documentation
	6.1 Trademarks

	7 Terminology
	8 About the Author

	Revision History
	Important Notice

