

S5-R2000D40

S5 Shock Sensor

Aluminum 7075 Piezoresistive Accelerometer: ± 2,000g Digital Capacitive Accelerometer: ± 40g

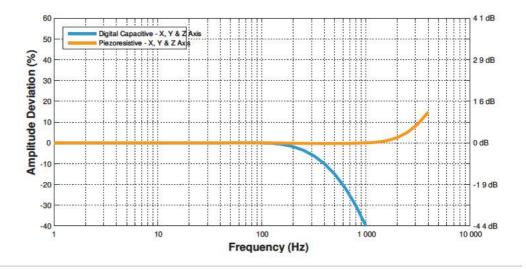
Battery: 850 mAh Storage: 8 GB

S5-R2000D40

The S5-R2000D40 is a shock recorder with a high performance piezoresistive accelerometer, a secondary capacitive accelerometer and other environmental sensors. This model, with its wide measurement range of 2,000g is very popular for shock testing. Its aluminum enclosure improves reliability in harsh environments and widens its frequency response. The S5 offers a larger battery to allow for the longest recording times of our sensors.

Product Features

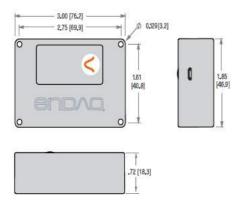
- Convenient, Configurable, and Reliable Learn More
- Standalone Measurement System Embedded sensors, storage & power
- Selectable High-Performance Accelerometers
 Var ab e capac tance, p ezoe ectr c & p ezores st ve
 Se ectab e measurement range from 16g to 2,000g
 Se ectab e samp ng rate up to 20,000 samp es per second
- Up to 4 Billion Data Points of Memory
- Embedded Sensor Suite
 Gyroscope, magnetometer, pressure, temperature, hum d ty & ght


- Triggering from Sensors and/or Time-Based
- Rechargeable Battery Life of Over 4 Hours Continuous Can operate with external power
- Simple USB Interface for Download & Charging
- NIST Traceable Calibration
- Trusted by Over 1,500 Different Commercial Customers

Accelerometer Specifications

Accelerometer Type	Range	Sampling Rate	Bandwidth	Noise	Resolution
P ezores st ve	± 2,000g	20,000 Hz	0 to 2,000 Hz	< 1.6 gRMS	0.06 g
D g ta Capac t ve	± 40g	4,000 Hz	0 to 300 Hz	< 0.01 gRMS	0.00008 g

Frequency Response Plot

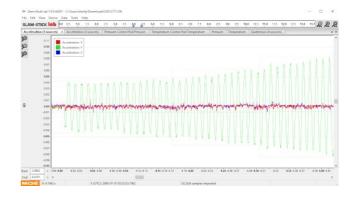


Battery & Storage Performance

Battery performance is heavily dependent upon the device configuration (sensor sample rates and triggers), battery age (including charging cycles), and temperature. The following table provides the battery life and storage capacity of this device assuming it has a relatively new battery and it is at room temperature. When showing performance it assumes all sensors are on at the default sample rate with the main accelerometer sample rate driving performance. With triggers, it assumes the device is in trigger mode 99% of the time. Here are some additional resources: Setting Sensor Configuration, Battery Specifications, Battery Life Estimator Tool.

Sample Rate	Storage Capacity	Continuous Recording	Main Accel. Trigger	2nd Accel. Trigger	Periodic/Time Trigger
100 Hz	22 days	37 hours	44 hours	7 days	153 days
1,000 Hz	9 days	37 hours	44 hours	7 days	146 days
5,000 Hz	3 days	30 hours	44 hours	7 days	129 days
20,000 Hz	17 hours	17 hours	44 hours	7 days	68 days

Dimensions


Mechanical Specifications

Mass	100 grams
Case Mater a	A um num 7075
Mount ng - Screw	4-40 Bo ts (100 n-oz)
Mount ng - Tape (Doub e S ded)	3M 950 Tape
Length	76.2 mm (3.00")
W dth	47.0 mm (1.85")
Th ckness	18.3 mm (0.72")
Ingress Protect on	IP 50 (Dust Protected)

Free Software Features

- Free Standalone Software Packages <u>Lab</u> Configuration, Quick Snapshot, Batch File Conversion <u>Analyzer</u> Analysis of enDAQ Sensor Data in MATLAB
- Configure Sensors for Measurement
- Export/Convert Data to CSV or MATLAB
- Analysis FFT PSD Spectogram Digital Filtering

