

Typical Applications

The HMC523LC4 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- Military End-Use

Functional Diagram

HMC523LC4

GaAs MMIC I/Q MIXER 15 - 23 GHz

Features

Wide IF Bandwidth: DC - 3.5 GHz Image Rejection: 25 dB LO to RF Isolation: 47 dB High Input IP3: +25 dBm 24 Lead 4x4mm SMT Package: 16mm²

General Description

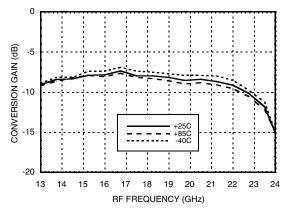
The HMC523LC4 is a compact general purpose I/Q MMIC mixer in a leadless RoHS compliant SMT package, which can be used as either an Image Reject Mixer or a Single Sideband Upconverter. The mixer utilizes two standard Hittite double balanced mixer cells and a 90 degree hybrid fabricated in a GaAs MESFET process. A low frequency quadrature hybrid was used to produce a 100 MHz USB IF output. This product is a much smaller alternative to hybrid style Image Reject Mixers and Single Sideband Upconverter assemblies. The HMC523LC4 eliminates the need for wire bonding allowing use of surface mount manufacturing techniques.

Electrical Specifications, T_A = +25 °C, IF= 100 MHz, LO = +17 dBm*

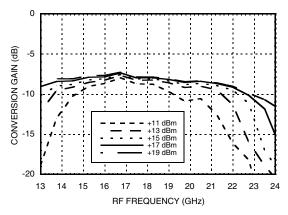
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF/LO	15 - 21		21 - 23			GHz	
Frequency Range, IF		DC - 3.5			DC - 3.5		GHz
Conversion Loss (As IRM)		8	10		10	13	dB
Image Rejection	19	25		19	25		dB
1 dB Compression (Input)		+15			+18		dBm
LO to RF Isolation	40	47		40	45		dB
LO to IF Isolation	17	22		17	22		dB
IP3 (Input)		+25			+20		dBm
Amplitude Balance		0.3			0.3		dB
Phase Balance		4			4		Deg

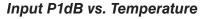
* Unless otherwise noted, all measurements performed as downconverter.

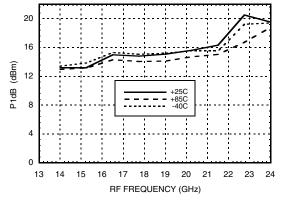
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

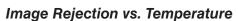

HMC523LC4

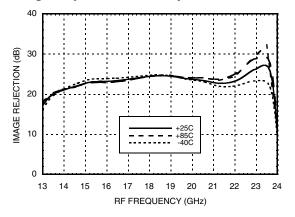
15 - 23 GHz

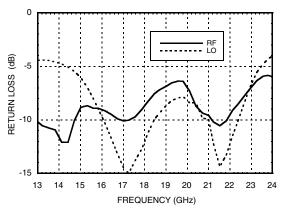

GaAs MMIC I/Q MIXER

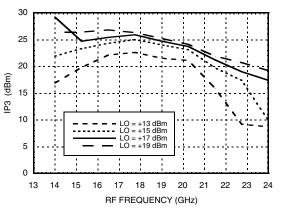

Data Taken As IRM With External IF Hybrid


Conversion Gain vs. Temperature




Conversion Gain vs. LO Drive



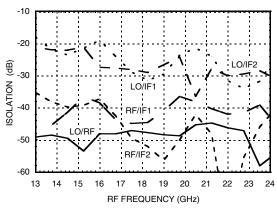


Return Loss

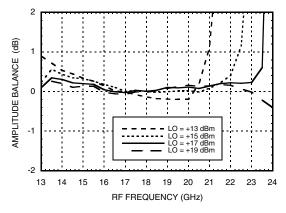
Input IP3 vs. LO Drive

MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT

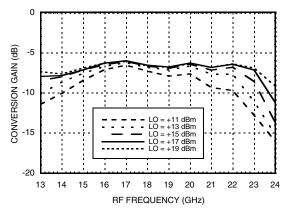
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

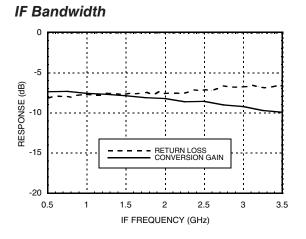

HMC523LC4

GaAs MMIC I/Q MIXER 15 - 23 GHz

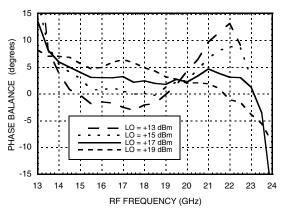

ROHS V

Quadrature Channel Data Taken Without IF Hybrid

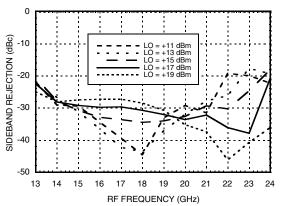

Isolations



Amplitude Balance vs. LO Drive



Upconverter Performance Conversion Gain vs. LO Drive



Phase Balance vs. LO Drive

Upconverter Performance Sideband Rejection vs. LO Drive

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

RoHS√

GaAs MMIC I/Q MIXER 15 - 23 GHz

HMC523LC4

Harmonics of LO

	nLO Spur at RF Port			
LO Freq. (GHz)	1	2		
15.5	47	51		
17	49	56		
18.5	50	63		
20	47	73		
21.5	50	72		
23 53 71				
LO = + 15 dBm Values in dBc below input LO level measured at RF Port.				

d at RF Port.

MxN Spurious Outputs

	nLO				
mRF	0	1	2	3	4
0	xx	-9	29	xx	хх
1	34	0	46	61	xx
2	87	65	82	62	87
3	xx	87	92	86	90
4	xx	xx	84	92	92

RF = 17.6 GHz @ -10 dBm

LO = 17.5 GHz @ +15 dBm

Data taken without IF hybrid

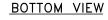
All values in dBc below IF power level

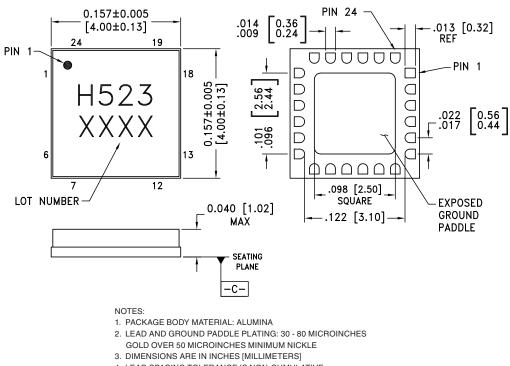
ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Absolute Maximum Ratings

RF / IF Input	+20 dBm
LO Drive	+ 27 dBm
Channel Temperature	150°C
Continuous Pdiss (T=85°C) (derate 5.22 mW/°C above 85°C)	340 mW
Thermal Resistance (R _{TH}) (junction to package bottom)	191.5 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 1A

HMC523LC4


15 - 23 GHz


GaAs MMIC I/Q MIXER

v03.0514

Outline Drawing

- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC523LC4	Alumina, White	Gold over Nickel	MSL3 ^[1]	H523 XXXX

[1] Max peak reflow temperature of 260 °C

[2] 4-Digit lot number XXXX

HMC523LC4

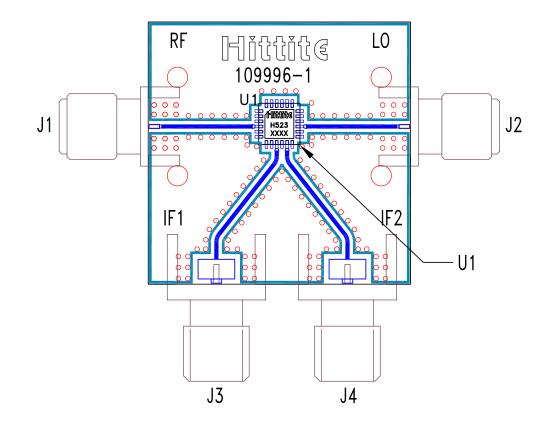
v03.0514

GaAs MMIC I/Q MIXER 15 - 23 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 6 - 8, 10, 13, 17 - 24	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
3, 5, 12, 14, 16	GND	These pins and package bottom must be connected to RF/DC ground.	
4	RF	This pin is AC coupled and matched to 50 Ohms from 15 to 23 GHz.	
9	IF1	This pin is DC coupled. For applications not requiring operation to DC, this port should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF	
11	IF2	frequency range. For operation to DC, this pin must not source/sink more than 3mA of current or part non-function and possible part failure will result.	
15	LO	This pin is AC coupled and matched to 50 Ohms from 15 to 23 GHz.	

MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT



HMC523LC4

v03.0514

GaAs MMIC I/Q MIXER 15 - 23 GHz

List of Materials for Evaluation PCB 109998 [1]

Item	Description
J1, J2	PCB Mount K RF Connector, SRI
J3 - J4	PCB Mount SMA Connector, Johnson
U1	HMC523LC4
PCB [2]	109996 Evaluation Board

Reference this number when ordering complete evaluation PCB
Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

RoHS√

v03.0514

HMC523LC4

GaAs MMIC I/Q MIXER 15 - 23 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.