BASIC Stamp Syntax and Reference Manual

Version 2.2

Warranty

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt of
product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the purchase
price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA) number. Write the
RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose the following along with
the returned merchandise: your name, telephone number, shipping address, and a description of the problem. Parallax will
return your product or its replacement using the same shipping method used to ship the product to Parallax.

14-Day Money-Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full
refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This guarantee is
void if the product has been altered or damaged. See the Warranty section above for instructions on returning a product to
Parallax.

Copyrights and Trademarks

This documentation is copyright 1994-2005 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by Parallax
Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication: Parallax Inc. grants the
user a conditional right to download, duplicate, and distribute this text without Parallax’s permission. This right is based on
the following conditions: the text, or any portion thereof, may not be duplicated for commercial use; it may be duplicated
only for educational purposes when used solely in conjunction with Parallax products, and the user may recover from the
student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is often
less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, Boe-Bot, Todder, SumoBot, and SX-Key are registered trademarks of
Parallax, Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in printed material, you must
state that “(registered trademark) is a registered trademark of Parallax Inc.” upon the first appearance of the trademark
name in each printed document or web page. HomeWork Board, Parallax, and the Parallax logo are trademarks of Parallax
Inc. If you decide to use trademarks of Parallax Inc. on your web page or in printed material, you must state that
“(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the trademark name in each printed document
or web page. Other brand and product names are trademarks or registered trademarks of their respective holders.

ISBN #1-928982-32-8

Errata

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us know
by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials and
documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and corrections for
a given text will be posted to our web site, www .parallax.com. Please check the individual product page’s free downloads
for an errata file.

Disclaimer of Liability

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or
under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, or
any costs of recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax Inc. is
also not responsible for any personal damage, including that to life and health, resulting from use of any of our products.
You take full responsibility for your BASIC Stamp application, no matter how life-threatening it may be.

Access Parallax via Internet

We maintain very a active web site for your convenience. These may be used to obtain software, communicate with
members of Parallax, and communicate with other customers. Access information is shown below:

Web: http:/ /www.parallax.com
General e-mail: info@parallax.com
Tech. e-mail: support@parallax.com

Internet BASIC Stamp Discussion List
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible from
www.parallax.com via the Support — Discussion Forums menu. These are the forums that we operate from our web site:

. BASIC Stamps — This list is widely utilized by engineers, hobbyists and students who share their BASIC
Stamp projects and ask questions.

. StﬁpsinicmssB — Created for educators and students, subscribers discuss the use of the Stamps in
Class curriculum in their courses. The list provides an opportunity for both students and educators to
ask questions and get answers.

. Parallax Educators —Exclusively for educators and those who contribute to the development of Stamps
in Class. Parallax created this group to obtain feedback on our curricula and to provide a forum for
educators to develop and obtain Teacher’s Guides.

. Translators — The purpose of this list is to provide a conduit between Parallax and those who translate
our documentation to languages other than English. Parallax provides editable Word documents to our
translating partners and attempts to time the translations to coordinate with our publications.

. Robotics — Designed exclusively for Parallax robots, this forum is intended to be an open dialogue for a
robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates. The Boe-
Bot”, Toddler”, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

. SX Microcontrollers and SX-Key — Discussion of programming the SX microcontroller with Parallax
assembly language SX - Key"” tools and 3" party BASIC and C compilers.

. avelin Stamp — Discussion of application and design using the Javelin Stamp, a Parallax module that is
programmed using a subset of Sun Microsystems’ Java” programming language.

Supported Hardware, Firmware and Software

This manual is valid with the following software and firmware versions:

BASIC Stamp Model Firmware Windows Interface
BASIC Stamp 1 1.4 2.2
BASIC Stamp 2 1.0 2.2
BASIC Stamp 2e 1.1 2.2
BASIC Stamp 2sx 1.1 2.2
BASIC Stamp 2p 1.4 2.2
BASIC Stamp 2pe 1.1 2.2
BASIC Stamp 2px 1.0 2.2

The information herein will usually apply to newer versions but may not apply to older versions. New software can be
obtained free on web site (www.parallax.com). If you have any questions about what you need to upgrade your product,
please contact Parallax.

Credits

Authorship and Editorial Review Team: Jeff Martin, Jon Williams, Ken Gracey, Aristides Alvarez, and Stephanie Lindsay;
Cover Art: Jen Jacobs; Technical Graphics, Rich Allred; with many thanks to everyone at Parallax Inc.

Contents

PREFACE...........cccceciiuimmnnnnennnnnns e senaatansasnannnnnnnnnnnnnnnnnns 5
INTRODUCTION TO THE BASIC STAMPcccccvveemennmrnnnmssnnnsannns 7
BASIC STAMP MODEL COMPARISON TABLEeuveeeeeeeeeeeeeetseseseeeeeseneeeesesneeeeeesesseseseeeeeneneesens 8
BASIC STAMP T HARDWAREooveeteteeeeeee et eeeee et et et s seneneeseeneeeneneesenesneeenenenaens 10
BASIC STAMP 2 HARDWAREoovevieiiiiicectetetse sttt st sas bbb s st ss s 13
BASIC STAMP 2E HARDWAREcvcviuiiiieceetitscesis sttt bttt sn sttt 15
BASIC STAMP 25X HARDWAREcuviiictetitseceisis ettt bt sn st 17
BASIC STAMP 2P HARDWAREovcuiiieieceeteeiec st tes s st ses s ses s ss s sss s s et sesnnenana 19
BASIC STAMP 2PE HARDWAREoovteeeeeeeteeeeeee e eee et seseseeeeesenensesesneseeseneesesesneenenenensnns 21
BASIC STAMP 2PX HARDWAREouvveeeeeeeeeteeeeeeeeeeee et seseseseesenenseseeneseseseesesesnsenenenennnns 23
GUIDELINES AND PRECAUTIONScovvvitieieisi ettt ss bbb s st ss st nenenas 25
BASIC STAMP PROGRAMMING CONNECTIONScoviveueeiisiisesrersrssssesss e sesssssssessssssesssssnnas 27
QUICK START GUIDEccovcummmemeeee e seremsansnnnnnnnnnnnnnnnmnns 29
USING THE BASIC STAMP EDITOR............cccvevvannnmnnnnnnnnnsanns 35
THE PROGRAMMING ENVIRONMENTcuvvisietctetcee sttt sa bbb sn st 35
COMPILER DIRECTIVES ...ttt ettt tstse st b s st sttt ss st bt bess s st be b ss s s besesnnas 43
SPECIAL FUNCTIONS ...ttt sttt et sttt bbbt sttt sttt 46
SETTING PREFERENCESocvcuiiieseseetetsece sttt se s st sese st s s et ss s sesa sttt s st sn s banesnans 55
ADVANCED COMPILATION TECHNIQUESvvveeee st ees ettt s s en st 68
FEATURES FOR DEVELOPERS.eeeeeveteteeeeeeteeseseeeeesenessesesteseesesessesesseeeeseseesesessensenesessenennens 75
BASIC STAMP ARCHITECTURE.............ccccveniannnnnnnnnnnnnnsmrannns 81
RAM ORGANIZATION (BST) ...uveieietireietnereisetsese sttt ssssssssssssssessssessesns 81
RAM ORGANIZATION (BS2, BS2E, BS25X, BS2P, BS2PE).......ccveveerereieiseieireissreiseissiennas 82
DEFINING AND USING VARIABLESeieeceeeceseceeses st tees s st st ses e sessse s bess s ss s sasessesssnenanas 84
The Rules of SYmbOol NaMES ...t ssesseens 86
Defining Array VarabIs ... 87
Aliases and Variable MOGIfIErscccvieeeviseeiee s 89
CONSTANTS AND COMPILE-TIME EXPRESSIONS......ocviiieiectieiiiisis ettt 94
NUMBER REPRESENTATIONS.eeuuietieseseseessessssesestssesesssssesssessessssssssssssssesssssssessssssesssnsnsnns 96
ORDER OF OPERATIONS ...ttt seseseetetsesesses et ss s ss st st aessss s ssssssstessss s st sesssassassnsnanas 102
INTEGER MATH RULES ..ottt eeeeee et ee e ee s e s s enen e s enenensenennens 103
UNARY OPERATORS ...ttt et sttt b ss st bess s s s s st b b s st ss bbb ss s sssssssbesssssnanas 105
ADSOIULE VaIUE (ABS) ...ttt nnns 105
COSINE (COS) ...ttt bbb naen 106
DECOTET (DCD)eucereeeereeeereireeseiseeeiseessesesssss bbbttt 106

BASIC Stamp Syntax and Reference Manual 2.2 e« www.parallax.com ¢ Page 1

Contents

NEGALIVE (=) 1vvvrevereerceireeieseseiceses ettt 106
ENCOTEN (NCD) ..ottt 107
SINE (SIN) 1.vrereeee ittt bbb 107
Square ROOt (SQR)vuiueeieeiriireireineineirei ettt 108
BINARY OPERATORS ..vuvvvuitesiessetsssesessssesssssssesssssssesssssssesssssssessssassesssessessssessesssessessnsns 109
L0 o OO 109
RS0 =T TR 110
MUBIPIY (*).eevveveeriereerisiesisssss sttt ssnne 110
MUIIPLY HIGR () ettt ettt 111
MUIEIPLY MIAAIE (/) 1veeeeeeercireireereireeseenei et 112
DIVIAE (/) 1rvvvrevreeerrerrsresseisssesssssssssssssse bbbt st 113
o O U 113
ATCIANGENT (ATIN) oottt 114
HYPOIENUSE (HYP)...eeieice et 115
MINIMUM (MIN) oot 115
MaXIMUM (MAX)corieeeiereireireeneiee ettt 116
DiGit (DIG)......ovveeeeercreeietee ettt e 117
SNt LEfE (K<) 1vurvrrereerrerereieeresssessessssssessessessessesssss s ssesssssessesssssesssssssssssssssssssssssseens 117
Shift RIGNE (53) cvuvvrevrrereireieeieiieeissssissessessessessesss st ssssssssssssssssssssssesseens 117
REVEISE (REV) ..ot 118
ANG () crorteiiireeieeseee ettt bbbttt 118
OF (]) covrerrererieieie ettt ettt 118
KOE (A) 1ottt bbbt 119
Yo I o 7 OO 120
OF NOE ([/).1vvrrererrresessnssessnsssssssssssssssssssesssssesssssessssssessssssesssesssssssssssssessasssessssssnens 120
XOTINOE (M) 1ottt 121
BASIC STAMP COMMAND REFERENGEccccvecvmmemnnnnans 123
PBASIC LANGUAGE VERSIONScvucviierietisiesetsssesessssesssssssesssssssessssssessssssesssssssessssnens 123
CATEGORICAL LISTING OF COMMANDScvuivuerereeereenienesseeaneseassssssenessssesssssssssssssesnees 124
SYNTAX CONVENTIONS. ...covrtrereseeeseeseeneseeseesesesesssssesesssssssesssssssssssssssssesssssssssssssssnssnees 128
AUXIO ..ot 129
BRANGCH. ..ottt ettt 133
BUTTON ..ttt sttt 137
COMPARE ..ottt ettt bbb bbb 141
CONFIGPINocvervreierieireciciessssessessesssssessssssss st esse st st esssssessssssssssssssessnssesans 143
COUNT ettt sttt st 149
DATA <ot 153
DEBUG ..ottt ntns 159
DEBUGIN. ..ottt bbb bbb 171
DO..LOOP..... oottt ettt 175

Page 2 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Contents

DTMEOUT ..o 179
EEPROM......oiriecr e 183
END. e 187
BT e 189
FOR..INEXT oottt 191
FREQOUT ... 199
GET s 203
GOSUB ...ttt 209
GOTO. .ottt 213
HIGH ..ottt 215
[2CIN ..ottt 217
[2COUT ..o 225
IFL L THEN s 231
INPUT Lo 243
JOTERM .ottt 247
LODCMD ...ttt s 249
LODIN <.ttt bbb 257
LODOUT ..ot 263
BT 269
LOOKDOWN.......oovoimreiiririseiissie sttt 27
LOOKUP ..ottt 277
LOW oot b 281
MAINIO ..ottt bbb 283
NAP e 285
ON L 289
OUTPUT ettt 293
OWIN <.ttt 295
OWOUT .ottt bbb 303
PAUSE ..ottt e 311
POLLIN oo 313
POLLMODE ... 319
POLLOUT ..ottt 325
POLLRUNooriiitmiinrireeireriect sttt 331
POLLWAIT ..ottt 335
POT ettt 339
PULSIN ..t 343
PULSOUT ..ot 347
PUT e 351
PWM s 355
RANDOM ...cotiiirimiitreietiresisess et 359
ROTIME ..ottt 363
READ ..o e 369

BASIC Stamp Syntax and Reference Manual 2.2 e« www.parallax.com ¢ Page 3

Contents

RETURN ..ottt 375
REVERSE ...ttt 377
RUN L.ttt bbb 381
SELECT...CASE ...ttt e 387
SERIN o 393
SEROUT ...t 415
SHIFTIN st 431
SHIFTOUT ..ottt 435
SLEEP ...ttt e 441
SOUND ..ottt 445
STOP e 447
STORE .. 449
TOGGLE ... e 455
WRITE ..t 459
KOUT ottt bbb 465
APPENDIX A: ASCII CHARTcococimimiminnanannnesssans s snanans an
APPENDIX B: RESERVED WORDS..........ccovevememmimnmnanannnnunas 473
APPENDIX C: CONVERSION FORMATTERSc.cccvuvueuenens 477
APPENDIX D: BASIC STAMP SCHEMATICScccocvmimumnnanasens 481

Page 4 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Preface

Thank you for purchasing a Parallax BASIC Stamp® microcontroller
module. We have done our best to produce several full-featured, easy to
use development systems for BASIC Stamp microcontrollers. Depending
on the Starter Kit you purchased, your BASIC Stamp model, development
board and other contents will vary.

This manual is written for the latest available BASIC Stamp modules and
software as of February 2005. As the product-line evolves, new
information may become available. It is always recommended to visit the
Parallax web site, www.parallax.com, for the latest information.

This manual is intended to be a complete reference manual to the
architecture and command structure of the various BASIC Stamp models.
This manual is not meant to teach BASIC programming or electrical
design; though a person can learn a lot by paying close attention to the
details in this book.

If you have never programmed in the BASIC language or are unfamiliar
with electronics, it would be best to locate one or more of the books listed
on the following page for assistance. All are available, either to order or
to download, from www.parallax.com.

Books available in Adobe’s PDF format are published for free download
on the Parallax web site or on the CD-ROM which ships with our different
Starter Kits. Books available in print may be purchased directly from
Parallax or other distributors.

In addition, there are hundreds of great examples available on the Parallax
CD and web site (www.parallax.com). Also, Nuts & Volts Magazine
(www.nutsvolts.com / 1-800-783-4624) is a national electronic hobbyist's
magazine that features monthly articles featuring BASIC Stamp
applications. This is an excellent resource for beginners and experts alike!

BASIC Stamp Syntax and Reference Manual 2.2 e« www.parallax.com ¢ Page 5

Preface

Availability
Book Part # Author and Publisher PDF In Print
, . 28123 Andy Lindsay; Parallax Inc.; Yes Yes
?
What’s a Microcontroller? ISBN 1-928982-02-6
Robotics with the 28125 Andy Lindsay; Parallax Inc.; Yes Yes
Boe-Bot ISBN 1-928982-03-4
IR Remote for the 70016 Andy Lindsay; Parallax Inc.; Yes Yes
Boe-Bot ISBN 1-928982-31-X
. .. 28129 Andy Lindsay; Parallax Inc.; Yes Yes
Basic Analog and Digital ISBN 1-928982-04-2
. 28127 Tracy Allen, PhD.; Parallax Inc.; ISBN 1- Yes Yes
Applied Sensors 028982-21-2
. . 28119 Doug Pientak; Parallax Inc.; Yes Yes
e i SR (With Full Kit) ISBN 1-928982-23-9
. 27341 Marty Hebel / Will Devenport; Yes Yes
frE e G Parallax Inc.; ISBN 1-028982-08-5
o . 70008 John Barrowman; Parallax Inc.; ISBN 1- Yes Yes
Elements of Digital Logic 028082-20-4
The Microcontroller Application Vol. 1&2: 28113 Matt Gilliland; Woodglen Press; No Yes
Cookbook Volumes 1 and 2 Vol. 2: 28112 | ISBN 0-616-11552-7 and 0-972-01590-6
Al’s “World Famous” Stamp Project 70013 Al Williams; Parallax Inc.; Portions Yes
of the Month Anthology ISBN 1-928982-25-5
Vol. 4: 70010 Jon Williams, Scott Edwards and Lon Yes Yes
Vol. 5: 70015 Glazner; Parallax, Inc.; (all) (Vol 4 and
Wi N“Ji Iz’; ‘s";”z °; 3A:rlrfl g’a’"”s ISBN 1-928982-10-7, 1-928982-11-5, Vol 5)
2202 1-928982-17-4, 1-928982-24-7
and 1-928982-30-1
StampWorks 27220 Jon Williams; Parallax, Inc.; Yes Yes
P ISBN 1-928982-07-7
Stamp 2 Communication and Control 70004 Thomas Petruzzellis; McGraw-Hill; No Yes
Projects ISBN 0-071411-97-6
Programming and Customizing the 27956 Scott Edwards; McGraw-Hill; No Yes
BASIC Stamp Computer ISBN 0-071371-92-3
70001 Claus Kuehnel and Klaus Zahnert; Yes No
e Parallax, Inc.; ISBN 1-928982-19-0

Page 6 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

1: Introduction to the BASIC Stamp

Welcome to the wonderful world of BASIC Stamp” microntrollers. BASIC
Stamp microcontrollers have been in use by engineers and hobbyists since
we first introduced them in 1992. As of November 2004, Parallax
customers have put well over three million BASIC Stamp modules into
use. Over this 12-year period, the BASIC Stamp line of controllers has
evolved into six models and many physical package types, explained
below.

General Operation Theory

BASIC Stamp modules are microcontrollers (tiny computers) that are
designed for use in a wide array of applications. Many projects that
require an embedded system with some level of intelligence can use a
BASIC Stamp module as the controller.

Each BASIC Stamp comes with a BASIC Interpreter chip, internal memory
(RAM and EEPROM), a 5-volt regulator, a number of general-purpose 1/O
pins (TTL-level, 0-5 volts), and a set of built-in commands for math and
I/0 pin operations. BASIC Stamp modules are capable of running a few
thousand instructions per second and are programmed with a simplified,
but customized form of the BASIC programming language, called
PBASIC.

PBASIC Language

We developed PBASIC specifically for the BASIC Stamp as a simple, easy
to learn language that is also well suited for this architecture, and highly
optimized for embedded control. It includes many of the instructions
featured in other forms of BASIC (GOTO, FOR...NEXT, IF..THEN...ELSE)
as well as some specialized instructions (SERIN, PWM, BUTTON, COUNT
and DTMFOUT). This manual includes an extensive section devoted to
each of the available instructions.

Hardware

At the time of this writing, there are currently seven models of the BASIC
Stamp; the BS1, BS2, BS2e, BS2sx, BS2p, BS2pe, and the BS2px. The tables
below are provided to easily compare their specifications, followed by
diagrams that detail the various package types of these modules.
Schematics for the SIP/DIP packages of all models can be found in
Appendix D.

BASIC Stamp Syntax and Reference Manual 2.2 e« www.parallax.com ¢ Page 7

Introduction to the BASIC Stamp

BASIC Stamp Model Comparison Table

Products

BS1

BS2

BS2e

Environment

0°-70°C
(32°-158°F) **

0° - 70° C (32° - 158° F) **

0°-70° C (32° - 158° F) **

Microcontroller

Microchip PIC16C56a

Microchip PIC16C57¢c

Ubicom SX28AC

Processor Speed 4 MHz 20 MHz 20 MHz
Program Execution Speed ~2,000 instructions/sec. instr;gt‘g%(s)/sec ~4,000 instructions/sec
RAM Size 16 Bytes (2 1/0, 14 Variable) © I/03226B)\I}eelﬁable) 32 Bytes (6 /0, 26 Variable)
Scratch PadRam N/A N/A 64 Bytes
. 256 Bytes, 2K Bytes, 8 x 2K Bytes,
ERE ~80 instructions ~500 instructions ~4,000 inst

PC Interface

(w/BS1 Serial Adapter)

(9600 baud)

Number of I/O Pins 8 16 + 2 Dedicated Serial 16 + 2 Dedicated Serial
Voltage Requirements 5-15vdc 5-15vdc 5-12 vdc
1 mA Run, 3 mA Run, 25 mA Run,
G P & Vel 25 A Sleep 50 pA Sleep 200 pA Sleep
Source/Sink Current per I/O 20 mA /25 mA 20 mA /25 mA 30 mA /30 mA
Source/Sink 40 mA /50 mA 60 mA /60 mA
Current per unit 40 mA /50 mA per 8 1/0 pins per 8 1/0 pins
PBASIC Commands* 32 42 45
Serial Serial

Serial (9600 baud)

Windows Text Editor
Version

Stampw.exe (v2.1 and up)

Stampw.exe (v1.04 and up)

Stampw.exe
(v1.096 and up)

* PBASIC Command count totals include PBASIC 2.5 commands on all BS2 models.
** See below for industrial rated module information.

Industrial-Rated BASIC Stamp Modules
Some BASIC Stamp models come in Industrial-rated versions, with an
environmental temperature tolerance range of -40°C to +85°C . Contact

the Parallax Sales Team directly for the latest information regarding

industrial-rated product availability and specifications.

Page 8 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

1: Introduction to the BASIC Stamp

BS2sx

BS2p24

BS2p40

BS2pe

BS2px

0°-70°C
(32°- 158° F) **

0°-70°C
(32°-158°F) **

0°-70°C
(32°- 158° F) **

0°-70°C
(32°- 158° F) **

0°-70°C
(32°-158°F) **

Ubicom SX28AC

Ubicom SX48AC

Ubicom SX48AC

Ubicom SX48AC

Ubicom SX48AC

50 MHz

20 MHz Turbo

20 MHz Turbo

8 MHz Turbo

32 MHz Turbo

~10,000 instructions/sec.

~12,000 instructions/sec.

~12,000 instructions/sec.

~6000 instructions/sec.

~19,000 instructions/sec.

32 Bytes 38 Bytes 38 Bytes 38 Bytes 38 Bytes
(6 1/0, 26 Variable) (12 1/0, 26 Variable) (12 1/O, 26 Variable) (12 1/O, 26 Variable) (12 1/0, 26 Variable)
64 Bytes 128 Bytes 128 Bytes 128 Bytes 128 Bytes
8 x 2K Bytes, 8 x 2K Bytes, 8 x 2K Bytes, 16 x 2K Bytes 8 x 2K Bytes,
~4,000 inst. ~4,000 inst. ~4,000 inst. (16 K for source) ~4,000 inst.

16 + 2 Dedicated Serial

16 + 2 Dedicated Serial

32 + 2 Dedicated Serial

16 + 2 Dedicated Serial

16 + 2 Dedicated Serial

5-12vdc 5-12vdc 5-12vdc 5-12vdc 5-12vdc

60 mA Run, 40 mA Run, 40 mA Run, 15 mA Run, 55 mA Run,
500 pA Sleep 350 pA Sleep 350 pA Sleep 150 pA Sleep 450 pA Sleep
30 mA /30 mA oA 30 mA /30 mA 30 mA /30 mA 30 mA /30 mA
60 mA /60 mA 60 mA /60 mA 60 mA /60 mA 60 mA /60 mA 60 mA /60 mA
per 8 /0 pins per 8 I/O pins per 8 I/O pins per 8 1/0 pins per 8 1/0 pins

45 61 61 61 63
. . Serial . .
Serial (9600 baud) Serial (9600 baud) (9600 baud) Serial (9600 baud) Serial (19200 baud)
Stampw.exe Stampw.exe Stampw.exe Stampw.exe Stampw.exe

(v1.091 and up)

(v1.1 and up)

(v1.1 and up)

(v1.33 and up)

(v2.2 and up)

Phone: (916) 624-8333
Toll free in the US or Canada: 1-888-512-1024
Email: sales@parallax.com

BASIC Stamp Syntax and Reference Manual 2.2 e« www.parallax.com ¢ Page 9

Introduction to the BASIC Stamp

BASIC Stamp 1

+| |<— 0.19” (4.8mm) Figure 1.1: BASIC Stamp 1
(Rev B) (Stock# BS1-IC).

0.1” (2.54 mm)

Iy
Lf 1.41” (35.9mm) 4>l

~>{ 0.4”
(10.2mm)

Figure 1.2: BASIC Stamp 1 OEM

——— 1.4" (36mm) ——p
(Rev. A) (Stock# 27295).

BASIC Stamp® OEM —Z-RevA
©1999

999 1.1
] .
1 E 3
A
@

L— 147 (36mm) —p

»| & 0.1"(2.54mm)

Page 10 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

1: Introduction to the BASIC Stamp

Figure 1.3: BASIC Stamp 1
(Rev Dx) (Stock# 27100).

—>| |<— 0.375” (9.5mm)

025,, BASIC Stamp® VY - [ololelololelelolole!

- Vod OO00000000

(14mm) [—— Vdd 00000000 GO
Voo p7 OOOOOOOOO _
O H rfoc00c0000e E
o Ps OOOOOOOOD E
05 [l— E ps #OOOOOOOO00 | &
il P Boo06000000 |
P2 R
¥ O ﬁ“ 21 - [ololclelololcloleloN I

T g

- V.

q > 000 ves 000000

: PARAILAXE vss 80000000000

0.1” (2.54mm)—>| |<—

-« 255 (E48MM) —

The BASIC Stamp 1 is available several physical packages. The BS1-IC
(Figure 1.1) uses surface mount components to fit in a small 14-pin SIP
package. The preassembled BASIC Stamp 1 OEM (Figure 1.2) features an
easier-to-trace layout meant to aid customers who wish to integrate the
BASIC Stamp 1 circuit directly into their design (as a lower-cost solution).
The BASIC Stamp 1 Rev. Dx (simply called the Rev. Dx), see Figure 1.3,
includes a prototyping area suitable for soldering electronic components.
These three packages are functionally equivalent, except that the Rev. Dx
does not have an available reset pin.

In addition to the packages shown, there are prototyping boards available
that feature a surface mounted BS1 and programming cable connector.
Please check www.parallax.com — Products — Development Boards for
product descriptions.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 11

Introduction to the BASIC Stamp

Pin Name Description
Unregulated power in: accepts 5.5 - 15 VDC (6-40 VDC on
1 VIN BS1-IC rev. b), which is then internally regulated to 5 volts. May
be left unconnected if 5 volts is applied to the VDD (+5V) pin.
VSS System grgund: connects to BS1 Serial Adapter ground for
programming.
3 PCO PC Out: 4800 baud serial output (TTL level) to PC.
4 PCI PC In: 4800 baud serial input (TTL level) from PC.
5-volt DC input/output: (Also called +5V) if an unregulated voltage
5 VDD is applied to the VIN pin, then this pin will output 5 volts. If no
voltage is applied to the VIN pin, then a regulated voltage
between 4.5V and 5.5V should be applied to this pin.
Reset input/output: goes low when power supply is less than
6 RES approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.
General-purpose /O pins: each can sink 25 mA and source 20
7-14 PO-P7 mA. However, the total of all pins should not exceed 50 mA (sink)

and 40 mA (source).

See the "BASIC Stamp Programming Connections” section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

Page 12 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Table 1.1: BASIC Stamp 1 Pin
Descriptions.

1: Introduction to the BASIC Stamp

BASIC Stamp 2

Figure 1.4: BASIC Stamp 2
(Rev. G) (Stock# BS2-IC).

1.2 (31mm) —»

0.1” (2.54mm)

Figure 1.5: BASIC Stamp 2 OEM ——— 2.0°(51Tmm) ———p
(Rev. A2) (Stock# 27290 assembled,

or #27291 in kit form). —
+© BASIC Stamp®2 OEM

©1999—2004 Rev A2
XTAL

>
=

2.0" (51mm)

PARALAX

The BASIC Stamp 2 is available in several physical packages. The BS2-IC
(Figure 1.4) uses surface mount components to fit in a small 24-pin DIP
package. The BASIC Stamp 2 OEM (Figure 1.5) features an easier-to-trace
layout meant to aid customers who wish to integrate the BASIC Stamp 2
circuit directly into their design (as a lower-cost solution). The BASIC

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 13

Introduction to the BASIC Stamp

Stamp 2 OEM is available in either an assembled form or a kit form. These

three packages are functionally equivalent.

In addition to the dual-inline and OEM packages, there are prototyping
boards available that feature a surface mounted BS2. Please check
www.parallax.com — Products — Development Boards for product

descriptions.

Pin

Name

Description

1

SOuT

Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

SIN

Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

ATN

Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

VSS

System ground: (same as pin 23) connects to PC serial port GND
pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20

PO-P15

General-purpose I/O pins: each can sink 25 mA and source 20
mA. However, the total of all pins should not exceed 50 mA (sink)
and 40 mA (source) if using the internal 5-volt regulator. The total
per 8-pin groups (PO — P7 or P8 — 15) should not exceed 50 mA
(sink) and 40 mA (source) if using an external 5-volt regulator.

21

VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22

RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23

VSS

System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24

VIN

Unregulated power in: accepts 5.5 - 15 VDC (6-40 VDC on BS2-
IC Rev. e, f, and g), which is then internally regulated to 5 volts.
Must be left unconnected if 5 volts is applied to the VDD (+5V)
pin.

See the "BASIC Stamp Programming Connections” section on page 27 for
more information on the required programming connections between the

PC and the BASIC Stamp.

Page 14 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Table 1.2: BASIC Stamp 2 Pin
Descriptions.

1: Introduction to the BASIC Stamp

Figure 1.6: BASIC Stamp 2e
(Rev. B) (Stock# BS2E-IC).

Table 1.3: BASIC Stamp 2e Pin
Descriptions.

BASIC Stamp 2e

sout VIN

SIN = .o 3 T
E ATN BS2e
E 3
3 £
o o
- N
[S) -

The BASIC Stamp 2e is available in the above 24-pin DIP package.

Pin

Name

Description

SOUT

Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

SIN

Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

ATN

Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

VSS

System ground: (same as pin 23) connects to PC serial port GND
pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20

PO-P15

General-purpose /O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
sink) if using the internal 5-volt regulator. The total per 8-pin
groups (PO — P7 or P8 — 15) should not exceed 100 mA (source
or sink) if using an external 5-volt regulator.

21

VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22

RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23

VSS

System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24

VIN

Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. Must be left
unconnected if 5 volts is applied to the VDD (+5V) pin.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 15

Introduction to the BASIC Stamp

See the "BASIC Stamp Programming Connections” section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

Page 16 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

1: Introduction to the BASIC Stamp

Figure 1.7: BASIC Stamp 2sx
(Rev. E) (Stock# BS2sx-IC)

Figure 1.8: BASIC Stamp 2sx OEM
(Rev. A2) (Stock# 27294)

BASIC Stamp 2sx

SouT [1lage vy M [2) VI
SIN vss
ATN BS2sx RES

1.2" (31mm) —»

«—— 20 6GImm) ——

BASIC Stamp®2sx OEM
©1999—2004 Rev A2
m
c4

()0

>™
n

2.0” (51mm)

PARALLAX

The BASIC Stamp 2sx is available in the above two physical packages.
The BS2sx-IC (Figure 1.7) uses surface mount components to fit in a small
24-pin DIP package. The preassembled BASIC Stamp 2sx OEM (Figure
1.8) features an easier-to-trace layout meant to aid customers who wish to
integrate the BASIC Stamp 2sx circuit directly into their design (as a
lower-cost solution). The BASIC Stamp 2sx OEM is available in assembled

form only.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 17

Introduction to the BASIC Stamp

Pin

Name

Description

SOUT

Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

SIN

Serial In: connects to PC serial port TX pin (DB9 pin 3/ DB25
pin 2) for programming.

ATN

Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

VSS

System ground: (same as pin 23) connects to PC serial port
GND pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20

PO-P15

General-purpose /O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source
or sink) if using the internal 5-volt regulator. The total per 8-pin
groups (PO — P7 or P8 — 15) should not exceed 100 mA (source
or sink) if using an external 5-volt regulator.

21

VDD

5-volt DC input/output: if an unregulated voltage is applied to
the VIN pin, then this pin will output 5 volts. If no voltage is
applied to the VIN pin, then a regulated voltage between 4.5V
and 5.5V should be applied to this pin.

22

RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset.
Can be driven low to force a reset. This pin is internally pulled
high and may be left disconnected if not needed. Do not drive
high.

23

VSS

System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24

VIN

Unregulated power in: accepts 5.5 - 12 VDC (7.5
recommended), which is then internally regulated to 5 volts.
Must be left unconnected if 5 volts is applied to the VDD (+5V)
pin.

See the "BASIC Stamp Programming Connections” section on page 27 for
more information on the required programming connections between the

PC and the BASIC Stamp.

Page 18 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Table 1.4: BASIC Stamp 2sx Pin
Descriptions

1: Introduction to the BASIC Stamp

Figure 1.9: BASIC Stamp 2p24
(Rev. C) (Stock# BS2p24-IC)

This module is identical in function
to the BS2p40-IC, except that it has
16 1/O pins.

Figure 1.10: BASIC Stamp 2p40
(Rev. B) (Stock# BS2p40-IC)

This module is identical in function
to the BS2p24-IC, except that it has
32 1/0 pins.

BASIC Stamp 2p

SOUT (11 oy M) VIN
SIN
ATN BS2p24 RES

€ —
€
§ £
o <
= &
TP? J
<+ .63 P
(16mm)
£
3
©
€ N
o
£ N
n
o
;- MAIN 1/0
AUX 110
—_—

The BASIC Stamp 2p is available in the above two physical packages.
Both packages use surface mount components to fit in a small package.
The BS2p24-IC (Figure 1.9) is a 24-pin DIP package. The BS2p40-IC
(Figure 1.10) is a 40-pin DIP package. Both packages are functionally
equivalent accept that the BS2p40 has 32 I/O pins instead of 16.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 19

Introduction to the BASIC Stamp

Pin

Name

Description

SOUT

Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

SIN

Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

ATN

Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

VSS

System ground: (same as pin 23 on BS2p24, or pin 39 on
BS2p40) connects to PC serial port GND pin (DB9 pin 5/ DB25
pin 7) for programming.

5-20

PO-P15

General-purpose /O pins: each can source and sink 30 mA.
However, the total of all pins (including X0-X15, if using the
BS2p40) should not exceed 75 mA (source or sink) if using the
internal 5-volt regulator. The total per 8-pin groups (PO — P7, P8
—15, X0 — X7 or X8 — X15) should not exceed 100 mA (source of
sink) if using an external 5-volt regulator.

{21-36)

X0-X15

(BS2p40 Only!) Auxiliary Bank of General-purpose 1/O pins: each|
can source and sink 30 mA. However, the total of all pins
(including PO — P15) should not exceed 75 mA (source or sink) if
using the internal 5-volt regulator. The total per 8-pin groups (PO
—P7, P8 — 15, X0 — X7 or X8 — X15) should not exceed 100 mA
(source or sink) if using an external 5-volt regulator.

21{37)

VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 {38}

RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 {39}

VSS

System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 {40}

VIN

Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. Must be left

unconnected if 5 volts is applied to the VDD (+5V) pin.

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the

PC and the BASIC Stamp.

Page 20 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Table 1.5: BASIC Stamp 2p Pin
Connections

1: Introduction to the BASIC Stamp

Basic Stamp 2pe

Figure 1.11: BASIC Stamp 2pe
(Rev. B) (Stock# BS2pe-IC)

1.2” (31mm) —»|

The BASIC Stamp 2pe is available in the above 24-pin DIP physical

package.
Table 1.6: BASIC Stamp 2pe Pin Pin Name Description
Descriptions.] souT | Serial Out: connects to PC serial port RX pin (DB pin 2 / DB25 pin 3)
for programming.
2 SIN Serial In: conr)ects to PC serial port TX pin (DB9 pin 3 / DB25 pin 2)
for programming.
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25 pin
3 ATN .
20) for programming.
4 VSS System ground: (same as pin 23), connects to PC serial port GND pin

(DB9 pin 5/ DB25 pin 7) for programming.

General-purpose /O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
5-20 PO-P15 | sink) if using the internal 5-volt regulator. The total per 8-pin groups
PO — P7 or P8 — 15 should not exceed 100 mA (source or sink) if
using an external 5-volt regulator.

5-volt DC input/output: if an unregulated voltage is applied to the VIN
pin, then this pin will output 5 volts. If no voltage is applied to the VIN
pin, then a regulated voltage between 4.5V and 5.5V should be
applied to this pin.

21 VDD

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can be
driven low to force a reset. This pin is internally pulled high and may
be left disconnected if not needed. Do not drive high.

22 RES

System ground: (same as pin 4) connects to power supply’s ground

23 VSS | (GND) terminal.

Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
24 VIN which is then internally regulated to 5 volts. Must be left unconnected
if 5 volts is applied to the VDD (+5V) pin.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com » Page 21

Introduction to the BASIC Stamp

See the "BASIC Stamp Programming Connections” section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

Page 22 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

1: Introduction to the BASIC Stamp

Basic Stamp 2px

Figure 1.12: BASIC Stamp 2px
(Rev. A) (Stock# BS2px-IC)

The BASIC Stamp 2px is available in the above 24-pin DIP physical

package.
Table 1.7: BASIC Stamp 2px Pin Pin Name Description
Descriptions.] souT | Serial Out: connects to PC serial port RX pin (DB pin 2 / DB25 pin 3)
for programming.
2 SIN Serial In: conr)ects to PC serial port TX pin (DB9 pin 3 / DB25 pin 2)
for programming.
3 ATN Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25 pin

20) for programming.

4 VSS System ground: (same as pin 23), connects to PC serial port GND pin
(DB9 pin 5/ DB25 pin 7) for programming.

General-purpose /O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
5-20 PO-P15 | sink) if using the internal 5-volt regulator. The total per 8-pin groups
PO — P7 or P8 — 15 should not exceed 100 mA (source or sink) if
using an external 5-volt regulator.

5-volt DC input/output: if an unregulated voltage is applied to the VIN
21 VDD pin, then this pin will output 5 volts. If no voltage is applied to the VIN
pin, then a regulated voltage between 4.5V and 5.5V should be
applied to this pin.

Reset input/output: goes low when power supply is less than

22 RES approximately 4.2 volts, causing the BASIC Stamp to reset. Can be
driven low to force a reset. This pin is internally pulled high and may
be left disconnected if not needed. Do not drive high.

23 VSS System ground: (same as pin 4) connects to power supply’s ground
(GND) terminal.

Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),

24 VIN which is then internally regulated to 5 volts. Must be left unconnected
if 5 volts is applied to the VDD (+5V) pin.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 23

Introduction to the BASIC Stamp

See the "BASIC Stamp Programming Connections” section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

Page 24 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

1: Introduction to the BASIC Stamp

Guidelines and Precautions
When using the BASIC Stamp, or any IC chip, please follow the
guidelines below.

1. Be alert to static sensitive devices and static-prone situations.

a.

The BASIC Stamp, like other IC’s, can be damaged by
static discharge that commonly occurs touching
grounded surfaces or other conductors. Environmental
conditions (humidity changes, wind, static prone
surfaces, etc) play a major role in the presence of random
static charges. It is always recommended to use
grounding straps and anti-static or static dissipative mats
when handling devices like the BASIC Stamp. If the
items above are not available, be sure to touch a
grounded surface after you have approached the work
area and before you handle static sensitive devices.

2. Verify that all power is off before connecting/disconnecting.

a.

If power is connected to the BASIC Stamp or any device it
is connected to while inserting or removing it from a
circuit, damage to the BASIC Stamp or circuit could
result.

3. Verify BASIC Stamp orientation before connection to
development boards and other circuits.

a.

Like other IC’s, the BASIC Stamp should be inserted in a
specific orientation in relation to the development board
or circuit. Powering the circuit with an IC connected
backwards will likely damage the IC and/or other
components in the circuit. Most IC’s have some form of a
“pin 1 indicator” as do most IC sockets. This indicator
usually takes the form of a dot, a half-circle, or the
number 1 placed at or near pin 1 of the device.

The BSI-IC has a “1” and a half-circle indicator on the
backside of the module. Additionally, Figure 1.1 above
indicates the pin numbering and labels.

All BS2 series modules have a half-circle indicator on the
topside of the module (see Figure 1.13). This indicates
that pin number one is the first pin counterclockwise from
the notch. The socket that accepts this 24-pin module also

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 25

Introduction to the BASIC Stamp

has a half-circle or notch on one end, indicating the correct
orientation. See Figure 1.14 for other examples.

Figure 1.13: Pin 1 Indicators

Insert pin 1 Reference :
Ref Notch -
(sisr;e?:;ca?o% here Notch B$2 IC_sho_wn in t_he correct _
/ orientation in relation to a 24-pin
socket.

Note: The Half-Circle indicator is
also known as a Reference Notch

(Pin 1 medicaton Insert pin 1 Figure 1.14: Additional
o here Examples of Pin 1 Indicators
! ‘}2,?;‘51" iﬁzif;iobr?a\;i (chip and socket shown in the
correct orientation in relation to
each other)

[cNeXoNcNcRoNoNo oo oNe]
00000 OOO0OOO0

Page 26 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

1: Introduction to the BASIC Stamp

Figure 1.15: BS1 Programming
Connections with BS1 Serial
Adapter

Note: Though it is not shown, power
must be connected to the BS1 to
program it.

BASIC Stamp Programming Connections

We suggest using a Parallax development board and cable for
programming BASIC Stamp modules. When these items are not available,
you may create your own board by duplicating the following diagrams
with your own circuits and cables.

Be very careful to follow these diagrams closely; it is quite common for
programming problems with the BASIC Stamp to be a result of a poorly
made custom cable or programming connections on your applications
board. With the programming connections for all the BS2 models, it is
possible to reverse a couple of wires and still get positive results using
some of the "connection" tests our Tech. Support team tries and yet you
still will not be able to communicate with the BASIC Stamp. It is vital that
you check your connections with a meter and verify the pin numbering to
avoid problems like this.

=5 v
= DL
Tooo
fan
AT A

BS1 Serial Adapter

PC
Serial Port

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 27

Introduction to the BASIC Stamp

o

)

DSR

~

® 0
w

RTS

(]
N

Tx
ore | To.mF
eNp - 0.1uF)\

PC Serial Port BS2 Family
Module

o .0
o ?—b

(s

Page 28 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Figure 1.16: Programming and
Run-time Communication
Connections for all BS2 models.

Note: Though it is not shown, power
must be connected to the BASIC
Stamp to program it.

Also, the programming connections
are the same for the BS2p40.

2: Quick Start Guide

Quick Start Introduction

This chapter is a quick start guide to connecting the BASIC Stamp to the
PC and programming it. Without even knowing how the BASIC Stamp
functions, you should be able to complete the exercise below. This
exercise assumes you have a BASIC Stamp and an appropriate
development board. For the latest Parallax development board selection
and documentation, go to www.parallax.com — Products — Development
Boards. For a more detailed introduction to the BASIC Stamp Editor
software, see Chapter 3.

Equipment Needed

e BASIC Stamp module
e Compatible carrier board and programming cable
e Power supply (wall mount or battery) rated for your carrier board
e PC running Windows® 2000/ XP, with
o Quantity of RAM recommended for the OS
o 3 MB of hard drive space
o CD-ROM drive or Internet access
o Available port compatible with your carrier board and
cable (serial or USB)

Connecting and Downloading

1) If the BASIC Stamp isn't already plugged into your development
board, insert it into the socket. Refer to Figure 1.13 and Figure 1.14 on
page 26 to make sure that you orient it correctly. For a complete
listing of Parallax development boards for the various BASIC Stamp
modules, go to www.parallax.com and look for Development Boards
on the Products menu.

2) If you are using a Parallax development board, follow the directions
that came with it to connect the board to the appropriate port in your
computer. Figure 2.1 below shows the proper sequence for setting up
with a BS1 and a BS1 Carrier Board. Figure 2.2 on page 31 shows the
proper sequence to connect any BS2. Note: if you are using your own

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 29

Quick Start Guide

development board or a breadboard, carefully follow the
Programming Connections guidelines on page 27 before proceeding.

Figure 2.1: BS1-IC, BS1 Carrier
Board, and BS1 Serial Adapter

1) Insert the BASIC Stamp module
into its socket, being careful to
orient it properly.

2) Connect the 9-pin female end of
the serial cable to an available serial
port on your computer, then attach
the male end to the BS1 Serial
Adapter, Note: you cannot us a null
modem cable.

3) Plug the BS1 Serial Adapter into
the programming header on the BS1
Carrier Board.

<& Match arrows on adapter .
and Carrier board 4) Plug a 9 volt battery into the 9

VDC battery clip.

CeeRACIA Crm T
@00« B 0 SS8 BASIC Stamp

Kieyeg suilexy
|19249mod

! PRALAX R

® @ ~0

Page 30 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

2: Quick Start Guide

Figure 2.2: BS2-IC and Board of
Education

1) Insert the BASIC Stamp module
into its socket, being careful to
orient it properly.

2) Connect the 9-pin female end of
the serial cable to an available serial
port on your computer, and then
connect the male end to the Board
of Education. Note: you cannot use
a null modem cable.

3) Plug in the 6-9 V 300mA center-
positive power supply into the barrel
jack.

OR

4) Plug a 9 volt battery into the 9
VDC battery clip.

Powercell

Alkaline Battery

Kieneg

15 14 Vdd 13 12 @
Red
Black
X4 X5

oard of Educatiol
©2000-2003 @

3) Install and run the BASIC Stamp Editor software.

a)

b)

If using the Parallax CD, go to the Software — BASIC Stamp —
Windows section to locate the latest version. Click the Install
button and follow the prompts to install and run.

If using the Parallax website, go to www.parallax.com —
Downloads — Basic Stamp Software and look in the Software for
Windows section for the latest version. Click the Download icon
and follow the prompts to install and run.

Test your PC’s connection to the BASIC Stamp by selecting Run —
Identify from the menu bar, as shown in Figure 2.3. If the BASIC
Stamp module is not found, check your power and cable
connections and retry.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com » Page 31

Quick Start Guide

BASIC Stamp - Untitled2 Figure 2.3: Test your PC
Fle Edit Directive |Run Help connection to the BASIC Stamp.

e e x|
D @ i @ | Run R | Port Status:
EI W e ST ctrl+T |Fﬂrt' IDawca Type: |Velslﬂn |Lnnphan:k |Echn |
| SERTATE R ETEL CObHT:_[BASIC Stemp 2 a0 ves ves
g Parallax Inc b X i
1) Stamp Editar s [¥ Ignore BS 1 Modules unless downloading BS 1 source code

& o1

i) BS2 POT Scaling... I
&) BSZp
T BS2ax vl“

Edit Port List | Befresh |

Verify that the BASIC Stamp was detected

Select Run — identlfy on one of the COM ports.

4) Enter a $STAMP Directive into the Editor window by clicking on the
toolbar icon for the BASIC Stamp module you are using. (Hold the
cursor over the icons for flyover help labels.) The example below
shows the Stamp Directive that would be inserted for the BS2.

v {$sTAMP BS2}

5) Enter a $PBASIC Directive into the Editor window with the toolbar
icon. For a BS1, you must use PBASIC 1.0. All BS2 series modules can
use PBASIC 2.0 or 2.5. The command set differences between PBASIC
2.0 and 2.5 are covered in Chapter 5.

Figure 2.4: Entering the $STAMP

—- @VJ@ @ ﬂﬁ % | fek = ﬂ:?ru @ @ - and $PBASIC directives from the

toolbar
I l) PBASIC Language: 2.5 I_ The examples shown would be used
for programming a BS2 module in
Skarnp Mode: BS2 I— pBKS% o5 9
Click on the icon that corresponds to your Click on the icon for the PBASIC language
BASIC Stamp model to automatically place version that is compatible with your BASIC
the $STAMP directive in your program. Stamp model.

You should now see both a $STAMP directive and $PBASIC directive
on your PC screen:

' {$sTAMP BS2}
' {$PBASIC 2.5}

a) Note: These directives may be typed in from the keyboard, but
failure to type this line properly may cause the editor to fail to
recognize your BASIC Stamp during the next step.

Page 32 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

2: Quick Start Guide

Figure 2.5: To run your program,
you may use the task bar menu or
the Run icon.

Figure 2.6: Debug Terminal
displaying program output

6)

Type the line DEBUG “Hello World!” below the compiler directives:

v {ssTAMP BS2}
' {$PBASIC 2.5}
DEBUG "Hello World!"

Download this program into the BASIC Stamp. You may select Run
— Run from the menu bar, press CTRL-R from the keyboard, or click
on the Run P icon on the toolbar.

/ BASIC Stamp - C:\Program Files\Parallax Inc\S
File Edit Directive | Run Help

DS e |

o Ciedkimtax cilit =
E"...\Stamp Editar v Memory Map... Cirl+M i | @ m b. & |
Paralla Inc:]
Debug 3 5
Identify... Ctrl+1 - Fum
POT Scaling. ..
: il
Selecting Run — Run Using the Run toolbar icon

a) If the program is typed correctly, a progress bar window should
appear (perhaps very briefly) showing the download progress.
Then a Debug Terminal window should appear and display
"Hello World!"

/ Debug Terminal #1 _ |EI|1|
Com Part: Baud R ate: Parity:
G Y m
D ata Bits: Flow Contral: @ T [DIR [RTS
8 |0 Tl eFx DR @ CTS

Hello World!

Macros...l Pauze | Clear | Cloze | [~ EchoOF

b) If there is a syntax error in the program, the editor will highlight
the text in question and display an error message. Review the
error, fix the code and then try downloading again.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 33

Quick Start Guide

c) If the error reported a connection problem with the BASIC Stamp,
make sure the first line of code indicates the proper module name
and verify the programming cable connections, module
orientation (in the socket) and that it is properly powered, then try
downloading again.

8) Congratulations! You've just written and downloaded your first
BASIC Stamp program! The "Hello World!" text that appeared on the
screen was sent from the BASIC Stamp, back up the programming
cable, to the PC.

Page 34 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

3: Using the BASIC Stamp Editor

Figure 3.1: BASIC Stamp Windows
Editor.

THE EDITOR WINDOW.

THE MAIN EDIT PANE.

Introducing the BASIC Stamp Editor

This section describes the BASIC Stamp Editor for Windows version 2.2.
This software supports all 7 BASIC Stamp modules available as of
February 2005, and all 3 versions of the PBASIC programming language,
PBASIC 1.0, PBASIC 2.0, and PBASIC 2.5.

The Programming Environment

The BASIC Stamp Windows Editor, shown in Figure 3.1, was designed to
be easy to use and mostly intuitive. Those that are familiar with standard
Windows software should feel comfortable using the BASIC Stamp
Windows Editor.

=1k
- - om Ein [a-
LS @ a1 xlfh@ | & At R CREARE AAAN &
- wesr x|
TOldEHC L LT =l
Yo on e N | Tm am cdam A et ol aa
TONdEHC L o
SEAUEHE LR
SERs o
1 £t H
| A raAc A
=TE o . —— B
SISRETES
SRECCLTE:S:
: - Foorem R B
]
H R T R e L
[N L A
ams
T B e L AP m
B
=l El
b= e |

The editor window consists of the main edit pane with an integrated
explorer panel to its left, as shown above.

The main edit pane can be used to view and modify up to 16 different
source code files at once. Each source code file that is loaded into the

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 35

Using the BASIC Stamp Editor

editor will have its own tab at the top of the page labeled with the name of
the file, as seen in Figure 3.2. The full file path of the currently displayed
source code appears in the title bar. Source code that has never been saved
to disk will default to “Untitled#”; where # is an automatically generated
number. A user can switch between source code files by simply pointing
and clicking on a file’s tab or by pressing Ctrl+Tab or Ctrl+Shift+Tab while
the main edit pane is active.

/ BASIC Stamp - C:"Program Files' Parallax Inc'Stamp Editor ¥2.2'B52DTMFOUT.B52

File Edit Directive Run Help

IFaE|(D| 8 1 2RBn|3 @ FLLPe @7 288 ZREP A
.|| Detanit B52 Directory || ERancHBs2| BUTTONES2| COUNT.BSZ | DATAES2 | DEBUG_ DEBUGINES2 DTMFOLTESZ |
[= semEder22 a|[[T prurour.ERZ

The status of the active source code is indicated in the status bar below the
main edit pane and integrated explorer panel. The status bar contains
information such as cursor position, file save status, download status and
syntax error/download messages. The example in Figure 3.3 indicates
that the source code tokenized successfully.

BASIC Stamp files [*.bs1;* bas;* b j|| 4] |

z8: 34 | [s | [Tokenize Successful

Each editor pane can be individually split into two views of the same
source code. This can be done via the Split button on the toolbar, pressing
Ctrl-L, or clicking and dragging the top or bottom border of the editor
pane with the mouse.

Once split, the top and bottom edit controls allow viewing of different
areas of the same source code; this can be handy when needing to keep
variable declarations or a particular routine in view while modifying a
related section of code elsewhere. Note that the Split button and Ctrl+L
shortcut act like a toggle function, splitting or un-splitting the edit pane.

Page 36 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Figure 3.2: Example Editor Tabs.
Shown with 6 separate files open;
Title Bar shows current code’s file
path.

Figure 3.3: Status Bar beneath the
Main Edit Pane.

SPLIT WINDOW VIEW.

3: Using the BASIC Stamp Editor

Figure 3.4: The Split Edit Pane
Feature displaying the beginning
and end of a long program at the
same time.

SYNTAX HIGHLIGHTING.

NOTE: a complete list of reserved words
can be found in Appendix B.

Hld & 1 xhd A 2 ffr s BRF CLEARR JANN @

1l

- M 1 T QeI aent caaractol
dr = otdr - 1 - z TO LoYET _OCaTlon
T acoar - 1 THIW 3IT E

IEEFIC caar . T
=l cor -
PR PP P | I .

s | | 4

Within the edit pane, BASIC Stamp source code files are displayed with
syntax highlighting. Syntax Highlighting applies designated colors and
character case (upper, lower, capitalized) to reserved words in the PBASIC
language . This happens automatically as you type. Table 3.1 shows the
default syntax highlighting settings for each syntax element.

If you copy and paste a program into a blank edit pane, select Run —
Syntax Check or click on the toolbar checkmark icon to activate the syntax
highlighting in that file. The syntax highlighting settings can be changed
or customized via the Preferences — Editor Appearance tab; for details see
the Setting Preferences section which begins on page 55. Source code can
be printed to paper with the active syntax highlighting (and in color if
using a color printer).

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 37

Using the BASIC Stamp Editor

Syntax Element Text Color Character Case
Command Blue Upper Case
Comment Green No Change

Constant -Binary Default No Change

Constant - Decimal Default No Change
Constant - Hexadecimal Default No Change
Constant — Predefined Purple Upper case

Constant — String Red No Change
Operators Default Upper case
Declaration Default Upper Case

Directive, Conditional Compile Gray(Bold) Upper case
Directive, Editor Teal (Bold) Upper case
Directive, Target module Teal (Bold) Upper case
Input/Output Formatter Navy Upper case
Selection White on Navy No change

Search match Lime on black No change
Variable modifier Default Upper case
Variable — predefined Purple Upper case
Variable, type Default Capitalize

Automatic line numbers can be enabled or disabled via the “Show Line
Numbers” checkbox on the Preferences — Editor Appearance tab. Line
numbers, when enabled, appear in a gutter (the gray area on the left of the
edit pane as shown in Figure 3.5). When printing, the line numbers may

be included if desired.

NAP.BS2| PULSOUT B52 PAUSEESZ |

1

@

2
3
4
5
4]
7
g
9
10

Bookmarks can be enabled or disabled via the

PAUSE.EBSZ

' {§ETAME BEZ}

Main:
DEBUG "Pauszed...",
PAUSE 1000
GOTO Main

Thiz program demonstrates the PAUSE command’™s time delays.
" the program will put the message,

"Paused... "

CR

on the screen.

|

Once a second,

“Show Bookmarks”

checkbox on the Preferences — Editor Appearance tab. The bookmarks
appear in the gutter as small numbered icons, providing a way to mark
lines or sections of code that you need to navigate to quickly or repeatedly.
You can define up to nine bookmarks by clicking on the gutter where you
want one placed, or by pressing Ctrl+B when the cursor is on the desired
line. You can instantly navigate to any defined bookmark by pressing
Ctrl+(#) (where # can be the 1 through 9 keys) or by selecting Go To

Page 38 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Table 3.1: Syntax Highlighting
Defaults for the PBASIC Scheme.

NOTE: The default edit pane has
a white background with black
characters.

AUTOMATIC LINE NUMBERING.

Figure 3.5: Automatic Line
Numbering appears in the gutter to
the left of the edit pane. Yellow
Bookmarks are visible on lines 5
and 9.

BOOKMARKS.

3: Using the BASIC Stamp Editor

EDITING YOUR CODE.

Table 3.2: Keyboard Shortcuts for
Editing and Navigation Functions.

THE FIND/REPLACE WINDOW.

Bookmark from either the Edit menu or from the shortcut menu (right-
click) in the edit pane.

You can navigate through and edit your code in the edit pane with
keyboard shortcuts, most of which will be familiar to Windows users.

Editing and Navigation Functions
Shortcut Key Function
Ctrl+A Select all text in current source code
Ctrl+B Set or clear bookmark on current source code line
Ctrl+(#) Go to bookmark #, where # can be 1 through 9
Ctrl+C Copy selected text to the clipboard
Ctrl+F Find or replace text
Ctrl+L Split or un-split edit pane
Ctrl+N Insert line
Ctrl+V Paste text from clipboard to selected area
Ctrl+X Cut selected text to the clipboard
Ctrl+Y Delete current line of code
Ctrl+Shift+Y Delete from cursor to end of current line
Ctrl+Z Undo last action (unlimited)
Ctrl+Shift+Z Redo last action (unlimited)
Tab Indent block (Inserts tab or space characters)
Shift+Tab Qutdent block (Deletes tab or space characters)
F3 Find text again
F4 Replace current found selection
Ctrl+F4 Perform replace and find next
Ctrl+Home Jump to top of file
Ctrl+End Jump to end of file
Ctrl+PageUp Jump to top of screen
Ctrl+PageDown Jump to bottom of screen
Ctrl+CursorUp Move source view up one line without moving cursor
Ctrl+CursorDown Move source view down one line without moving cursor
F5 Open Preferences window

Some editing functions, specifically Cut, Copy, Paste, and Find/Replace,
can also be accessed from the edit pane’s shortcut menu (by right-clicking
in the edit pane).

The Find/Replace window allows you to set several search parameters.
Match whole or partial words, match case, and match with wildcard
options can be used singly or together. You can begin your search at the
cursor or at the top or bottom of the selection or the entire file, and search
in the forward (downward) or backward (upward) direction. You may
replace a single instance of a given item or all instances at once. Recent

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 39

Using the BASIC Stamp Editor

Find and Replace items are saved in the Find: and Replace: field’s drop-
down lists.

4% Find/Replace |

Findt [Btrivik |
Replace: II:uuttu:uan:urk j Replace |

—tatch
[~ “whole \Woaords [v Casze [with WWildcards
Replace Al |
—Ohgine———— Scope—— Directior
= Baottam {* Entire Filz " Fonward
% Cursor " Selection {+ Backward Close |

The Find/Replace window will stay visible when using the Find Next and
Replace options for quick and convenient source code editing. Using the
Replace All function, however, will close the Find/Replace window and
perform the designated find /replace operation.

The integrated explorer panel to the left of the main edit pane is divided
in to four portions: the Recent, Directory, File and Filter lists. The upper
portion is the Recent list, a drop-down list of default, favorite, and recently
visited directories.

If you select a directory from the Recent list drop down field, the
integrated explorer will automatically navigate to that directory. The
button to the left of the Recent list allows you to limit the Directory list
display below it to only the directories that are in the Recent list. This
makes it easy to find your commonly used source code directories among
a large set of directories and local and network hard drives. The Recent
list button behaves like a toggle switch: 1) selecting it switches to the
“Show Recent folders only” mode, 2) selecting it again switches back to
the “Show all folders” mode.

Page 40 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Figure 3.6: The Find/Replace
Window.

THE INTEGRATED EXPLORER PANEL.

3: Using the BASIC Stamp Editor

Figure 3.7: The Integrated Explorer
Panel’'s Recent list (top), Directory
list (middle), and File list (bottom).

THE DIRECTORY LIST.

THE FILE LIST.

OPEN FROM... AND SAVE TO... OPTIONS.

THE FILTERS LIST.

#3 BASIC Stamp
File Edit Directive Run Help

DEadH| o & &
EII Default BS 2ex Directony j

=) Stamp Editor v2.1 ;I

GET_PLUT1.BS=
GET_PLUT2EBSx
RUMT.BSx
RUMZ.BSx

The Directory list, right below the Recent list, displays drives and
directories in a hierarchical tree fashion. If a directory is selected, the
Folders list displays the files in that directory.

The File list, below the Directory list, displays all the files in the selected
directory that match the selected filter (from the Filter list at the bottom.
see Figure 3.8). You can select one or more files from this list and double-
click, or drag-and-drop them over the editor pane, to open those files.

You may also open files with the Open From... option by selecting File —
Open From, or by pressing Ctrl+Shift+O. This allows quick access to any
directory for the default and favorite directories set within Preferences (see
page 60) as well as any recently used directory. The Save To... option
works similarly; select File — Save To or press Ctrl+Shift+S. These
features can be very helpful if you organize your files in many different
directories.

The Filter list at the bottom of the explorer panel (Figure 3.8), is a drop-

down list of file extension filters to apply to the File list. It works just like
the “Save as type:” field of a standard Open or Save dialog.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com » Page 41

Using the BASIC Stamp Editor

BASIC Stamp 2 files [*.bs2] -
BASIC Stamp 2e files [*.bze]

BASIC Stamp 2 files [* bax)

BASIC Stamp 2p files [*.bzp]

BASIC Stamp 2pe files [*.bpe)

BASIC Stamp Z2px files [*.bpx]

BASIC Stamp Zpe filez [*. bpe)

54 | lINS | [

The BASIC Stamp Editor automatically associates BASIC Stamp source
code file types (.bsl, .bs2, .bse, .bsx, .bsp, .bpe, and .bpx) with itself. This
feature can be configured through automatic prompts or through the
Preferences — Files & Directories tab. Also, when using any Explorer-
shell for file browsing, right-clicking on a BASIC Stamp source code file
provides you with an Open With Stamp Editor option.

The integrated explorer panel can be resized via the vertical splitter bar
that separates it and the edit pane. The Directory list and File list can be
resized via the horizontal splitter bar that separates them. The integrated
explorer can also be hidden or shown via the Explorer toolbar button, by
pressing Ctrl+E, or by resizing it to zero width using the vertical splitter
bar.

Table 3.3 lists keyboard shortcuts for several file functions.

File Functions
Shortcut Key Function
Ctrl+E Show/hide explorer panel
Ctrl+L Show/hide split view in edit pane
Ctrl+O Open a source code file into edit pane
Ctrl+Shift+O Open a source code file from a recent directory into edit pane
Ctrl+S Save current source code file to its current location on disk
Ctrl+Shift+S Save current source code file to a recent directory on disk
Ctrl+P Print current source code
Ctrl+Tab Switch to next open file page
Ctrl+Shift+Tab Switch to previous open file page

Page 42 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Figure 3.8: The Filter List found at
the bottom of the Integrated
Explorer Panel.

Table 3.3: Keyboard Shortcuts for
File Functions.

3: Using the BASIC Stamp Editor

COMPILER DIRECTIVES .

Figure 3.9: Toolbar icons make it
easy to insert or modify $STAMP
and $PBASIC directives directly in
your program.

THE $STAMP DIRECTIVE.

FORMAT OF THE $STAMP DIRECTIVE.

Compiler Directives

The BASIC Stamp Editor supports all of the BASIC Stamp models, and all
versions of the PBASIC programming language. Compiler directives must
be placed in each program to indicate the desired BASIC Stamp model and
language version. In addition, it is sometimes useful to target a given
program to a particular communication port. The Directive menu contains
options for setting the $STAMP, $PBASIC, and $PORT directives. Since
the $STAMP and $PBASIC directives are used most often, they are most
easily inserted or modified with the toolbar buttons, as shown in Figure
3.9.

& M|||W${$>§@@-ﬁlﬂr@r?’%
| Uniitedt | | >

" [SSTAMP ESZ2}
" [SDEASIC 2.5}

A $STAMP directive is required in each PBASIC program. The editor
determines which BASIC Stamp model to target for compiling and
downloading based on this directive. Any code that is missing the
$STAMP directive, but whose filename contains a known BASIC Stamp
extension (.bsl, .bs2, .bse, .bsx, .bsp, .bpe, .bpx) will be recognized by that
extension and an appropriate $STAMP directive will be added
automatically when you run, tokenize, view the memory map or
download the program. If there is no file extension present, an error
message will prompt you to enter a $STAMP directive.

You may choose to manually type the $STAMP directive into the program
from the keyboard. This line should be entered into your code on a line by
itself, usually near the top. Note that the directive appears on a comment
line, as indicated by the apostrophe ().

' {$sTAMP BS1} '"This indicates to use a BASIC Stamp 1 module

v {$sTAMP BS2} '"This indicates to use a BASIC Stamp 2 module

' {$STAMP BS2e} '"This indicates to use a BASIC Stamp 2e module
' {$sTAMP BS2sx} 'This indicates to use a BASIC Stamp 2sx module
v {$sTAMP BS2p} '"This indicates to use a BASIC Stamp 2p module
' {$STAMP BS2pe} '"This indicates to use a BASIC Stamp 2pe module
' {$STAMP BS2px} '"This indicates to use a BASIC Stamp 2px module

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 43

Using the BASIC Stamp Editor

If you choose to type the $STAMP directive, care must be taken, or it will
not be recognized. The directive itself must be enclosed in curly braces,
{..}, not parentheses (...) or square brackets [...]. There should not be
any spaces between the dollar sign ($) and the word STAMP; however, the
directive may contain additional spaces in certain other areas. For
example:

! { $STAMP BS2 }
—Or -

v {$sTAMP BS2}

--and --

' {$sTamMP BS2 }

are all acceptable variations. However:
' {$ sTAMP BS2}

--and --

v {$sTAMPBS2}

are not acceptable and will be ignored. If one of the above two lines were
entered into the source code, the editor would ignore it and, instead, rely
on the extension of the filename to determine the appropriate model.

The $STAMP directive is read and acted upon by the BASIC Stamp
Windows Editor any time a source code file is loaded, tokenized,
downloaded (run) or viewed in the Memory Map.

In some cases you may wish to write a program that can run on multiple
BASIC Stamp models. In this case, conditional compile directives can be
employed that will cause the editor to determine which Basic Stamp
model is detected, and then download only those program elements
applicable to that model. Many of the demo programs in Chapter 5 use
this technique. To read about conditional compilation, see the Advanced
Compilation Techniques section which begins on page 68.

The $PBASIC directive allows you to indicate which version of the
PBASIC language to use. At the time of this printing, the options are 1.0,
2.0 and 2.5. If no $PBASIC directive is present in the program, version 1.0
is assumed for BS1 module source code, and version 2.0 is assumed for

Page 44 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

EXTRA SPACES ARE ALLOWED IN CERTAIN
AREAS

PROGRAMS FOR MULTIPLE BASIC STAMP
MODELS — CONDITIONAL COMPILE.

THE $PBASIC DIRECTIVE.

3: Using the BASIC Stamp Editor

Table 3.4: Number of Available
Commands for each BASIC
Stamp Model with each version
of the PBASIC language .

THE $PORT DIRECTIVE.

any BS2 model source code. A $PBASIC directive is required to use
version 2.5, which is compatible with all BS2 models.

PBASIC 2.5 has enhanced syntax options for several commands, as well as
some additional commands not available in PBASIC 2.0. Table 3.4 shows
the number of PBASIC commands that are available in each version of the
PBASIC language, on each BASIC Stamp model. Details about the syntax
differences among the three versions of PBASIC are denoted by icons in
the margins of Chapters 4 and 5; also refer to Table 5.1 on page 124 and
individual command syntax descriptions.

BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
PBASIC 1.0 32 - - - - - -
PBASIC 2.0 - 37 40 40 56 56 58
PBASIC 2.5 - 42 45 45 61 61 63

A categorical listing of all PBASIC commands is included at the beginning of Chapter 5,
followed by detailed descriptions of each command in alphabetical order.

Note that the syntax-highlighting feature of the BASIC Stamp Editor will
also adjust to the language version indicated by the $PBASIC directive.
The best way to select the $SPBASIC directive is to use the toolbar icons, as
was shown in Figure 3.9. Like the $STAMP directive, you must use care if
you choose to type it in by hand. The syntax is:

' {$pBASIC 1.0} 'Default when a BASIC Stamp 1 module is detected
' {$PBASIC 2.0} 'Default when any BASIC Stamp 2 module is detected
' {$PBASIC 2.5} 'Required for PBASIC 2.5 command set & enhanced syntax

If you try to run a program that contains command syntax specific to
PBASIC 2.5 without including the corresponding compiler directive, you
will probably get an error message. In this case, insert a $PBASIC 2.5
directive and try running the program again.

The optional $PORT directive allows you to indicate a specific PC
communications port through which to download a program to a BASIC

Stamp module. The syntax is as follows:
" {$PORT COM#}

where # is a valid port number. When any PBASIC program containing
this directive is downloaded, all other ports will be ignored. This directive
is especially convenient when using two of the same BASIC Stamp models

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 45

Using the BASIC Stamp Editor

(such as two BS2s) on two ports and you have two different PBASIC
programs to download (one to each BS2). Without this directive,
developing and downloading in this case would be a tedious task of
always answering the "which BASIC Stamp?" prompt.

The $PORT directive can be automatically inserted or modified by
selecting the appropriate port from the Directive — Port menu. The COM
ports listed in the Directive — Port menu are automatically updated any
time a change is made to the exiting computer hardware or to the available
ports list. See the Setting Preferences section which begins on page 55 for
more information.

Special Functions

The Identify function will identify which BASIC Stamp model, if any, is
detected on any available communications port. This information is
displayed in the Identification window (Figure 3.10), which can greatly aid
in troubleshooting your connection to your BASIC Stamp module.
Activate this function by selecting Run — Identify, by pressing Ctrl-I, or
pressing F6.

Identification x|

Port Status:

Fort: Device Type: I"-.J'ersicun: ILl:u:upI:uaI:k: IEl:hl:u: I
COrT: |BASIC Stamp 2 1.0 Yes Yes
CORS: [BASIC Stamp 2ax +1.0 ez ez

v lgnore BS1 Modules unless downloading BS1 source code

Edit Part List | Befrezh | Cloze

The Port column shows the available ports (those that the BASIC Stamp
Editor is trying to access). You can modify the available Port List by
clicking on the Edit Port List button. Modifying this list only affects which
ports the BASIC Stamp Editor tries to use; it does not affect which serial
ports are installed on your computer. It is recommended that you delete
all known modem ports and any problematic ports from this list.

Page 46 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

THE IDENTIFICATION FUNCTION .

Figure 3.10: The Identification
Window.

3: Using the BASIC Stamp Editor

NOTE: when using a BS1 Serial
Adapter, the Loopback column of the
Identification window should always
indicate “No”.

The Device Type column shows the model of BASIC Stamp found on the
respective port. For example, in Figure 3.10 above, the BASIC Stamp
Editor found a BS2 on COM port 1 and a BS2sx on COM port 4.

The Version column displays the firmware version number of the BASIC
Stamp module that was found.

The Loopback column indicates whether or not a loopback connection was
found on the port. The loopback connection is created by BASIC Stamp
development boards, such as the Board of Education, across serial port
pins 6 and 7 (of a DB9). A “Yes” in this column is an indication that the
serial port and serial cable are properly connected to a BASIC Stamp
development board. Note that the Loopback column should always
indicate “No” when using a BS1 Serial Adapter, regardless of whether or
not the adapter is properly connected to a BASIC Stamp development
board.

The Echo column indicates whether or not a communication echo was
detected on the port’s transmit and receive pins (pins 2 and 3). All BASIC
Stamp 2 models create this echo naturally, even without power. BASIC
Stamp 1 modules do not create this echo. A “Yes” in this column is an
indication that the serial port and serial cable are properly connected to a
BASIC Stamp 2 (or higher) module, and if using a BASIC Stamp
development board, it’s an indication that the module is properly
connected to the development board.

For all BASIC Stamp 2 models, the Loopback and Echo columns are great
for doing some simple connection diagnosis when using a serial port. For
example, a Yes in both columns indicates the serial port and serial cable
are properly connected and that the BASIC Stamp is properly inserted into
its socket. See Table 3.5 below. Note that the Loopback column does not
give reliable results when using a USB to serial adapter, or a USB-based
development board. Usually this is not an error, and the Loopback status
can simply be ignored.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 47

Using the BASIC Stamp Editor

Loopback| Echo Interpretation

Serial port and serial cable properly connected. BASIC Stamp
properly inserted into socket. If no BASIC Stamp is detected, it is
probably because the BASIC Stamp is not connected to power.
Yes Yes Other causes could be: 1) low battery, 2) Reset pin of BASIC Stamp
is connected to Vdd (it should be left disconnected), 3) the BASIC
Stamp is damaged or 4) there is some other type of communication
error (software or hardware).

Serial port and serial cable properly connected to the development
Yes No board. BASIC Stamp improperly inserted into socket (i.e.: inserted
backwards or not inserted at all).

Serial port and serial cable may be improperly connected, or you
may not be using a standard BASIC Stamp development board.
The Echo indicates there may be a BASIC Stamp properly
connected to the port (the Loopback is not required for successful
connection) or there may be another device connected to the serial
port.

No Yes

Serial port and serial cable are not properly connected, or not
connected at all, to the BASIC Stamp 2 (and higher) modules.
No No Could also be an indication of a serial port hardware/software
problem. When using a BS1 Serial Adapter, this Loopback and
Echo is normal and expected.

Selecting the “Ignore BS1 Modules unless downloading BS1 source code”
checkbox at the bottom of the Identification window optimizes
identification speed. All BS2 models can be identified very quickly. For
BASIC Stamp 1 modules, the identification process can take as much as
five seconds per communications port. Since the Identification function
checks all available serial ports for any possible model of BASIC Stamp,
the five-second timeout for BS1’s can be very inconvenient, especially if
you are not using a BS1.

When this checkbox is checked, the Identification function will not attempt
to locate BS1 modules, and thus saves time. If, however, you are
downloading BASIC Stamp 1 code, the Download function will attempt to
locate BS1 modules regardless of the setting of this checkbox. This feature
can also be found and modified via the Preferences — Editor Operation
tab.

Like the Identification function, the Download function provides
information to help guide you through the downloading process. After
entering the desired source code in the editor window, you may run it in
one of three ways: select Run — Run, press Ctrl+R on the keyboard, or
click on the “»” toolbar icon. This will tokenize and download the code

Page 48 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Table 3.5: Using Loopback and
Echo to troubleshoot your serial
port (DB9) connection.

NOTE: When using a USB port,
the Loopback column does not
give reliable results. Usually this is
not an error and the Loopback
status can be ignored.

SPEED UP IDENTIFICATION WITH THE
“IGNORE BS1 MODULES” CHECKBOX.

THE DOWNLOAD FUNCTION .

3: Using the BASIC Stamp Editor

Figure 3.11: The Download
Progress Window.

Figure 3.12: A Download Error
message.

to the BASIC Stamp module (assuming the code is correct and the BASIC
Stamp is properly connected). The Download Progress window looks
similar to the Identify window with the exception of the additional
Download Status progress bar, and the indicator LED by the port
transmitting the data.

Download Progress |

Port Status: Downloading. .

Port: [Device Type: IVersion: ILanhack: IEcho: I
& |COM1: |BASIC Stamp 2 w10 Tes Yes
COM4: Yex Mo

[¥ lgnore BS1 Modules unless downloading BS1 source code

Download Status:
DATA

If any errors occur, such as communication failure or inability to detect a
BASIC Stamp module, you will be prompted appropriately. One possible
error occurs when the BASIC Stamp your PBASIC program is targeting
does not appear to be connected to the PC (see Figure 3.12). This may be
caused, for example, by opening up a BASIC Stamp 1 program (usually
has a .bas or .bsl extension) and trying to download it to a BASIC Stamp 2
module, instead.

/ Download Error = |EI |£|

@ BASIC Stamp 1 ot found.
ore Inf
D ovenload to another BASIC Stamp instead? ﬁl

BS1| Bsg| BS2§| BSE§>¢| BS2Q| ES2pe| BSEpﬁl

When this happens, you'll be prompted to correct the situation, quickly
done by clicking on the BS2 button (if you really intended to download to
the BS2 in the first place). Keep in mind that programs written for one
BASIC Stamp model may not function properly on a different BASIC
Stamp model. Click on the More Info button for more detail. NOTE: If
you select the BS2 button, as in this example, the editor will modify the

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 49

Using the BASIC Stamp Editor

$STAMP directive in the program, notify you of this change and what it
means, and then will try to download to the BS2.

Another possibility is having two or more of the same BASIC Stamp
model connected to the PC. In this case, the editor will prompt you for
clarification as to which BASIC Stamp module you want to download to.
In this case using a $PORT directive in your code will save you some
tedium in repeatedly responding to such prompts.

The BASIC Stamp Editor also features a Memory Map that displays the
layout of the current PBASIC program. Type Ctrl+M, or press F7, to
activate this window.

When you activate the Memory Map, the editor will check your program
for syntax errors and, if the program’s syntax is okay, will present you
with a color-coded map of the RAM and EEPROM. You'll be able to tell at

a glance how much memory you have used and how much remains.

/ Memory Map - EEPROM 60% Full {DATA.BS2) x|
EEPROM Map RAM Map

- oli]z[z]a]s5]e[7][a]s]alE]c|D[E]F]a] DBERIROBTEECIRIA
[3E0[6B 65 73 20 74 68 65 20 49 6E 64 65 78 20 76 61 gffs =
[3P0|72 69 61 62 6C 65 2C 20 72 65 74 72 €9 65 76 65 piRs:
[400|72 20 OD 74 €8 €5 20 63 68 61 72 61 63 74 65 72 FE 1 | i o
410]20 61 74 20 74 68 65 20 45 45 50 52 4F 4D 20 &C REGT: LT 1 I
[420]6F 63 61 74 69 6F 6E 20 70 6F 69 6E 74 65 64 20 (FEER:
1430|74 67 20 62 79 20 €9 74 2C 20 61 6E 64 20 0D 70 EEEE;
1440|72 69 6E 74 73 20 69 74 20 74 6F 20 74 68 65 20 REGS:
1450|732 63 72 65 65 6E 20 75 6E 74 £9 20 69 74 20 66 REGE

D [260]69 6E 64 71 20 61 20 62 79 74 65 20 77 69 74 68 | REG7.
[470]20 61 20 76 61 6C 75 65 20 6F 66 20 32 35 35 2E Eggg;
l400|0D 0D 00 00 0O 0O 0O OO OO 00 OO0 OO0 00 00 00 00 REG10
1490 REGT1
480 REG1Z

=
o
o

-
o
o

=
=]
&

M Legend
Bl -Fin: [-VWord [- Bute
=] [- Mibble [- Bit [- Unused
EPROM Legend

I - Undef. Data [- Program
[-Def. Data [- Unused

1
=
z

g
2

=
]
at

Source Code [15 652 =

The Memory Map is divided into two sections, the RAM map and the
EEPROM map. The RAM map shows how much of each register has been
allotted to program variables. The RAM legend details how much is used
by I/O Pins, Word, Byte, Nibble and Bit variables, and how much is
unused.

Page 50 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

MEMORY MAP FUNCTION.

Figure 3.13: Memory Map for
Demo Program DATA.bs2.

THE RAMMAP.

3: Using the BASIC Stamp Editor

THE EEPROM MAP.

THE DEBUG TERMINAL.

The EEPROM map is shown in two scales. The main view is the detailed
EEPROM map, which displays the data in hexadecimal format in each
location. The condensed EEPROM map is the vertical region on the left
that shows a small-scale view of the entire EEPROM; the red square over it
corresponds to the scroll bar handle in the detailed EEPROM map and
indicates the portion of the EEPROM that is currently visible in the
detailed EEPROM map.

Checking the Display ASCII checkbox switches the detailed EEPROM
display from hexadecimal to ASCIIL. In this program, the textual data can
be read right off the EEPROM map when using this option.

Two important points to remember about this map are: 1) it only indicates
how your program will be downloaded to the BASIC Stamp module; it
does not "read" the BASIC Stamp memory, and 2) for all BS2 models, fixed
variables like B3 and W1 and any aliases do not show up on the memory
map as memory used. The editor ignores fixed variables when it arranges
automatically allocated variables in memory. Remember, fixed and
allocated variables can overlap.

The Debug Terminal window provides a convienent display for data
received from a BASIC Stamp during run-time, and also allows for the
transmission of characters from the PC keyboard to the BASIC Stamp. The
Debug Terminal is automatically opened and configured when a PBASIC
program, containing a DEBUG command, is downloaded. You can
manually open a Debug Terminal one of three ways: select
Run — Debug — New, press Ctrl+D on the keyboard, or click on the
Debug Terminal toolbar button. Up to four (4) Debug Terminals can be
open at once (on four different ports) and all can be left open while editing
and downloading source code.

Figure 3.14 below shows the demo program DEBUG_DEBUGIN.bs2 in the
edit pane, and the Debug Terminal that opens when this program is run.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 51

Using the BASIC Stamp Editor

DEBUG_DEBUGIN 852 | Figure 3.14: Demo program using
' DEBUG _DEBUGIN.ESZ the Debug Terminal
' This program demonstrates the ability to accept user input from the
' Debug terminal, and to accept numeric entry in any walid format.

' [SSTAMP BS2)
' [SPERSIC 2.5}

mYNUI’ﬂ VAR word -=’f:]DEbug Terminal #1 =10 x|
Tl Edbdn D
Main: Data Bits: FowContol o T [~ DTR [ATS
Do Szl M Tl g At @ DSA @ CTS

DERUG CLS, "Enter a number: "
DEBUGIN SNUM myNum

DEEUG CRERXY, 0, 2,
SDEC 7 myHum,
SHEX ? myNum,
SBIN ? myHNum
PAUSE 3000
LOOP
END

Macros. | Pause | Clear | Close | v Echa Dff

The text in the Debug Terminal’s Receive pane (blue area) prompts the
user to enter a number into the Transmit pane (white area) . After typing
the number 10 and pressing Enter, the Receive pane displays the number
in decimal, hexadecimal, and binary format as dictated by the program
(Figure 3.15).

5 Debug Terminal #1 [[Figure 3.15: Debug Terminal

ComPort: BaudRate: Party: output after entering a number.
COM1 = SE00 * Mone | *

Data Bits: Flows Contral: @ T< [DTR [ATS
£ I U Tl @ RX @ DS ecCTs

Macrns...l Pauze | Clear | Cloze | [¥ Echa OF

The fields across the top of the Debug Terminal window allow PORTSETTINGS AND STATUS.
configuration of the communication port settings. These fields will be
automatically configured and disabled if the Debug Terminal was

Page 52 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

3: Using the BASIC Stamp Editor

KEYBOARD SHORTCUTS FOR CODING
FUNCTIONS.

Table 3.6: Coding Function
Keyboard Shortcuts.

HELP FILES.

automatically opened by the editor, however, if manually opened, these
fields will be enabled to allow manual configuration. The signal status
LEDs turn bright green when activity on the indicated port line is
detected. The signal checkboxes (DTR and RTS) can be selected to set or
clear the respective output line on the port.

The Echo Off checkbox (bottom of window) causes the Receive pane to
throw away the characters that arrive in the port’s receive buffer
immediately after transmitting characters from the transmit buffer. This
produces a cleaner Receive pane display for interactive programs such as
the example above. Keep in mind, however, that this feature does not
verify that the character it throws away is actually a match to a character
that was just transmitted (because data collisions on the port can cause
echoed characters to be garbled). You should only use the Echo Off
feature in situations where it is required, as it may result in a strange
display in certain applications.

There are keyboard shortcuts for several coding functions, some of which
are unique to the BASIC Stamp Editor.

Coding Functions

Shortcut Key(s) Function
Ctrl+J Show code templates.
F6 or Ctrl+l Identify BASIC Stamp firmware.
F7 or Cirl+T Perform a syntax check on the code and display any error
messages.
F8 or Ctrl+M Open Memory Map window.

Tokenize code, download to the BASIC Stamp and open

F9 or Ctrl+R Debug window if necessary.

F11 or Ctrl+D Open a new Debug window.

Switch to next window (Editor, Debug #1, Debug #2, Debug #3

F12 or Debug #4)
Ctrl+1, Ctrl+2, Switch to Debug Terminal #1, Debug Terminal #2, etc. if that
Ctrl+3, Ctrl+4 Terminal window is open.
Ctrl+ Switch to Editor window.
ESC Close current window.

The BASIC Stamp Editor includes searchable, indexed help files. Access
Help by selecting Help — Contents or Help — Index. Context sensitive
help (highlighting a word in the editor and pressing F1 key) is also
supported. The help file can remain open in a separate window while
using the BASIC Stamp Editor; simply press Alt+Tab to toggle back and
forth between the editor and the Help window.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 53

Using the BASIC Stamp Editor

j EF ST T =18Ix| Figure 3.16: The Help file contains
G = 3
& i the complete PBASIC syntax
ide Back Pint Opfions ;
Conlents | ndes | Search] =]l documentation.
P aa— PBASIC Command Reference
elcome
A PEASIC Reference ™
"~ [E] Memory and Variables f ? & ? * $
[5) constants
21 Pins 2 Note: For BS1/BS2-compatible commands, syntax shown below is in BS2 format. Some commands may use slightly
[] Camaier Directives different for matting with the BS1,
- % a| A— 25 Note: Renuires {$PBASIC 2.5} dirertive.
- El Sl BRI ||+ Note: Compound, multi-line command; syntax not shown.
[5 Categorical Listing of Commands
[5] Conditional Compilation Directives
[2] The Elements of PBASIC Stz * AUXIO U auxo
-~ [21 851 Serial Adapter Sehematic + BRANCH 2 N2 WB W BRANCH Offset, [Agaressy, Adaressz, ... Addressh] L
+ BUTTON UZIWE W ©BUTTON i, DownsSiate, Delay, Rats, Workspare, Targetsiate, Address
« COUNT 2 BN W COUNT Pi, Duration, Varisbls
«DATA ZRE W (5ol DATA Dstsiter {, Dataitem, ..+
« DEBUG 1Z BB B oeBuUG cupumsts {, oupuDsts}
« DEBUGIM 25 Z B8 B oeBUGIN JpuDsts
«DO...LOOP 25 Z/EE W 00 {WHILE | UNTIL Congltions}} ... LOOP {UNTIL | WHILE Congitions;}}
« DTMFOUT 2 EB W owroUT Fin, {OnTime OFTime. } [Tone |, Tone, .37
« EEFROM i EEPROM {{ocstion} (Datafter{, Dataltern, ..})
+END IZEE W oo
«EXIT 25 ZIEN_ R Exr
+ FOR...MEXT UZIEE B FOR Counter = SiartVaiia TO Endivalue ISTEP Stgvaiue) ... NEXT
« FREQOUT ZEW W FREQOUT Piy, Dwation, Fregl 4, Areg?)}
« GET BB e tocaton {wora®S) Variaie {, ..} 2
« GOSUR 1ZEE 1B GOSUB ddtess
«GOTO 12 B8 1B coto Aggess
« HIGH 12 B8 B HGHen
S — =
K . 21| | »

The current help files contain the entire PBASIC syntax documentation. In
addition, the example demo code programs that appear after most
command descriptions in Chapter 5 are automatically placed in default
directories during the BASIC Stamp Editor v2.2 installation. These
programs can be accessed via hyperlinks within the help file.

NOTE: The BASIC Stamp Editor Help file requires Microsoft's HTML HELP FILESREQUIRE MICROSOFT'S HTML
Help utility and Internet Explorer 4.0 or above (IE 6.0 recommended). The HEPUTLTY:

proper version of HTML Help is included with Windows 2000 and

Windows XP. On other versions of Windows you may have to install or

upgrade your HTML Help utility to properly view the Stamp Editor’s

on-line help. The HTML Help upgrade program (hhupd.exe) is included

as part of the BASIC Stamp Editor setup program and the editor will

automatically prompt you to run it if it determines you need to upgrade.

You can download the latest version of Internet Explorer from Microsoft’s

web site at www.microsoft.com.

Page 54 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

3: Using the BASIC Stamp Editor

TiP OF THE DAY.

Figure 3.17: Tip of the Day #24.

EDITOR APPEARANCE PREFERENCES.

The Tip of the Day function displays a new message each time you run the
BASIC Stamp Editor. There are many useful tips, and you may browse
through them any time with the Next Tip and Previous Tip buttons. You
may also use the Edit Tips option to change the contents of any tip. All
tips are contained in a single file, named Stamp_Tips.txt, that is stored in
the editor’s installation directory, usually a path similar to
C:\Program Files\Parallax Inc\Stamp Editor v2.2.

BASIC Stamp Editor - Tip of the Day

|
Mext Tip |
(B |

@ Did you know?... Previous Tip

Many newer laptops have an infrared port. Some manufacturers
choose to configure the infrared port to override the serial port,

Cloze
*Y'ou may have to dizable the infrared port and re-enable the zerial ;l

port [through Device M anager) in order to download to wour
BASIC Stamp.

¥ Show Tips on Startup Tip 24 of 36

You can turn this feature off by unchecking the Show Tips on Startup box
at the bottom of the window. To access it again, choose Help — Tip of the
Day from the menu bar.

Setting Preferences

The BASIC Stamp Editor allows the user to set preferences for the
appearance and operation of many aspects of the application. Select
Edit — Preferences, press F5 or click on the Preferences toolbar button to
open the Preferences window, where you will see these options organized
under 6 tabs. Each tab has a Restore Defaults button in case you make a
royal mess of things.

Under the Editor Appearance tab (Figure 3.18), you can set the font size in
the edit pane. The other text attributes, such as background and
foreground color, character case, and bold, italic and underline, are
controlled by the Syntax Highlighting scheme. There are 3 predefined
schemes, and you may also create a custom scheme. Please note that the

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 55

Using the BASIC Stamp Editor

preferences are specific to the editor, and are not saved as part of any
BASIC Stamp program that you may have open while setting preferences.

£ Preferences o] 5|
Debug Appearance I Debug Function I Debug Part I
Editor Appearance | Editar Operatian I Files & Directories

i Size and Color
Editor Font size: 10 =

Scheme: IF‘BASIC 'l Copy Scheme |

Syntax Element: Text Attribute:

[~ Bold [T ltalic [~ Underline

Fareground: l.BIUE—LI
Backaround W
Character Case: Im

++ Command
Comment
(- Canstant
. Diefault
[l Operator
Declaration

+- Directive
- 140 Formatter
(- Selection

=l

[~ Show Preview Example

Mize:
¥ Show Bookmarks ¥ Show Ovenarite Cursor
I~ Show Line Nurnbers ¥ Display Toolbar

OK | LCancel |

The default font size for the edit pane is 10 point, but there are 12 fixed
options ranging from 8 to 40 point. The Editor Font size setting and all the
other text attribute settings under this tab will not affect the text in the

Debug Terminal.

The default scheme is the “PBASIC” scheme, with the syntax highlighting
text attributes described above in Table 3.1. The “plain text” scheme is just
that — the default foreground and background for all entered text, with no
other attributes applied. The “simple” scheme is the same as the “plain
text” scheme, except comments appear in green. Both the plain text and
simple schemes use the PBASIC scheme defaults for selected text.

Page 56 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Figure 3.18: The Editor Appearance
Tab under Edit — Preferences.

SYNTAX HIGHLIGHTING SCHEMES.

3: Using the BASIC Stamp Editor

CUSTOMIZED SYNTAX HIGHLIGHTING.

EDITOR OPERATION PREFERENCES.

AUTO INDENTING / UNINDENTING.

TAB CHARACTER.

To create a custom scheme, select a default scheme you wish to modify,
and click on the Copy Scheme button. Then, select (highlight) an element
within the Syntax Element list, and apply new Text Attributes with the
checkboxes and drop-down menus to the right. As you try various text
attributes and color combinations, the Show Preview Example checkbox
lets you audition your custom scheme without closing the Preferences
window.

The BASIC Stamp Editor supports one custom scheme at a time. It can be
modified indefinitely, but it cannot be copied. If you again copy a default
scheme, you will be asked to confirm that you wish to overwrite your
current custom scheme.

Under this tab, you will also find checkboxes that allow you to show or
hide bookmarks, line numbers, the overwrite cursor, and the toolbar.

Under the Editor Operation tab (Figure 3.19), you may set preferences for
automatic indentation and tab behavior.

The Auto Indent on Enter option makes it easy to indent nested loops to
make code easier to read. The Auto Unindent option enables quick
reversal of an indented line by simply using the backspace key, provided
that the cursor is to the left of the first character on the line.

The editor lets you choose whether a tab character or spaces are inserted
into source code whenever you press the Tab key. The default setting,
insert space characters upon Tab key presses, is recommended because it
enforces the intended formatting regardless of what editor you use to view
the code later.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 57

Using the BASIC Stamp Editor

In addition to the actual character used for the Tab key, there are three
behaviors of tabbing employed by the editor: Smart Tabs, Fixed Tabs and
Fixed plus Smart Tabs.

/ Preferences =100 x|
Debug Appearance | Debug Function I Diebug Part I
E ditor Appearance Editor Operatian | Files & Directories
~Indentiore
¥ Auta Indert on Enter W Auto Unindent on Backspace

Tab
Tab key inzerts: (~ Tabcharacter * Space characters

" Smart Tabs " Fixed Tabs * Fixed plus Smart Tabs

Fixed Tab Postions: |3,5.7.9.11

—Stamp Mode and Port:

D efault Com Port farro =] .|
Default Project Download Mode: IMndified 'I

¥ lgnore BS1 Modules unless downloading B51 source code

ju:8 Lancel

Smart Tabs (Figure 3.20) cause the tab key to move the cursor to a position
that is aligned with the nearest break between words in nearby lines above
the current line. It has the effect of providing a somewhat intuitive, auto
adjusting behavior based entirely on how you have aligned previous lines.

Fixed Tabs (Figure 3.21) cause the tab key to move the cursor to the
position indicated by the Fixed Tab Positions field. If the position is
already beyond the end of the Fixed Tab Positions list, it moves by a
multiple of the distance between the last two positions in that list. For
example, with Fixed Tabs set, the default Fixed Tab Positions list will

Page 58 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

TAB BEHAVIOR.

Figure 3.19: The Editor Operation
Tab under Edit — Preferences.

SMART TABS.

FIXED TABS.

3: Using the BASIC Stamp Editor

FIXED PLUS SMART TABS.

Figure 3.20: Smart Tabs.

Figure 3.21: Fixed Tabs.

Fixed plus Smart Tabs.

make the Tab key move the cursor to positions, 3, 5, 7, 9 and 11, then
afterwards, 13, 15, 17, 19, etc. (a multiple of two (11 — 9 = 2) after the last
listed position.

The last option is a mixture of the first two, Fixed plus Smart Tabs
(Figure 3.22); it is the default and recommended setting. Fixed plus Smart
Tabs will cause the tab key to move the cursor to the position indicated by
the Fixed Tab Positions field, or if the position is already beyond the end
of that list, it reverts to Smart Tabs behavior. This setting, combined with
a carefully configured Fixed Tab Positions field, allows for a fixed level of
indenting on the left side of the source code (for executable code blocks),
with very flexible indenting to the right of executable code (for comments
that appear to the right of code). The default settings provide a quick,
single-key method of indenting up to five (5) levels of executable code and
easy alignment of multiple lines of comments to the right of that code.

Main:
DO
DEBUG CLS, "Enter any number: " ' prompt user to enter a number
., DEBUGIN SNUM myNum ' get number | | Do
b e’ : : Lo :
;
Main:
DO
DEBUG CLS, "Enter any number: " ' prompt user to enter a number
Ny DEBUGIN SNUM myNum ' get number

5 e O O O O

'3 5 7 91113 15..

Main:
DO
DEBUG CLS, "Enter any number: " ' prompt user to enter a number
., DEBUGIN SNUM myNum ' get number | i Do
A= L] : : I :
U357 91

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 59

Using the BASIC Stamp Editor

The Fixed Tab Positions list is used to provide a list of desired fixed tab
positions (used with Fixed Tabs or Fixed plus Smart Tabs options). The
list can be a single number, or a list of comma separated numbers in
ascending order. The allowable range is 2 to 512 and the list size is
virtually unlimited. When multiple values are entered, the difference
between the last two values will be used to set tab positions beyond the
last position. For example, in the default list, the last two positions are 9
and 11; resulting in further tab positions of 13, 15, 17, etc. (multiples of 2
after the last specified position). Since source code is usually indented by
multiples of two (2) spaces, the default list of 3, 5, 7, 9 and 11 is
recommended.

The Default Com Port setting allows you to specify which COM port to
download through. If you specify a specific port here, the Identification
window will report that it is “ignoring” other known ports. This can be
selectively overridden by placing a $PORT directive in the program. If
this setting is left on “AUTO”, the default, the editor will open and scan all
known ports for the correct BASIC Stamp. The button to the right, labeled
‘..., opens the a window allowing the known port list to be edited.
Modifying the known port list only affects which ports the BASIC Stamp
Editor tries to use; it does not affect which serial ports are installed on
your computer. It is recommended that you delete all known modem

ports and any problematic ports from this list.

For an explanation of the Default Project Download Modes, see Table 3.7
on page 70. This is part of a discussion on BASIC Stamp Projects in the
Advanced Compilation Techniques beginning on page 68, below.

Selecting the “Ignore BS1 Modules unless downloading BS1 source code”
checkbox optimizes identification speed by attempting to locate BS1
modules only if you are downloading BASIC Stamp 1 code. This feature
can also be activated via the Identification or Download window.

Under the Files and Directories tab (Figure 3.23), you can set preferences

for saving and accessing files, as well as automatically creating backup
copies.

Page 60 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

THE FIXED TAB POSITIONS LIST.

DEFAULT COM PORT.

THE FILES AND DIRECTORIES TAB.

3: Using the BASIC Stamp Editor

Figure 3.23: The Files and
Directories Tab under
Edit — Preferences.

Backup COPY.

FILE ASSOCIATIONS.

4 Preferences : ol x|
Debug &ppearance I Debug Function | Debug Part |
E ditor Appearance I E ditor Operatio Files & Directories

—File:

‘when saving: [Create backup copy

Agzociations: v ey at starttup
¥ BS1 ¥ BS2 ¥ BSE | BSx @ .BSP W BPE ¥ .BFX

Associated files launch into: (% Single editor ¢ Multiple editors

Mew file template: Browse... |
r~ Directorie:
Upan startup, initial directory is: |Last Used j

Module Directaries:

C:4Pragram Files\Parallax InciStamp E di 14
C:\Program Files\Parallax InchStamp Editor w2 248524

Clear | Erowsze... |

Favorite Directories:

Delets | Browse... |

Restore Defaults |

oK | LCancel |

Check the “Create backup copy” option to cause the editor to
automatically create a backup copy of any file that is being re-saved under
the same name. The backup file will be stored in the same directory and
named the same as the existing file, but with a .bak extension appended to
the existing extension. For example, “test.bs2” becomes “test.bs2.bak” and
then the new file called “test.bs2” is created from the source code being
saved. Note: the .bak files will not appear in the integrated explorer’s file
window unless you change the Filter list to show All Files (*.*).

BASIC Stamp source code file types (.bsl, .bs2, .bse, .bsx, .bsp, .bpe, .bpx)
can be associated with the BASIC Stamp Editor. Check the “Verify at
startup” option to have the editor verify the proper associations each time
it is started. The “Associated files launch into” option changes the way
Windows behaves when you open BASIC Stamp source code from any
Explorer-shell. Choosing “Single Editor” causes all programs to open up

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com » Page 61

Using the BASIC Stamp Editor

into a single BASIC Stamp Editor, including an editor that is already
running. The “Multiple Editors” option will cause a new BASIC Stamp
Editor to open each time you open an associated BASIC Stamp file from
any Explorer-shell.

Also, by associating BASIC Stamp source code with the editor, Windows
will provide an “Open With Stamp Editor” option when right-clicking on
that source code from any Explorer-shell.

The “New file template” field allows you to specify a file to load each time
the File — New function is selected. The file will be loaded into the new
edit page, but the name will be set to “Untitled#”; where # is an
automatically generated number. This feature provides a convenient way
to start every new source code project with a specified code template of
your choosing. Note that once this feature is set, you may hold down the
Shift key while selecting File — New, or clicking the New File toolbar
button, to suppress the loading of the code template and thus end up with
a blank edit page.

The “Upon startup, initial directory is” field affects what directory is
initially selected in the integrated explorer and the Open and Save As
dialog boxes when the editor is started. The default is “Last Used,”
meaning the initial directory will be that which was most recently used by
the editor. If this setting is changed to “Set Via Shortcut” the editor will
initially view the directory indicated by the “Start in” field of the
Windows shortcut that launched the editor. The other options include the
default module directories and favorite directories.

The Module Directories list contains a list of module-specific directories
that are called the “default module directories.” Upon installation of the
BASIC Stamp Editor software, the PBASIC source code examples in this
text are copied to the installation folder and organized into appropriate
subfolders. If the default installation folder is used during software
installation, the source code files will be copied to a path similar to:
C:\Program Files\Parallax Inc\Stamp Editor 2.2\BS1, BS2, BS2sx..., etc.
The BASIC Stamp Editor automatically sets its default directories to point
to these source code examples, making them immediately available via the
File — Open From... and File — Save To... menus as well as the Recent list
in the integrated explorer panel.

Page 62 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

OPEN WITH STAMP EDITOR OPTION.

NEW FILE TEMPLATE FEATURE.

INITIAL DIRECTORY ON STARTUP.

MODULE DIRECTORIES.

3: Using the BASIC Stamp Editor

FAVORITE DIRECTORIES.

DEBUG APPEARANCE PREFERENCES.

THE CHOOSE... BUTTONS.

You may use the Clear and Browse... buttons under the Module
Directories list to select new default directory locations for each model of
BASIC Stamp. These new folders will then appear as options when you
use the File — Open From... and File — Save To... menus as well as the
Recent list in the integrated explorer panel.

Note that if you are upgrading from a previous version of the BASIC
Stamp Editor and you have set your own default directories, they will not
be replaced with the new source code example directories. Upon opening
the editor, only default directory options that are blank will be redirected
to the source code examples.

The Favorite Directories list allows you to add and delete folder locations
that will appear as additional options in the File — Open From... and File
— Save To... menus as well as the Recent list in the integrated explorer. It
works in a similar way as the Module Directories list; however, you can
set your own descriptive names for those folders.

Under the Debug Appearance tab (Figure 3.24) you can set the color and
size of the various Debug Terminal elements; settings apply to all the
Debug Terminal windows at once. A Debug Terminal itself can be resized
and/or moved by simply clicking and dragging the window; each
window’s size and position is remembered even after closing the editor.

The Choose... buttons allow you to change the background and font color
of both the Transmitter and Receiver panes, independently. The font size
of both panes can be changed to one of 8 sizes: 6, 8, 10, 12, 14, 18, 24, and
36. The Debug Terminal font size is independent of the font size in the
main editor window.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 63

Using the BASIC Stamp Editor

7 ProfereTiEe 5 =l B Figure 3.24: The Debug
Editor Appearance | Editor Dperation I Files & Directories I Appearance Tab under
Debug Appearance | Debug Function I Debug Port Edit — Preferences.
r—Color and Size

Transmitter background calar: I:l Choosze. ..

Trahsritker font color: - Choose...

Receiver background calor: - Choose...

Receiver fant color I:l Choose...

Font size: Iﬂ

Wirap text to: m

Page width [characters]: IT

Max buffer size (lines): Im

Tab Size: [=]

The “Wrap Text to” field gives two options, Pane and Page. Wrapping to TEXT WRAPPING IN THE DEBUG
Pane is the default, and causes text to wrap at the right edge of the TERMINAL.
Receiver pane, reflecting the current visible size that the user happens to

have set for the Debug Terminal’s window. Wrapping to Page, however,

causes text to wrap at a specific line width, regardless of the user’s current

Debug Terminal window size. The “Page width (characters)” field is
enabled when wrap mode is set to Page. The default page width is 32,
characters and the range is 32 to 128. Note: wrapping to page can be

handy to maintain formatting of formatted tabular information, but could

lead to information being displayed off the edge of the Receive pane if the

Debug Terminal is sized too small.

The maximum Receive pane buffer size is defined in terms of lines. It can MAXMUMBUFFER SIZE.
be set to any power of two between 256 and 8192; 1024 is the default. Data
received by the Debug Terminal is maintained in this buffer for display on

Page 64 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

3: Using the BASIC Stamp Editor

the screen. If the default is used, for example, you could receive 1024 lines
worth of text from a BASIC Stamp, and still be able to scroll back and view
the first line that was received. Upon receiving the 1025" line of text, the
first line of text is pushed out of the buffer and is lost for good, making the
first visible line in the Receive pane actually be the 2™ line of text that was
received. Larger buffer sizes consume more PC memory (256 * buffer_size
* Number_of Open_Debug_Terminals bytes), so it is best to set it only as
high as you need it for your application.

The Tab size can be adjusted as well, anywhere from 3 to 16 character
spaces. The default is 8. Keep in mind that most people don’t change this
value, so writing code that relies on a particular setting other than 8 may
display improperly on other user’s Debug Terminals.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 65

Using the BASIC Stamp Editor

Under the Debug Function tab (Figure 3.25), checkboxes allow enabling or
disabling of special processing for 16 different control characters. The
default is for all 16 control characters to be processed, but you may disable
one or more of them if you are using the Debug Terminal to view data
coming from a device other than a BASIC Stamp.

=101 x|
Editor Appearance Editor Dperation | Files & Directories |
Diebug &ppearance Debug Function | Diebug Port
r—Treat ASCH Control Characters As:

[¥ (0] = Clear Screen ¥ [8] = Backspace

¥ 1) =Home | [9)=Tab

¥ [2] = Cursor [x.y] ¥ (10]= Line Feed

¥ [3) = Cursor Left [¥ [11] = Clear EOL

[¥ [4) = Cursor Right ¥ [12] = Clear Dowen

¥ [5) = Cursor Up ¥ [13] = Cariags Return

¥ [E] = Cursor Dowr v [14] = Cursor (2]

¥ [71=Bel ¥ (15] = Cursor [y]

Ok | LCancel |

For example, a device that sends out a 0 to indicate something other than
Clear Screen will cause unintentional clearing of the Receive pane;
unchecking the checkbox for “(0) = Clear Screen” will prevent this from
happening.

Page 66 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

DEBUG FUNCTION PREFERENCES.

Figure 3.25: The Debug Function
Tab under Edit — Preferences.

3: Using the BASIC Stamp Editor

DEBUG PORT PREFERENCES. Under the Debug Port tab (Figure 3.26), each of the four (4) Debug
Terminal’s default COM port settings may be configured separately.
These settings are only used when the Debug Terminal is manually
opened.

Figure 3.26: The Debug Port Tab #7 Preferences P] [|
under Edit — Preferences.

Editar Appearance I Editar Operation I Files & Directaries |
Debug Appearance | Debug Function Debug Part

Debug Port

Terminal #1 I Terminal 112' Terminal #3 Terminal #4 I

Cam Part: INDNE 'I _I
Baud Rate: lm

Parity: lm
Diata Bits: I] - I

HAw Flaws Control Ifo VI

jul s | LCancel |

You may assign a specific COM port from the available drop-down list;
this list can be changed by clicking on the (...) button to the right. Note
that any Debug Terminals that are opened automatically after a PBASIC
program is downloaded will always default to the COM port and settings
used during download. If NONE is selected as the COM port, the
manually opened Debug Terminal will not open any port upon startup, so
you will have to manually select the desired COM port from the Debug
Terminal window each and every time you open that Debug Terminal.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 67

Using the BASIC Stamp Editor

Advanced Compilation Techniques

For BS2e, BS2sx, BS2p, BS2pe and BS2px modules, each editor page can be
a separate project, or part of a single project. A project is a set of up to
eight files that should all be downloaded to the BASIC Stamp for a single
application. Each of the files within the project is downloaded into a
separate "program slot". Only the BASIC Stamp 2e, 2sx, 2p, 2pe, and 2px
modules support multi-file projects.

For BASIC Stamp projects (consisting of multiple programs), the $STAMP
directive has an option to specify additional filenames. The syntax below
demonstrates this form of the $STAMP directive:

v { $sTAMP BS2e, file2, file3, .., file8 }

Use this form of the $STAMP directive if a project, consisting of multiple
files, is desired. This form of the directive must be entered only into the
first program (to be downloaded into program slot 0). The file2, file3, etc.
items should be the actual name (and optionally the path) of the other files
in the project. File2 refers to the program that should be downloaded into
program slot 1, file3 is the program that should be downloaded into
program slot 2, etc. If no path is given, the filename is given the path of
program 0 when loading them into the editor.

Up to seven filenames can be included, bringing the total to eight files in
the project all together. Upon loading, tokenizing, running or viewing
program 0 in the Memory Map, the editor will read the $STAMP directive,
determine if the indicated files exist, will load them if necessary and
change their captions to indicate the project they belong to and their
associated program number. After the directive is tokenized properly,
and all associated files are labeled properly, tokenizing, running or
viewing any program in the Memory Map will result in that program’s
entire project being tokenized, downloaded or viewed.

When program #0 of a multi-file project is opened from diskette, the entire
project will be loaded (all referenced files) as well. When a file that is part
of a multi-file project is closed, the entire project (all the associated files)
will be closed as well.

Page 68 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

INTRODUCTION TO BASIC STAMP
PROJECTS.

USING THE $STAMP DIRECTIVE TO
DEFINE MULTI-FILE PROJECTS.

3: Using the BASIC Stamp Editor

EQZ\J(ESCTTESPSTO CREATINGMULTHFILE - To create a project consisting of multiple files, follow these steps:
1. Create the first file in the editor and save it (we'll call it
Sample.bsx). This will be the program that is downloaded into
program slot 0.
2. Create at least one other file in the editor and save it also (we'll call
it NextProgram.bsx).

Note: At this point the editor tabs will be:
0:Samplebsx and 0:NextProgram.bsx.

indicating that there are two unrelated files open "Sample.bsx" and
"NextProgram.bsx" and each will be downloaded into program slot 0.

3. Go back to the first program and enter or modify the $STAMP
directive using the project format. Use "NextProgram" as the File2
argument. For example:

' {$STAMP BS2sx, NextProgram.bsx}

4. Then tokenize the code by pressing F7 or selecting Run — Check
Syntax from the menu.

At this point, the BASIC Stamp Editor will see the $STAMP directive
and realize that this file (Sample.bsx) is the first file in a project and
that the second file should be NextProgram.bsx. It will then search for
the file on the hard drive (to verify its path is correct), will see that it is
already loaded, and then will change the editor tabs to indicate the
project relationship. At this point the editor tabs will be:

0:Sample.bsx and [Sample] 1:NextProgram.bsx.
indicating that there are two related files open; "Sample.bsx" and
"NextProgram.bsx". NextProgram.bsx belongs to the "Sample" project

and it will be downloaded into program slot 1 and Sample.bsx will be
downloaded into program slot 0.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 69

Using the BASIC Stamp Editor

The editor has the ability to treat projects as one logical unit and can PROJECT DOWNLOAD MODES.
download each of the associated source code files at once. In order to

minimize download time for large projects a Project Download Mode is

available in the Preferences window. The available modes are: “Modified”

(the default), “All” or “Current” and are explained below. This item only

affects download operations for the BS2e, BS2sx, BS2p and BS2pe. See

Table 3.7.

Download Mode Function Table 3.7: Project Download

This mode will cause only the source code files that were Modes.
modified since the last download to be downloaded next time.
If no files have been modified since the last download, or the
Modified (default) entire project has just been loaded into the editor, all the files
will be downloaded next time. This mode decreases the delay
during downloading projects and should help speed
development and testing.

This mode will cause all the source code files to be
All downloaded each time. This will be noticeably slow with large
projects.

This mode will cause only the current source code file to be
downloaded, ignoring all the others. This mode can be helpful,
but can lead to development errors if you forget to download a
required program.

Current

Regardless of the download mode selected, the programs will be
downloaded into the program slot indicated in their tab.

Some source code may be suitable for multiple uses but requires changing CONDITIONAL COMPILE DIRECTIVES.
a set of constants as needed for each case. For example, you may want to

run the same program on a BS2 and a BS2sx, but the resolution of time-

sensitive commands is different, requiring slight code modifications.

Several conditional compile directives exist in PBASIC 2.5 to assist with

this situation. Table 3.8 lists the available directives.

Directive Function Table 3.8: Conditional Compile

Allows the programmer to create custom symbols for use Directives.
#DEFINE o T o
within conditional compilation control structures.

Evaluate Condition and, if it is True, compile the statement(s) | NOTE: These directives require
following #THEN, otherwise compile the statements following PBASIC 2.5.
#ELSE.

#IF.. #THEN... #ELSE

Evaluate Expression and then conditionally compile a block of
#SELECT...#CASE code based on comparison to Condition(s). If no conditions are
found True and a #CASE ELSE block is included, the #CASE
#ELSE code statements will compiled.

#ERROR Allows the programmer to create a custom error dialog.

Page 70 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

3: Using the BASIC Stamp Editor

#DEFINE SYNTAX.

Lets look at the syntax and examples for each conditional compile
directive. For an explanation of syntax conventions, see page 128.

#DEFINE Symbol{ = Value }

#DEFINE allows the programmer to create custom, compile-time, symbols
for use within conditional compile control structures.

e Symbol is a unique symbol name that will optionally represent
a Value.

e Value is an optional constant/expression specifying the value
of Symbol. If the value parameter is omitted, Symbol is defined
as true (-1).

Example:

' {$PBASIC 2.5}
#DEFINE DebugMode

#IF DebugMode #THEN DEBUG "Debugging."
STOP

In the example above, the #DEFINE statement defines DebugMode to be
“true” (-1), since there is no Value argument provided. The second line is
another conditional compile statement, #IF... #THEN (see below for more
information) which evaluates the state of DebugMode, determines it is true
and then allows the following DEBUG statement to be compiled into the
program. The last line, STOP, is compiled into the program afterwards.
The result of compiling this example is a program with only two
executable statements, DEBUG "Debugging"”, CR and STOP. The real
power of this example, however, is more obvious when you comment out,
or remove, the #DEFINE line. Look at the next example, below:

' {$PBASIC 2.5}
' #DEFINE DebugMode

#IF DebugMode #THEN DEBUG "Dubugging."
STOP

Here we commented out the #DEFINE line, effectively removing that line
from the program. This means that the symbol DebugMode will be
undefined, and undefined conditional compile symbols are treated as

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com » Page 71

Using the BASIC Stamp Editor

False (0). Upon compiling this example, the #IF.. #THEN statement will
evaluate DebugMode, which is False (because it is undefined) and then will
not allow the DEBUG statement to be compiled. @ Only the STOP
command will be compiled into the program in this example. This is a
very powerful feature for quickly removing many DEBUG statements (or
other statements) from a program when you're done developing it, but
leaving the possibility of re-enabling all those statements should further
maintenance be required at a later time.

The optional Value argument can be used, for example, to select modes of
operation:

' {$PBASIC 2.5}
#DEFINE SystemMode = 2

#IF SystemMode = 1 #THEN
HIGH 1

#ELSE
LOW 1

H#ENDIF

In the example above, the first line defines SystemMode to be equal to 2.
The #IF.. #THEN statement evaluates the state of SystemMode, determines
it is 2, so the condition is false, and then it skips the statement after #THEN
and allows the statement following #ELSE to be compiled into the
program.

Note, conditional compile directives are evaluated just before the program
is compiled, so variables and named constants cannot be referenced within
a conditional compile definition. Compile-time symbols created with
#DEFINE can, however, be referenced by conditional compile commands.

#IF Condition(s) #THEN
Statement(s)
{ #ELSE
Statement(s) }
#ENDIF

Page 72 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

#IF.. #THEN SYNTAX.

3: Using the BASIC Stamp Editor

#IF.. #THEN is a conditional compile structure similar to the run-time
IF... THEN command except that, at compile time, #IF... #THEN evaluates
Condition(s) and, if it is True, compiles the Statement(s) following #THEN,
otherwise it compiles the Statement(s) following #ELSE.

e Condition is a statement that can be evaluated as True or False

during compile-time.

e Statement is any valid PBASIC instruction.

Example:

' {$pBASIC 2.5}
' set Baud for 9600-N81

#IF (SSTAMP = BS2sx) OR (SSTAMP = BS2p) #THEN
Baud CON 16624
H#ELSE

#IF (SSTAMP = BS2px)
Baud CON 16780
#ELSE
Baud CON 16468
H#ENDIF

H#ENDIF

In this example, the constant Baud is set to an appropriate value for the
BASIC Stamp that is specified in the $STAMP directive (not shown). This
code will work with the BS2, BS2e, BS2sx, BS2p, BS2pe, and BS2px.

One important thing to note is that the $STAMP directive is used here as a
compile-time symbol, as if it were defined by #DEFINE. The compiler
treats all the editor directives, $STAMP, $PBASIC and $PORT as “defined”
compile-time symbols set equal to the respective value used in their
declaration. At the time of this writing, using $PBASIC in this fashion is
pointless since the conditional-compile directives are only supported in
PBASIC 2.5, and would cause an error if compiled in any other version of
the language.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 73

Using the BASIC Stamp Editor

#SELECT Expression #SELECT.. #CASE SYNTAX.
#CASE Condition(s)
Statement(s)
{ #CASE Condition(s)
Statement(s)
#CASE #ELSE
Statement(s) }
#ENDSELECT

#SELECT.. #CASE is a conditional compile structure similar to the run-
time SELECT...CASE command except that, at compile time,
#SELECT.. #CASE evaluates Expression and then conditionally compiles a
block of code based on comparison to Condition(s). If no Conditions are
found to be True and a #CASE #ELSE block is included, the Statement(s) in
the #CASE #ELSE block will be compiled.

o Expression is a statement that can be evaluated as True or False
during compile-time.

e Condition is a statement, that when compared to Expression,
can be evaluated as True or False. Multiple conditions within
the same CASE can be separated by commas (,).

e Statement is any valid PBASIC instruction.

Example:

' {$pBASIC 2.5}

#SELECT $STAMP
#CASE BS2, BS2e, BS2sx
GOSUB LCD Write
#CASE #ELSE
LCDOUT LCDpin, cmd, [char]
H#ENDSELECT

This example checks the $STAMP directive at compile-time and either
compiles

GOSUB LCD Write
- Or —

LCDOUT LCDpin, cmd, [char] into the program.

Page 74 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

3: Using the BASIC Stamp Editor

#ERROR SYNTAX.

Figure 3.27: Custom Error
Message using the #ERROR
directive.

GENERATE OBJECT CODE FEATURE.

#ERROR Message

#ERROR displays a compile-time error. This allows the programmer to
flag fatal errors during compilation.

o Message is the error message string, enclosed in quotes.
Example:

' {$PBASIC 2.5}
#DEFINE I2CReady = (($STAMP = BS2p) OR ($STAMP = BS2pe) OR ($STAMP = BS2px))
#IF NOT I2CReady #THEN

#ERROR "BS2p, BS2pe, or BS2px is required for this program."
#ENDIF

When compiled, this example will cause the editor to halt compilation and

display the dialog below if you attempt to compile for a BASIC Stamp
model other than the BS2p, BS2pe, or BS2px:

eror x|

@ BS2p, B3Zpe, or BSZpx is required for this program,

Features for Developers

The BASIC Stamp Editor has several features that are designed to support
the needs of developers. Note: when installing the BASIC Stamp editor,
you can instruct the installer to include additional developer resources by
selecting the “Custom” option from the “Setup Type” prompt.

The Generate Object Code feature allows you to tokenize a PBASIC
program and save it to a file in the tokenized form. This allows you to
send your BASIC Stamp object code (the actual binary data that is
downloaded to the BASIC Stamp module) to other people without having
to reveal your PBASIC source code. If you are a developer who has

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 75

Using the BASIC Stamp Editor

customers using BASIC Stamp-based products, you can release firmware
updates to them in this manner.

Object code can be saved as a separate .obj file (downloadable with the
StampLoader.exe program) or as a single executable (integrated with the
StampLoader.exe inside of it). The single executable method provides a
simpler way to pass your firmware update on to your customers.

Any syntactically correct PBASIC source code can be used with the
Generate Object Code feature; this includes BS1 and BS2 code as well as
BS2e, BS2sx, BS2p, BS2pe, and BS2px code that is either a single file or a
multi-file project. Note: The original DOS-based software for the BS1
included a directive called BSAVE; when used it would cause the software
to generate an object file. In the BASIC Stamp Windows Editor, the
Generate Object Code feature replaces and enhances the BSAVE feature;
the reserved word BSAVE is still accepted in BS1 source code, but is
simply ignored. Old BS1 object code saved via the BSAVE option is not
compatible with the StampLoader.exe program so you must regenerate
the object file using the BASIC Stamp Windows Editor.

If you don’t have the StampLoader.exe program, it can be automatically
generated for you by selecting the second output file option, “Object Code
and Stamp Loader”, in the Generate Object Code window. Additionally,
firmware, product, company and related info can be embedded in the
object code or single executable file for your customers to view before
downloading.

Page 76 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

3: Using the BASIC Stamp Editor

Figure 3.28: The Generate Object

Code Window.

Figure 3.29: Example customized
StampLoader.exe file.

Generate Dbject Code 101 x|

File(z] To Generate:

(" ObjectCode ¢ Object Code and Stamp Loader % Single Executable

Mames and Meszage:

= Standard i+ Custom

Company: IEDDI Company Product: |Meat Product

Firmusare: IVersiﬂn 20b

Message: |This program will download new firmware to Cool Compary's Neat ;I
Product.

1] b ake sure the Neat Product is properly connected
to your computer,

2)Werity that the Meat Product fs powered,

3] Click Download to continue

Load From Object File...
Generate... I Cancel |

In the example above, we chose to generate a single executable with
custom names and messages as shown. Then we clicked the Generate...
button (which prompted us for a file name) and the file was created.
When a user runs the file we just generated, they see a screen similar to the
figure below:

i, Cool Company - Neat Product Loader =10] x|
Product: et Fraduct
Firrnware: Wersion 2.0b

Checksum: 54004

Compile Date: Thursday, Movember 4, 2004, 08:18 pm

Mates:

Thiz program will download new firmweare to Cool Company's Meat ;I
Product.

1] Make zure the Neat Product iz properly connected
ta pour conmputer,

2] Werify that the Meat Product iz powered,

3] Click. Download to continue,

Download Cancel

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 77

Using the BASIC Stamp Editor

Another feature of interest to some developers is the BASIC Stamp COMMANDLINE INTERFACE.
Editor’s Command Line interface. This interface provides for command
line, batch file or third-party driven control of the editor.

The Stampw.exe program is a Win32 application that can be run through
any standard method. When run with the command-line options,
however, it provides special features that developers and product
manufacturing managers may find useful. While this program can be run
from a command prompt on a Windows system, it will not work on a
DOS-only system.

The Stampw.exe supports redirection of its input and output via the
standard pipe mechanisms. If its output is redirected via the command-
line (ex: Stampw.exe myfilebs2 > Testl.txt) the designated output file,
Test1.txt in this case, will be created and various information about the
processing of the source file will be stored there. This information directly
reflects the information available on the GUI prompts, interactions with
the user and downloading status. This feature can be combined with the
/NoDebug and /NoPrompts switches for various levels of GUI interaction
with the user; including completely hidden operation.

The following is the syntax of the BASIC Stamp Editor’s command-line
switches.

Stampw.exe {/Com#} {{/ReadOnly} source file}

Stampw.exe {/Com#} /Download {/Updates}{/NoDebug}{/NoPrompts} source file > output file
Stampw.exe {/Com#} /Identify {/NoPrompts} > output file

Stampw.exe /Tokenize source file > output_ file

Stampw.exe /Pipe master file

Stampw.exe /Help

Table 3.9 gives a function description for each command-line switch.

Page 78 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

3: Using the BASIC Stamp Editor

Table 3.9: Command Line
Switches

Command Function
/Com# Specify com port (serial port) to download to. # is a valid com port
number. NOTE: must be one word, i.e.: Com2 indicates com port 2.
Open source_file in read-only mode. The Cirl key acts as a download key
/ReadOnly when in read-only mode. Requires source_file argument. This command
option is not available if double-piped communication is established.
. Identify BASIC Stamp modules on COM ports. Requires redirection to
/Identify "
output file.
. Tokenize source code. No prompts will be displayed. Requires
/Tokenize . o ;
source_file argument and redirection to output file.
Tokenize source code, and download it (if tokenization successful).
/Download .) S)
Requires source_file argument and redirection to output_file.
/Updates Provides program slot number (if applicable) and download-percentage-
P complete status updates during download.
No Debug Terminal opens after downloading (even if code contains
/NoDebu DEBUGSs) and COM port is immediately closed after downloading. This
9 option requires /Download switch. Note: This switch will have no effect if
Debug Terminal is already open from a previous operation.
/NoPrompts No screen pro_mpts at all (except for Debug Terminal). This option requires
/Download switch.
Start up master_file (must be .exe) and establish bi-directional
. communication pipes (double-piped communication) for master-program-
/Pipe .) h)
. controlled execution. Stampw.exe remains open until master_file breaks
master_file) -
pipe. This command option is not available once double-piped
communication is established.
Display command-line help. This command option is not available if double-
/Help : TN .
piped communication is established.

When the output of the BASIC Stamp Editor is piped to a file or a master
program, it displays all of its messages in a specific, predefined format.
Each message has a unique 3-digit number. Detailed information about
the use of command-line options, including a table of all messages with
their ID numbers, can be found in the “What's New in Stamp.exe”
document included with the typical installation of the Stamp Editor.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 79

Using the BASIC Stamp Editor

Page 80 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture — Memory Organization

MEMORY ORGANIZATION

RAM ORGANIZATION (BS1)

THE INPUT/OUTPUT VARIABLES.

=

BASIC Stamp Architecture Introduction This chapter provides detail on
the architecture (RAM usage) and math functions of the BS1, BS2, BS2e,
BS2sx, BS2p, BS2pe, and BS2px.

The following icons will appear to indicate where there are differences
among the various BASIC Stamp models:

{28{2}i2} One or more of these icons indicates the item applies only
: to the BS1, BS2, BS2e, BS2sx, BS2p, BS2pe, or BS2px

{2F32k428
. -- " respectiVEly'

If an item applies to the all of the models in the BS2
family, this icon is used.

The BASIC Stamp has two kinds of memory; RAM (for variables used by
your program) and EEPROM (for storing the program itself). EEPROM
may also be used to store long-term data in much the same way that
desktop computers use a hard drive to hold both programs and files.

An important distinction between RAM and EEPROM is this:

* RAM loses its contents when the BASIC Stamp loses power; when
power returns, all RAM locations are cleared to 0Os.

e EEPROM retains the contents of memory, with or without power,
until it is overwritten (such as during the program-downloading
process or with a WRITE instruction.)

The BS1 has 16 bytes (8 words) of RAM space arranged as shown in Table
4.1 The first word, called PORT, is used for I/O pin control. It consists of
two bytes, PINS and DIRS. The bits within PINS correspond to each of the
eight I/O pins on the BS1. Reading PINS effectively reads the I/O pins
directly, returning an 8-bit set of 1's and 0's corresponding to the high and
low state of the respective I/O pin at that moment. Writing to PINS will
store a high or low value on the respective I/O pins (though only on pins
that are set to outputs).

The second byte of PORT, DIRS, controls the direction of the I/O pins.
Each bit within DIRS corresponds to an I/O pin's direction. A high bit (1)

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com » Page 81

BASIC Stamp Architecture — Memory Organization

sets the corresponding I/O pin to an output direction and a low bit (0) sets
the corresponding I/O pin to an input direction.

The remaining words (W0 — W6) are available for general-purpose use.
Each word consists of separately addressable bytes and the first two bytes
(B0 and B1) are bit addressable as well.

You may assign other names (symbols) to these RAM registers as shown
in section "Defining and Using Variables", below.

When the BS1 is powered up, or reset, all memory locations are cleared to
0, so all pins are inputs (DIRS = %00000000). Also, if the PBASIC program
sets all the I/O pins to outputs (DIRS = %11111111), then they will initially
output low, since the output latch (PINS) is cleared to all zeros upon
power-up or reset, as well.

Word Name | Byte Names [Bit Names Special Notes Table 4.1: BS1 RAM Organization.
PORT PINS PINO—PIN7 | I/O pins; bit addressable. Note: There are eight words,
DIRS DIRO - DIR7 | /O pins directions; bit addressable. consisting of two bytes each for a
BO BITO - BIT7 Bit addressable. total of 16 bytes. The bits within
wo B1 BIT8 — BIT15 | Bit addressable. the upper two words are
B2 individually addressable.
Wi1 B3
B4
w2 B5
B6
W3 B7
B8
w4 B9
B10
WS B11
W6 B12 Used by GOSUB instruction.
B13 Used by GOSUB instruction.

The BS2, BS2e, and BS2sx models have 32 bytes of Variable RAM space RAM ORGANIZATION.
arranged as shown in Table 4.2. Of these, the first six bytes are reserved 223

for input, output, and direction control of the I/O pins. The remaining 26 — = =

bytes are available for general-purpose use as variables.

The BS2p, BS2pe, and BS2px models have an extra set of INS, OUTS, and
DIRS registers for a total of 38 bytes of variable RAM. These are “shadow”
registers that are switched in and out of the memory map with the
AUXIO, MAINIO, and IOTERM commands. While this feature exists in

Page 82 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture — Memory Organization

THE INPUT/OUTPUT VARIABLES.

Table 4.2: RAM Organization for
all BS2 models.

NOTE: There are 16 words, of
two bytes each for a total of 32
bytes*. All bits are individually
addressable through variable
modifiers; the bits within the
upper three words are also
individually addressable though
the pre-defined names shown.
All registers are word, byte,
nibble and bit addressable.

*The BS2p, BS2pe, and BS2px
have an additional set of INS,
OUTS, and DIRS registers that
are switched in and out of the
memory map in place of the main
INS, OUTS, and DIRS registers
by using AUXIO, MAINIO, and
IOTERM. Only the BS2p40 has
the required extra 1/O pins this
feature is intended for.

the variable RAM for these models, only the BS2p40 module has the extra
16 I/0 pins for which this feature is intended.

The word variable INS is unique in that it is read-only. The 16 bits of INS
reflect the state of I/O pins PO through P15. It may only be read, not
written. OUTS contains the states of the 16 output latches. DIRS controls
the direction (input or output) of each of the 16 I/O pins.

A 01in a particular DIRS bit makes the corresponding pin an input and a 1
makes the corresponding pin an output. So if bit 5 of DIRS is 0 and bit 6 of
DIRS is 1, then I/O pin 5 (P5) is an input and I/O pin 6 (P6) is an output.
A pin that is an input is at the mercy of circuitry outside the BASIC Stamp;
the BASIC Stamp cannot change its state. A pin that is an output is set to
the state indicated by the corresponding bit of the OUTS register.

When the BASIC Stamp is powered up, or reset, all memory locations are
cleared to 0, so all pins are inputs (DIRS = %0000000000000000). Also, if
the PBASIC program sets all the I/O pins to outputs (DIRS =
%1111111111111111), then they will initially output low, since the output
latch (OUTS) is cleared to all zeros upon power-up or reset, as well.

Word Name [Byte Names | Nibble Names Bit Names Special Notes
INS* INL, INH INA, INB INO — IN7 Input pins
INC, IND IN8 — IN15
ouTS* OUTL, OUTH | OUTA,OUTB | OUTO0-OUT7 | Output pins
OUTC, OUTD | OUT8 - OUT15
DIRS* DIRL, DIRH DIRA, DIRB DIRO - DIR7 1/0 pin direction control
DIRC, DIRD DIR8 — DIR15

Wo BO, B1

Wi1 B2, B3

w2 B4, B5

W3 B6, B7

w4 B8, B9

W5 B10, B11

W6 B12, B13

W7 B14, B15

w8 B16, B17

W9 B18, B19

W10 B20, B21

W11 B22, B23

W12 B24, B25

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 83

BASIC Stamp Architecture — Memory Organization

The INS variable always shows the state of the I/O pins themselves,
regardless of the direction of each I/O pin. We call this, "reading the
pins". If a pin was set to an input mode (within DIRS) and an external
circuit connected the I/O pin to ground, the corresponding bit of INS
would be low. If a pin was set to an output mode and the pin's state was
set to a high level (within OUTS), the corresponding bit of INS would be
high. If, however, that same pin was externally connected directly to
ground, the corresponding bit of INS would be low; since we're reading
the state of the pin itself and the BASIC Stamp cannot override a pin that is
driven to ground or 5 volts externally. Note: The last example is an error,
is a direct short and can cause damage to the BASIC Stamp! Do not
intentionally connect output pins directly to an external power source or
you risk destroying your BASIC Stamp.

To summarize: DIRS determines whether a pin’s state is set by external
circuitry (input, 0) or by the state of OUTS (output, 1). INS always matches
the actual states of the I/O pins, whether they are inputs or outputs. OUTS
holds bits that will only appear on pins whose DIRS bits are set to output.

In programming the BASIC Stamp, it’s often more convenient to deal with
individual bytes, nibbles or bits of INS, OUTS and DIRS rather than the
entire 16-bit words. PBASIC has built-in names for these elements, shown
in Table 4.2.

Here's an example of what is described in Table 4.2. The INS register is 16-
bits (corresponding to I/O pins 0 though 15). The INS register consists of
two bytes, called INL (the Low byte) and INH (the High byte). INL
corresponds to I/O pins 0 through 7 and INH corresponds to I/O pins 8
though 15. INS can also be thought of as containing four nibbles, INA,
INB, INC and IND. INA is I/O pins 0 though 3, INB is I/O pins 4 though
7, etc. In addition, each of the bits of INS can be accessed directly using
the names INO, IN1, IN2... INb5.

The same naming scheme holds true for the OUTS and DIRS variables as
well.

As Table 4.2 shows, the BASIC Stamp module’s memory is organized into

16 words of 16 bits each. The first three words are used for 1/O. The
remaining 13 words are available for use as general-purpose variables.

Page 84 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

SUMMARY OF THE FUNCTION OF DIRS,
INS AND OUTS.

PREDEFINED "FIXED" VARIABLES.

4: BASIC Stamp Architecture — Defining Variables

DEFINING AND USING VARIABLES (VAR).

The 40-pin BS2p uses the first three words for I/O even though it has
twice as many I/O pins. This is done with the AUXIO, MAINIO, and
IOTERM commands, which effectively switch the auxiliary I/O registers
in and out of the INS, OUTS, and DIRS locations.

Just like the I/O variables, the general-purpose variables have predefined
names: WO through W12 and B0 through B25. B0 is the low byte of WO0; Bl
is the high byte of W0; and so on through W12 (B24=low byte, B25=high
byte). Unlike I/O variables, there’s no reason that your program variables
have to be stuck in a specific position in the BASIC Stamp’s physical
memory. A byte is a byte regardless of its location. And if a program uses
a mixture of variables of different sizes, it can be difficult to logically dole
them out or allocate storage.

More importantly, mixing fixed variables with automatically allocated
variables (discussed in the next section) is an invitation to bugs. A fixed
variable can overlap an allocated variable, causing data meant for one
variable to show up in another! The fixed variable names (of the general-
purpose variables) are only provided for power users who require
absolute access to a specific location in RAM.

We recommend that you avoid using the fixed variables in most
situations. Instead, let PBASIC allocate variables as described in the next
section. The editor software will organize your storage requirements to
make optimal use of the available memory.

Before you can use a variable in a PBASIC program you must declare it.
“Declare” means letting the BASIC Stamp know that you plan to use a
variable, what you want to call it, and how big it is. Although PBASIC
does have predefined variables that you can use without declaring them
first (see previous sections), the preferred way to set up variables is to use
the directive SYMBOL (for the BS1) or VAR (for all BS2 models). Here is
the syntax for a variable declaration:

SYMBOL name = RegisterName
u— Or u—
name VAR Size

where name is the name by which you will refer to the variable,
RegisterName is the "fixed" name for the register and size indicates the

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 85

BASIC Stamp Architecture — Defining Variables

number of bits of storage for the variable. NOTE: The top example is for
the BS1 and the bottom example is for all BS2 models.

There are certain rules regarding symbol names. Symbols must start with
a letter or underscore, can contain a mixture of letters, numbers, and
underscore (_) characters, and must not be the same as PBASIC reserved
words, or labels used in your program. Additionally, symbols can be up to
32 characters long. See Appendix B for a list of PBASIC reserved words.
PBASIC does not distinguish between upper and lower case, so the names
MYVARIABLE, myVariable, and MyVaRiAbLe are all equivalent.

For the BS1, the register name is one of the predefined "fixed" variable
names, such as W0, W1, BO, Bl, etc. Here are a few examples of variable
declarations on the BS1:

SYMBOL temporary = WO ' value can be 0 to 65535
SYMBOL counter = Bl ' value can be 0 to 255
SYMBOL result = B2 ' value can be 0 to 255

The above example will create a variable called temporary whose contents
will be stored in the RAM location called WO0. Also, the variable counter
will be located at RAM location Bl and result at location B2. Note that
temporary is a word-sized variable (because that's what size WO is) while
the other two are both byte-sized variables. Throughout the rest of the
program, we can use the names temporary, counter, and result instead of
WO, Bl and B2, respectively. This makes the code much more readable; it's
easier to determine what counter is used for than it would be to figure out
what the name Bl means. Please note that counter resides at location Bl,
and Bl happens to be the high byte of W0. This means than changing
counter will also change temporary since they overlap. A situation like this
usually is a mistake and results in strange behavior, but is also a powerful
feature if used carefully.

For all BS2 models, the Size argument has four choices: 1) Bit (1 bit), 2) Nib
(nibble; 4 bits), 3) Byte (8 bits), and 4) Word (16 bits). Here are some
examples of variable declarations on the BS2 models:

mouse VAR BIT ' Value can be 0 or 1.

cat VAR NIB ' Value can be 0 to 15.
dog VAR BYTE ' Value can be 0 to 255.
rhino VAR WORD ' Value can be 0 to 65535.

Page 86 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

THE RULES OF SYMBOL NAMES.

4: BASIC Stamp Architecture — Defining Arrays

DEFINING ARRAYS.

The above example will create a bit-sized variable called mouse, and
nibble-sized variable called cat, a byte-sized variable called dog and a
word-sized variable called rhino. Unlike in the BS1, these variable
declarations don't point to a specific location in RAM. Instead, we only
specified the desired size for each variable; the BASIC Stamp will arrange
them in RAM as it sees fit. Throughout the rest of the program, we can
use the names mouse, cat, dog and rhino to set or retrieve the contents of
these variables.

A variable should be given the smallest size that will hold the largest
value that will ever be stored in it. If you need a variable to hold the
on/off status (1 or 0) of switch, use a bit. If you need a counter for a
FOR...NEXT loop that will count from 1 to 100, use a byte. And so on.

If you assign a value to a variable that exceeds its size, the excess bits will
be lost. For example, suppose you use the byte variable dog, from the
example above, and write dog = 260 (%100000100 binary). What will dog
contain? It will hold only the lowest 8 bits of 260: %00000100 (4 decimal).

On all BS2 models, you can also define multipart variables called arrays.
An array is a group of variables of the same size, and sharing a single
name, but broken up into numbered cells, called elements. You can define
an array using the following syntax:

name VAR Size (n)

where name and Size are the same as described earlier. The new argument,
(n), tells PBASIC how many elements you want the array to have. For
example:

myList VAR Byte (10) ' Create a 10-byte array.

Once an array is defined, you can access its elements by number.
Numbering starts at 0 and ends at n-1. For example:

myList (3) = 57
DEBUG ? myList(3)

This code will display "myList(3) = 57" on the PC screen. The real power of
arrays is that the index value can be a variable itself. For example:

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 87

BASIC Stamp Architecture — Defining Arrays

myBytes VAR Byte (10)
idx VAR Nib

Define 10-byte array
Define 4-bit var

FOR idx = 0 TO 9
myBytes (idx) = idx * 13
NEXT

Repeat with idx = 0, 1, 2...9
Write idx * 13 to each cell

FOR idx = 0 TO 9 Repeat with idx = 0, 1, 2...9
DEBUG ? myBytes (idx) ' Show contents of each cell

NEXT

STOP

If you run this program, DEBUG will display each of the 10 values stored
in the elements of the array: myBytes(0) = 0*13 = 0, myBytes(1) = 1*13 = 13,
myBytes(2) = 2*13 = 26 ... myBytes(9) = 9*13 = 117.

A word of caution about arrays: If you're familiar with other BASICs and
have used their arrays, you have probably run into the “subscript out of
range” error. Subscript is another term for the index value. It is
out-of-range when it exceeds the maximum value for the size of the array.
For instance, in the example above, myBytes is a 10-cell array. Allowable
index numbers are 0 through 9. If your program exceeds this range,
PBASIC will not respond with an error message. Instead, it will access the
next RAM location past the end of the array. If you are not careful about
this, it can cause all sorts of bugs.

If accessing an out-of-range location is bad, why does PBASIC allow it?
Unlike a desktop computer, the BASIC Stamp doesn’t always have a
display device connected to it for displaying error messages. So it just
continues the best way it knows how. It’s up to the programmer (you!) to
prevent bugs. Clever programmers, can take advantage of this feature,
however, to perform tricky effects.

Another unique property of PBASIC arrays is this: You can refer to the Oth
cell of the array by using just the array’s name without an index value. For
example:

myBytes VAR Byte (10) Define 10-byte array

Store 17 to 0th cell
Display contents of Oth cell
Also displays 0th cell

myBytes (0) = 17
DEBUG ? myBytes (0)
DEBUG ? myBytes

Page 88 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture — Aliases and Modifiers

ALIASES AND VARIABLE MODIFIERS.

=

This feature is how the "string" capabilities of the DEBUG and SEROUT
command expect to work. A string is simply a byte array used to store
text. See "Displaying Strings (Byte Arrays)" in the DEBUG command
description on page 166 for more information.

An alias is an alternative name for an existing variable. For example:

SYMBOL cat = BO ' Create a byte-sized variable
SYMBOL tabby = cat ' Create alias for cat

— Or —

cat VAR Byte ' Create a byte-sized variable
tabby VAR cat ' Create alias for cat

In this example, tabby is an alias to the variable cat. Anything stored in cat
shows up in tabby and vice versa. Both names refer to the same physical
piece of RAM. This kind of alias can be useful when you want to reuse a
temporary variable in different places in your program, but also want the
variable’s name to reflect its function in each place. Use caution, because it
is easy to forget about the aliases; during debugging, you might end up
asking ‘How did that value get here?!” The answer is that it was stored in
the variable’s alias.

On all the BS2 models, an alias can also serve as a window into a portion
of another variable. This is done using "modifiers." Here the alias is
assigned with a modifier that specifies what part to reference:

rhino VAR Word ' A 16-bit variable
head VAR rhino.HIGHBYTE ' Highest 8 bits of rhino
tail VAR rhino.LOWBYTE ' Lowest 8 bits of rhino

Given that example, if you write the value %1011000011111101 to rhino,
then head would contain %10110000 and tail would contain %11111101.

Table 4.3 lists all the variable modifiers. PBASIC 2.0 and 2.5 lets you apply
these modifiers to any variable name and to combine them in any fashion
that makes sense. For example, it will allow:

rhino VAR Word ' A 16-bit variable
eye VAR rhino.HIGHBYTE.LOWNIB.BIT1 ' A bit

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 89

BASIC Stamp Architecture — Aliases and Modifiers

Symbol Definition
LOWBYTE low byte of a word
HIGHBYTE high byte of a word
BYTEO byte 0 (low byte) of a word
BYTEH1 byte 1 (high byte) of a word
LOWNIB low nibble of a word or byte
HIGHNIB high nibble of a word or byte
NIBO nib 0 of a word or byte
NIB1 nib 1 of a word or byte
NIB2 nib 2 of a word
NIB3 nib 3 of a word
LOWBIT low bit of a word, byte, or nibble
HIGHBIT high bit of a word, byte, or nibble
BITO bit 0 of a word, byte, or nibble
BIT1 bit 1 of a word, byte, or nibble
BIT2 bit 2 of a word, byte, or nibble
BIT3 bit 3 of a word, byte, or nibble
BIT4 ... BIT7 [bits 4 though 7 of a word or byte
BIT8 ... Bit15 [bits 8 through 15 of a word

The common sense rule for combining modifiers is that they must get
progressively smaller from left to right. It would make no sense to specify,
for instance, the low byte of a nibble, because a nibble is smaller than a
byte! And just because you can stack up modifiers doesn’t mean that you
should unless it is the clearest way to express the location of the part you
want get at. The example above might be improved:

rhino VAR Word ' A 16-bit variable
eye VAR rhino.BIT9 ' A bit

Although we’ve only discussed variable modifiers in terms of creating
alias variables, you can also use them within program instructions:

rhino VAR Word ' A 16-bit variable

head VAR rhino.HIGHBYTE ' Highest 8 bits of rhino
rhino = 13567

DEBUG ? head ' Display alias variable head
DEBUG ? rhino.HIGHBYTE ' rhino.HIGHBYTE works too
STOP

Modifiers also work with arrays. For example:

myBytes VAR Byte (10) ' Define 10-byte array
myBytes (0) = SAB ' Hex S$AB into Oth byte
DEBUG HEX ? myBytes.LOWNIB(0) ' Show low nib ($B)
DEBUG HEX ? myBytes.LOWNIB (1) ' Show high nib ($A)

Page 90 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Table 4.3: Variable Modifiers for all
BS2 models.

4: BASIC Stamp Architecture — Aliases and Modifiers

THE MEMORY MAP

If you looked closely at that example, you probably thought it was a
misprint. Shouldn’t myBytes. LOWNIB(1) give you the low nibble of byte 1
of the array rather than the high nibble of byte 0? Well, it doesn’t. The
modifier changes the meaning of the index value to match its own size. In
the example above, when myBytes() is addressed as a byte array, it has 10
byte-sized cells numbered 0 through 9. When it is addressed as a nibble
array, using myBytes. LOWNIB(), it has 20 nibble-sized cells numbered 0
through 19. You could also address it as individual bits using
myBytes. LOWBIT(), in which case it would have 80 bit-sized cells
numbered 0 through 79.

What if you use something other than a “low” modifier, say
myBytes. HIGHNIB()? That will work, but its effect will be to start the
nibble array with the high nibble of myBytes(0). The nibbles you address
with this nib array will all be contiguous, one right after the other, as in the
previous example.

myBytes VAR Byte(10) ' Define 10-byte array.

myBytes (0) = SAB ' Hex S$AB into Oth byte
myBytes (1) = $CD ' Hex $CD into next byte
DEBUG HEX ? myBytes.HIGHNIB(0) ' Show high nib of cell 0 ($A)
DEBUG HEX ? myBytes.HIGHNIB(1) ' Show next nib (S$D)

This property of modified arrays makes the names a little confusing. If you
prefer, you can use the less-descriptive versions of the modifier names;
BITO instead of LOWBIT, NIBO instead of LOWNIB, and BYTEOQ instead of
LOWBYTE. These have exactly the same effect, but may be less likely to be
misconstrued.

You may also use modifiers with the Oth cell of an array by referring to
just the array name without the index value in parentheses. It’s fair game
for aliases and modifiers, both in VAR directives and in instructions.

On all BS2 models, if you're working on a program and wondering how
much variable space you have left, you can use the Memory Map feature
of the editor (CTRL-M). See the "Memory Map" section of Chapter 3 on
page 50.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 91

BASIC Stamp Architecture — Scratch Pad RAM

The BS2e, BS2sx, BS2p, BS2pe, and BS2px have some additional RAM SCRATCHPAD RAM
called Scratch Pad RAM. The BS2e and BS2sx have 64 bytes of Scratch Pad {2} {2t {2} {2} {2}
RAM (0 to 63) and the BS2p, BS2pe, and BS2px have 136 bytes of Scratch GHEEEE
Pad RAM (0-135). Scratch Pad RAM can only be accessed with the GET

and PUT commands and cannot have variable names assigned to it. Table

4.4 shows the layout of all SPRAM registers.

Notice that the highest locations in Scratch Pad RAM (location 63 in the
BS2e and BS2sx, locations 127-135 in the BS2p, BS2pe, and BS2px) are
special-purpose, read-only locations that always contain special run-time
information. For example, the lowest nibble of location 63 (BS2e and
BS2sx) or 127 (BS2p, BS2pe, and BS2px) contains the number of the
currently running program slot. This is handy for programs that need to
know which program slot they exist in. In the BS2p, BS2pe, and BS2px,
the high nibble of location 127 holds the slot designated for READ and
WRITE; see the STORE command on page 449 for more information.

Page 92 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture — Scratch Pad RAM

Table 4.4: Layout of SPRAM
Registers.

NOTE: Scratch Pad RAM can
only be accessed with the GET
and PUT commands. Scratch
Pad RAM cannot have variable
names assigned to it.

Location

BS2e and BS2sx

BS2p, BS2pe and BS2px

0...62

General Purpose RAM

General Purpose RAM

63

Bits 0-3: Active program
slot number.

General Purpose RAM

64..126

n/a

General Purpose RAM

127

n/a

Bits 0-3, Active program slot #. Bits 4-7, program
slot for READ and WRITE operations.

128

n/a

Polled input trigger status of Main 1/O pins 0-7
(0 = not triggered, 1 = triggered).

129

n/a

Polled input trigger status of Main 1/O pins 8-15
(0 = not triggered, 1 = triggered).

130

n/a

Polled input trigger status of Auxiliary I/O pins
0-7 (0 = not triggered, 1 = triggered).

131

n/a

Polled input trigger status of Auxiliary I/O pins
8-15 (0 = not triggered, 1 = triggered).

132

n/a

Bits 0-3: Polled-interrupt mode, set by
POLLMODE

133

n/a

Bits 0-2: Polled-interrupt “run” slot, set by
POLLRUN.

134

n/a

Bit 0: Active 1/O group; 0 =Main /0O,
1 = Auxiliary 1/0.

135

n/a

Bit 0: Polled-output status (set by POLLMODE);
0 = disabled, 1= enabled.
Bit 1: Polled-input status; 0 = none defined,
1 = at least one defined.
Bit 2: Polled-run status (set by POLLMODE);
0 = disabled, 1 = enabled.
Bit 3: Polled-output latch status;
0 = real-time mode, 1 = latch mode.
Bit 4: Polled-input state;
0 = no trigger, 1 = triggered.
Bit 5: Polled-output latch state;
0 = nothing latched, 1 = signal latched.
Bit 6: Poll-wait state; 0 = No Event, 1 = Event
Occurred. (Cleared by POLLMODE only).
Bit 7: Polling status; O = not active, 1 = active.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 93

BASIC Stamp Architecture — Constants and Expressions

Suppose you're working on a program called “Three Cheers” that flashes CONSTANTS AND COMPILE-TIME
LEDs, makes hooting sounds, and activates a motor that crashes cymbals EXPRESSONS.

together, all in sets of three. A portion of your PBASIC program might

contain something like:

FOR counter = 1 TO 3
GOSUB Make Cheers
NEXT

FOR counter =1 TO 3
GOSUB Blink LEDs
NEXT

FOR counter = 1 TO 3
GOSUB Crash Cymbals
NEXT

The numbers 1 and 3 in the code above are called constants. They are
constants because, while the program is running, nothing can happen to
change those numbers. This distinguishes constants from variables, which
can change while the program is running.

Constants are not limited to the decimal number system; PBASIC allows
you to use several numbering systems. See “Number Representations” on
page 96.

You can assign names to constants in a fashion similar to how variables DEFINING AND USING CONSTANTS (CON).
are declared. On a BS], it is identical to variable declarations. For all BS2
models, use the CON directive. Here is the syntax:

SYMBOL Name = ConstantValue
- 01' -

All 2
Name CON ConstantValue

Page 94 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture — Gonstants and Expressions

Once created, named constants may be used in place of the numbers they
represent. For example:

SYMBOL Cheers = 3 ' Number of cheers.

=

FOR counter = 1 TO Cheers
GOSUB Make Cheers
NEXT

p—— Or p——
All 2 Cheers CON 3 ' Number of cheers.

FOR counter = 1 TO Cheers
GOSUB Make Cheers
NEXT

That code works exactly the same as the corresponding FOR...NEXT loop
in the previous example. The editor software substitutes the number 3 for
the symbol named Cheers throughout your program. Like variables, labels
and instructions, constant names are not case sensitive; CHEERS, and
ChEETs are identical to Cheers.

Using named constants does not increase the amount of code downloaded
to the BASIC Stamp, and it often improves the clarity of the program.
Weeks after a program is written, you may not remember what a
particular number was supposed to represent—using a name may jog
your memory (or simplify the detective work needed to figure it out).

Named constants also have another benefit. Suppose the “Three Cheers”
program had to be upgraded to “Five Cheers.” In the original example
you would have to change all of the 3s to 5s. Search and replace would
help, but you might accidentally change some 3s that weren’t numbers of
cheers, too. However, if you had made smart use of a named constant, all
you would have to do is change 3 to 5 in one place, the constant's

declaration:
SYMBOL Cheers =5 ' Number of cheers.
p—— Or p—
All 2
Cheers CON 5 ' Number of cheers.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 95

BASIC Stamp Architecture — Number Representations

Now, assuming that you used the constant Cheers wherever your program
needed ‘the number of cheers,” your upgrade would be done.

On all BS2 models, you can take this idea a step further by defining
constants with expressions; groups of math and/or logic operations that
the editor software solves (evaluates) at compile-time (the time right after
you start the download and before the BASIC Stamp starts running your
program). For example, suppose the “Cheers” program also controls a
pump to fill glasses with champagne. Perhaps the number of glasses to fill
is always twice the number of cheers, minus 1 (another constant):

Cheers CON 5 ' # of cheers
Glasses CON Cheers*2-1 ' # of glasses

As you can see, one constant can be defined in terms of another. That is,
the number glasses depends on the number cheers.

The expressions used to define constants must be kept fairly simple. The
editor software solves them from left to right, and doesn’t allow you to use
parentheses to change the order of evaluation. The operators that are
allowed in constant expressions are shown in Table 4.5.

Operator Symbol Description
+ Add
- Subtract
* Multiply
/ Divide
<< Shift Left
>> Shift Right
& Logical AND
| Logical OR
A Logical XOR

The BASIC Stamp, like any computer, excels at math and logic. However,
being designed for control applications, the BASIC Stamp does math a
little differently than a calculator or spreadsheet program. This section will
help you understand BASIC Stamp numbers, math, and logic.

In your programs, you may express a number in various ways, depending

on how the number will be used and what makes sense to you. By default,
the BASIC Stamp recognizes numbers like 0, 99 or 62145 as being in our

Page 96 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Table 4.5: Operators allowed in
constant expressions for all BS2
models.

RUN-TIME MATH AND LOGIC.

NUMBER REPRESENTATIONS.

4: BASIC Stamp Architecture — Number Representations

HEX TO BCD CONVERSION

everyday decimal (base-10) system. However, you may also use
hexadecimal (base-16; also called hex) or binary (base-2).

Since the symbols used in decimal, hex and binary numbers overlap (e.g.,
1 and 0 are used by all; 0 through 9 apply to both decimal and hex) the
editor software needs prefixes to tell the numbering systems apart, as
shown below:

99 ' Decimal (no prefix)
S1A6 ' Hex (prefix ‘S’ required)
%1101 ' Binary (prefix ‘%’ required)

The BASIC Stamp also automatically converts quoted text into ASCII
codes, and allows you to apply names (symbols) to constants from any of
the numbering systems. For example:

SYMBOL LetterA = AN ' ASCII code for A (65)
SYMBOL Cheers = 3

SYMBOL Hex128 = 380

SYMBOL FewBits = %1101

p— OI' —

LetterA CON AN ' ASCII code for A (65)
Cheers CON 3

Hex128 CON 380

FewBits CON %1101

Binary Coded Decimal (BCD) is a way to encode decimal digits that is
easier to display or manipulate in some devices. Each digit of the decimal
number (0 — 9) requires 4 bits (a nibble) to encode. For this reason, a BCD
byte is always two decimal digits and a BCD word is always four decimal
digits. The BASIC Stamp does not support BCD natively, however,
because of the way that BCD is encoded the BS2 models’ hexadecimal
prefix, and Conversion Formatters can be used as a shortcut for most BCD
input/output operations as long as the digits used do not exceed valid
decimal digits (0 — 9). For example:

BCDValue CON $4096

DEBUG HEX BCDValue

The first line creates a symbol, BCDValue, that contains the binary form of
the hexadecimal value $4096, which means the upper nibble contains the
binary value for the decimal digit 4, the next nibble is 0, the next nibble is 9

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 97

BASIC Stamp Architecture — Number Representations

and the last nibble is 6; this corresponds exactly to the BCD form of the
decimal number 4096. The second line in the above example uses the HEX
Conversion Formatter within the DEBUG command (see DEBUG, page
159) to output the BCD value 4096 to the Debug Terminal. The HEX
Conversion Formatter can also be used for input operations to convert a
decimal value to BCD, as long as that decimal value is no greater than 2
digits for a Byte-sized variable or 4 digits for a Word-sized variable.

For more information on constants, see the section "Constants and
Compile-Time Expressions", above.

With all BS2 models, some of the math or logic operations in a program
are solved by the BASIC Stamp. The editor software solves operations that
define constants before the program is downloaded to the BASIC Stamp.
The preprocessing that takes place before the program is downloaded is
referred to as “compile-time.”

After the download is complete, the BASIC Stamp starts executing your
program; this is referred to as “run-time.” At run-time the BASIC Stamp
processes math and logic operations involving variables, or any
combination of variables and constants.

Because compile-time and run-time expressions appear similar, it can be
hard to tell them apart.
A few examples will help:

result VAR Byte ' Compile-time assignment

Cheers CON 3 ' Compile-time

Glasses CON Cheers * 2 - 1 ' Compile-time

OneNinety CON 100 + 90 ' Compile-time

NotWorking CON 3 * result ' ERROR: Variables not allowed here

result = Glasses ' Run-time

result = 99 + Glasses ' Run-time

result = OneNinety + 1 ' "100 + 90" solved at compile-time
' OneNinety + 1 solved at run-time

result = 100 + 90 ' 100 + 90 solved at run-time

Notice that the last example is solved at run-time, even though the math
performed could have been solved at compile-time since it involves two
constants. If you find something like this in your own programs, you can
save some program space in the EEPROM by converting the run-time

Page 98 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

WHEN IS RUN-TIME?

4: BASIC Stamp Architecture — PIN Symbols

DEFINING AND USING PINS WITH THE PIN

DIRECTIVE.

expression 100+90 into a compile-time expression like OneNinety CON
100+90.

To sum up: compile-time expressions are those that involve only
constants; once a variable is involved, the expression must be solved at
run-time. That’s why the line “NotWorking CON 3 * result” would
generate an error message. The CON directive works only at compile-time
and result is a variable; variables are not allowed in compile-time
expressions.

Now we know now to create variables and constants (with VAR and
CON) but there is a third option if you're using PBASIC 2.5; pin-type
symbols (with PIN). PIN is like VAR and CON put together and
represents an I/O pin.

There are some situations where it is handy to refer to a pin using a
variable (like IN2 or OUT2) and also as a constant (2, in this case). The
PIN directive lets you define a context-sensitive symbol representing an
I/0 pin. Depending on where and how this pin-type symbol is used
determines whether it is treated as an I/O pin input variable, and I/O pin
output variable or as a constant representing the pin number.

Let’s explore a simple example to see where this is useful. It is common
practice to define constants for any number used in many places so that
changing that number doesn’t create a maintenance hassle later on. If we
were to use a constant symbol to represent an I/O pin, we might do
something like this:

' {$PBASIC 2.5}

signal CON 1 ' constant-type symbol representing I/O 1
INPUT signal ' set signal pin to input
Wait:

IF signal = 0 THEN Wait ' wait until signal pin = 1

Here we define signal to represent our desired 1/O pin, then we use the
INPUT command to set it to the input direction and later we check the
state of the signal pin and loop (wait) while it is equal to logic 0. This code
has a common bug, however; the INPUT command works as expected,
because its Pin argument requires a number representing the I/O pin, but

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 99

BASIC Stamp Architecture — PIN Symbols

the Condition argument in the IF... THEN statement will always evaluate to
false because signal is a constant equal to 1, and “1 = 0” is false. What the
user really meant to happen is something like: IF IN1 = 0 THEN Wait
because IN1 is the input variable representing the current state of I/O pin
1. This situation is perfect for the PIN directive:

' {$PBASIC 2.5}

signal PIN 1 ' pin-type symbol representing I/O0 1
INPUT signal ' set signal pin to input
Wait:

IF signal = 0 THEN Wait ' wait until signal =1

We only changed one thing in this code: the CON directive was changed
to PIN. Now signal is a context-sensitive symbol that will be treated as a
constant or as a variable depending on where it is used. In the INPUT
command signal is used as the Pin argument, and since that argument
requires a number representing the pin number, signal is treated as a
constant equal to 1. In the IF... THEN statement, signal is compared to
another value (which implies that what signal represents is expected to
change at run-time; i.e.: signal’s value is “variable”) so signal is treated as a
variable equal to the input variable for the defined pin (IN1 in this case).

As another example, consider the following code:

' {$PBASIC 2.5}

signal CON 2 ' constant-type symbol representing I/O 2
OUTPUT signal ' set signal pin to output
signal = 1 ' set signal high

Here, again, this is a common bug; the OUTPUT command will work as
expected, but the signal = 1 statement generates a syntax error at compile-
time. Why the error? This is an assignment statement, meant to assign the
value 1 to the item on the left, but the item on the left is a constant, not a
variable, so it can not be changed at run-time. What the user was thinking
when writing this was: OUT2 = 1 which sets the value of the output
variable representing I/O pin 2 to logical 1 (high). Here’s the solution:

Page 100 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture — PIN Symbols

' {$PBASIC 2.5}

signal PIN 2 ' pin-type symbol representing I/O 2
OUTPUT signal ' set signal pin to output
signal = 1 ' set signal high

The OUTPUT command treats signal as a constant equal to 2 and the
signal = 1 statement treats signal as a variable equal to the output variable
for the defined pin (OUT?2 in this case).

You might be wondering why “signal = 0” in the IF...THEN statement of
our first example treats signal as the input variable IN1 and yet “signal =
17 in our last example treats signal as the output variable OUT2. The
distinction is that the first example is a comparison and the second
example is an assignment. Comparisons need to “read” expressions and
then evaluate the comparison while assignments need to read expressions
and then “write” the results. Since signal is to the left of the equal sign (=)
in our assignment statement, it must be a variable we can write to, thus it
must be treated as OUT?2, in this case.

What happens if our pin-type symbol is to the right of the equal sign in an
assignment statement? Example:

' {$pBASIC 2.5}

signall PIN 1 ' pin-type symbol representing I/O 1
signal2 PIN 2 ' pin-type symbol representing I/O 2
INPUT signall ' set signall pin to input

OUTPUT signal2 ' set signal2 pin to output

signal2 = signall ' set signal2 pin to signall pin’s state

In this case signal?2 is treated as OUT2 and signall is treated as IN1; left side
must be written to and right side must be read from.

If a pin-type symbol is used in a command, but not in the Pin argument of
that command, it will be treated as an input variable (i.e.: INx). NOTE: It

is very rare that you’ll need to use a pin-type symbol in this way.

The following is a summary of behaviors and uses of pin-type symbols.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 101

BASIC Stamp Architecture — PIN Symbols

PIN_Symbol behaves like a constant:
1. when used in a command’s Pin argument. Example:

OUTPUT ~ PIN Symbol
2. when used in the index of an array. Example:
myArray (PIN Symbol) = 25

PIN_Symbol behaves like an input variable (INx):
1. when used in a command’s non-Pin argument that expects to
read a variable/constant/expression. Example:

DEBUG BIN PIN Symbol

2. when used in a command’s Condition argument. Example:

IF PIN Symbol = 1 THEN.

3. when used to the right of the equal sign (=) in an assignment
statement. Example:

ex: myVariable = PIN Symbol + 1

PIN_Symbol behaves like an output variable (OUTXx):
1. when used in a command’s non-Pin argument that expects to
write a result to a variable. Example:

LOOKUP index, [0, 1, 1, 0, 1], PIN Symbol

2. when used to the left of the equal sign (=) in an assignment
statement. Example:

PIN Symbol = 1

Let’s talk about the four basic operations of arithmetic: addition (+),
subtraction (-), multiplication (*), and division (/).

You may recall that the order in which you do a series of additions and
subtractions doesn’t affect the result. The expression 12+7-3+22 works out
the same as 22-3+12+7. However, when multiplication or division are
involved, it’s a different story; 12+3*2/4 is not the same as 2*12/4+3. In
fact, you may have the urge to put parentheses around portions of those
equations to clear things up.

Page 102 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

BASIC ARITHMETIC OPERATIONS

4: BASIC Stamp Architecture — Order of Operations

ORDER OF OPERATIONS.

INTEGER MATH.

=

The BASIC Stamp solves math problems in the order they are written:
from left to right. The result of each operation is fed into the next
operation. So to compute 12+3*2/4, the BASIC Stamp goes through a
sequence like this:

12+3=15
15%2 =30
30/4=7

Since the BASIC Stamp performs integer math (whole numbers only) 30 /
4 results in 7, not 7.5. We’'ll talk more about integers in the next section.

Some other dialects of BASIC would compute that same expression based
on their precedence of operators, which requires that multiplication and
division be done before addition. So the result would be:

3*2=6
6/4=1
12+1=13

Once again, because of integer math, the fractional portion of 6 / 4 is
dropped, so we get 1 instead of 1.5.

The BS1 does not allow parenthesis in expressions. Unfortunately, all
expressions have to be written so that they evaluate as intended strictly
from left to right.

All BS2 models, however, allow parentheses to be used to change the
order of evaluation. Enclosing a math operation in parentheses gives it
priority over other operations. To make the BASIC Stamp compute the
previous expression in the conventional way, you would write it as 12 +
(3*2/4). Within the parentheses, the BASIC Stamp works from left to right.
If you wanted to be even more specific, you could write 12 + ((3*2)/4).
When there are parentheses within parentheses, the BASIC Stamp works
from the innermost parentheses outward. Parentheses placed within
parentheses are called “nested parentheses."

The BASIC Stamp performs all math operations by the rules of positive
integer math. That is, it handles only whole numbers, and drops any
fractional portions from the results of computations. The BASIC Stamp
handles negative numbers using two's complement rules.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 103

BASIC Stamp Architecture — Math and Operators

All BS2 models can interpret twos complement negative numbers correctly
in DEBUG and SEROUT instructions using formatters like SDEC (for
signed decimal). In calculations, however, it assumes that all values are
positive. This yields correct results with two’s complement negative
numbers for addition, subtraction, and multiplication, but not for division.

The standard operators we just discussed: +, - ,* and / all work on two
values; as in 1 + 3 or 26 * 144. The values that operators process are
referred to as arguments. So we say that the add, subtract, multiply and
divide operators take two arguments.

Operators that take two arguments are called “binary” operators, and
those that take only one argument are called “unary” operators. Please
note that the term “binary operator” has nothing to do with binary
numbers; it’s just an inconvenient coincidence that the same word,
meaning ‘involving two things’ is used in both cases.

The minus sign (-) is a bit of a hybrid. It can be used as a binary operator,
as in 8-2 = 6, or it can be used as a unary operator to represent negative
numbers, such as -4.

Unary operators take precedence over binary operators; the unary
operation is always performed first. For example, on all BS2 models, SQR
is the unary operator for square root. In the expression 10 - SQR 16, the
BASIC Stamp first takes the square root of 16, then subtracts it from 10.

Most of the descriptions that follow say something like “computes (some
function) of a 16-bit value.” This does not mean that the operator does not
work on smaller byte or nibble values, but rather that the computation is
done in a 16-bit workspace. If the value is smaller than 16 bits, the BASIC
Stamp pads it with leading Os to make a 16-bit value. If the 16-bit result of
a calculation is to be packed into a smaller variable, the higher-order bits
are discarded (truncated).

Keep this in mind, especially when you are working with two’s
complement negative numbers, or moving values from a larger variable to
a smaller one. For example, look at what happens when you move a two’s
complement negative number into a byte (rather than a word):

Page 104 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

UNARY AND BINARY OPERATORS.

NOTES ABOUT THE 16-BIT WORKSPACE.

4: BASIC Stamp Architecture — Math and Operators, ABS

UNARY OPERATORS.

Table 4.1: Unary Operators.

value VAR Byte

Note: the BS1 only supports the

negative (-) unary operator.

ABSOLUTE VALUE: ABS

value = - 99
DEBUG SDEC °? value ' Show signed decimal result (157)

We expected -99 to be displayed but what we got was 157. How did -99
become 157? Let’s look at the bits: 99 is %01100011 binary. When the
BASIC Stamp negates 99, it converts the number to 16 bits
%0000000001100011, and then takes the two’s complement,
%1111111110011101. Since we’ve asked for the result to be placed in an 8-
bit (byte) variable, the upper eight bits are truncated and the lower eight
bits stored in the byte: %10011101.

Now for the second half of the story. DEBUG’s SDEC modifier (for all BS2
models) expects a 16-bit, two’s complement value, but we've only given it
a byte to work with. As usual, it creates a 16-bit value by padding the
leading eight bits with 0s: %0000000010011101. And what’s that in signed
decimal? 157.

To fix this problem, always store values that are intended to be signed into
a word-sized variable.

Table 4.1 lists the available Unary Operators. Note: the BS1 only supports
negative (-).

Operator Description Supported By:
ABS Returns absolute value All except BS1
cos E(_eturns cc_)sine in twos complement All except BST

inary radians
DCD 2"-power decoder All except BS1
~ Inverse All except BS1
- Negative All
NCD Priority encoder of a 16-bit value All except BS1

Returns sine in twos complement
SIN .)

binary radians
SQR Returns square root of value All except BS1

All except BS1

The Absolute Value operator (ABS) converts a signed (two’s complement)
16-bit number to its absolute value. The absolute value of a number is a
positive number representing the difference between that number and 0.
For example, the absolute value of -99 is 99. The absolute value of 99 is
also 99. ABS works on two’s complement negative numbers. Examples of
ABS at work:

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 105

BASIC Stamp Architecture - C0S, DCD, ~, -

result VAR Word
result = -99 ' Put -99 into result

' ...(2's complement format)
DEBUG SDEC ? result ' Display as a signed #
DEBUG SDEC ? ABS result ' Display as a signed #

The Cosine operator (COS) returns the two’s complement, 16-bit cosine of
an angle specified as an 8-bit “binary radian” (0 to 255) angle. COS is the
same as SIN in all respects, except that the cosine function returns the x
distance instead of the y distance. See “Sine: SIN”, below, for a code
example and more information.

The Decoder operator (DCD) is a 2"-power decoder of a four-bit value.
DCD accepts a value from 0 to 15, and returns a 16-bit number with the
bit, described by value, set to 1. For example:

result VAR Word

result = DCD 12 ' Set bit 12
DEBUG BIN16 ? result ' Digplay result (%0001000000000000)

The Inverse operator (~) complements (inverts) the bits of a number. Each
bit that contains a 1 is changed to 0 and each bit containing 0 is changed to
1. This process is also known as a “bitwise NOT” and “ones complement”.
For example:

result VAR Byte

result = %$11110001
DEBUG BIN8 ? result
result = ~ result
DEBUG BIN8 ? Result

Store bits in byte result.
Display in binary (%$11110001)
Complement result

Display in binary (%00001110)

The Negative operator (-) negates a 16-bit number (converts to its twos
complement).

SYMBOL result = Wl
result = -99 ' Put -99 into result
' ...(2's complement format)
result = result + 100 ' Add 100 to it
DEBUG result ' Display result (1)

-- Or --

Page 106 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

CosINE: COS

DecoDER: DCD

INVERSE: ~

NEGATIVE: -

4: BASIC Stamp Architecture — NCD, SIN

ENCODER: NCD

SINE: SIN

Al 2 result VAR Word

Put -99 into result
...(2's complement format)

result = 99 !
1

DEBUG SDEC ? result ' Display as a signed #
1

result = -result Negate the value
DEBUG SDEC ? result Display as a signed #

The Encoder operator (NCD) is a "priority" encoder of a 16-bit value. NCD
takes a 16-bit value, finds the highest bit containing a 1 and returns the bit
position plus one (1 through 16). If the input value is 0, NCD returns 0.
NCD is a fast way to get an answer to the question “what is the largest
power of two that this value is greater than or equal to?” The answer NCD
returns will be that power, plus one. Example:

result VAR Word
result = %1101 ' Highest bit set is bit 3
DEBUG ? NCD result ' Show the NCD of result (4)The

Sine operator (SIN) returns the two’s complement, 16-bit sine of an angle
specified as an 8-bit binary radian (0 to 255) angle.

To understand the SIN operator more completely, let’s look at a typical
sine function. By definition: given a circle with a radius of 1 unit (known
as a unit circle), the sine is the y-coordinate distance from the center of the
circle to its edge at a given angle. Angles are measured relative to the 3-
o'clock position on the circle, increasing as you go around the circle
counterclockwise.

At the origin point (0 degrees) the sine is 0, because that point has the
same y (vertical) coordinate as the circle center. At 45 degrees the sine is
0.707. At 90 degrees, sine is 1. At 180 degrees, sine is 0 again. At 270
degrees, sine is -1.

The BASIC Stamp SIN operator breaks the circle into 0 to 255 units instead
of 0 to 359 degrees. Some textbooks call this unit a “binary radian” or
“brad.” Each brad is equivalent to 1.406 degrees. And instead of a unit
circle, which results in fractional sine values between 0 and 1, BASIC
Stamp SIN is based on a 127-unit circle. Results are given in two’s
complement form in order to accommodate negative values. So, at the
origin, SIN is 0. At 45 degrees (32 brads), sine is 90. At 90 degrees (64
brads), sine is 127. At 180 degrees (128 brads), sine is 0. At 270 degrees
(192 brads), sine is -127.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 107

BASIC Stamp Architecture — SIN, SQR

(Brads) (64) Figure 4.1: 127-Unit Circle
Degrees® 90°
< +127
(128) 180° 0°(0)+0 SIN
(y-axis)
X 127
270°
(192)
l& | |
I~ | |
-127 0 +127
COsS
(x-axis)

To convert brads to degrees, multiply by 180 then divide by 128, or simply
multiply with “*/ 360”. To convert degrees to brads, multiply by 128, then
divide by 180. Here’s a small program that demonstrates the SIN and COS
operators:

degr VAR Word
brads VAR Byte

DEBUG 2, 4, 0,"ANGLE", TAB, "COS", TAB, "SIN", CR
DEBUG "DEGREES", TAB,"BRADS", TAB, "(X)", TAB,"(Y)", CR

FOR degr = 0 TO 359 STEP 45 ' Increment degrees
brads = degr * 128 / 180 ' Convert to brads
DEBUG CR, DEC3 degr, TAB, DEC3 brads, TAB ' Display angle
DEBUG SDEC COS brads, TAB, SDEC SIN brads ' Display COS & SIN

NEXT

SQUARE RooT: SQR

The Square Root operator (SQR) computes the integer square root of an
unsigned 16-bit number. (The number must be unsigned since the square
root of a negative number is an ‘imaginary” number.) Remember that most
square roots have a fractional part that the BASIC Stamp discards when

Page 108 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture — +

BINARY OPERATORS.

Table 4.6: Binary Operators. Note:
some binary operators are not
supported by all BASIC Stamp
models.

ADD: +

doing its integer-only math. So it computes the square root of 100 as 10
(correct), but the square root of 99 as 9 (the actual is close to 9.95).
Example:

DEBUG ? SQR 100
DEBUG ? SQR 99

' Display square root of 100 (10)
' Display of square root of 99
' ...(9 due to truncation)

Table 4.6 lists the available Binary (two-argument) Operators.

Operator Description Supported By:
+ Addition All
- Subtraction All
* Multiplication All
> Multiplication (returns upper 16-bits) All
*/ Multiply by 8-bit integer, 8-bit fraction All BS2 models
/ Division All
/I Modulus (Remainder of division) All
ATN Returns arctangent of X/Y vector All BS2 models
HYP Returns hypotenuse of X/Y vector All BS2 models
MIN Limits a value to a specified low All
MAX Limits a value to a specified high All
DIG Returns specified digit of number All BS2 models
<< Shift bits left by specified amount All BS2 models
>> Shift bits right by specified amount All BS2 models
REV Reverse specified number of bits All BS2 models
& Bitwise AND All
| Bitwise OR All
A Bitwise XOR All
&/ Logical AND NOT BS1 Only
|/ Logical OR NOT BS1 Only
N Logical XOR NOT BS1 Only

The Addition operator (+) adds variables and/or constants, returning a 16-
bit result. It works exactly as you would expect with unsigned integers
from 0 to 65535. If the result of addition is larger than 65535, the carry bit
will be lost. If the values added are signed 16-bit numbers and the
destination is a 16-bit variable, the result of the addition will be correct in
both sign and value.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 109

BASIC Stamp Architecture - +, -, *

For example:

SYMBOL valuel = WO
SYMBOL value2 = Wl

valuel = - 99

value2 = 100

valuel = valuel + value2 ' Add the numbers

DEBUG valuel ' Show the result (1)

- Or p——

valuel VAR Word All 2
value2 VAR Word

valuel = - 1575

value2 = 976

valuel = valuel + value2 ' Add the numbers

DEBUG SDEC ? valuel ' Show the result (-599)

The Subtraction operator (-) subtracts variables and/or constants, SustracT:-
returning a 16-bit result. It works exactly as you would expect with
unsigned integers from 0 to 65535. If the result is negative, it will be

correctly expressed as a signed 16-bit number. For example:

SYMBOL valuel = WO
SYMBOL value2 = Wl

valuel = 199

value2 = 100

valuel = valuel - value2 ' Subtract the numbers

DEBUG valuel ' Show the result (99)

- 01‘ -

valuel VAR Word Al 2
value2 VAR Word

valuel = 1000

value2 = 1999

valuel = valuel - value2 ' Subtract the numbers

DEBUG SDEC ? valuel ' Show the result (-999)

The Multiply operator (*) multiplies variables and/or constants, returning muLmrLy:*
the low 16 bits of the result. It works exactly as you would expect with
unsigned integers from 0 to 65535. If the result of multiplication is larger

than 65535, the excess bits will be lost. Multiplication of signed variables

will be correct in both number and sign, provided that the result is in the

range -32767 to +32767.

Page 110 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture - *, **

MULTIPLY HIGH: **

SYMBOL valuel = WO

SYMBOL value2 = W1l

valuel = 1000

value2 = 19

valuel = valuel * value2 ' Multiply valuel by value2

DEBUG valuel Show the result (19000)

- 01' -

valuel VAR Word

value2 VAR Word

valuel = 1000

value2 = - 19

valuel = valuel * value2 ' Multiply valuel by value2
DEBUG SDEC ? valuel ' Show the result (-19000)

The Multiply High operator (**) multiplies variables and/or constants,
returning the high 16 bits of the result. When you multiply two 16-bit
values, the result can be as large as 32 bits. Since the largest variable
supported by PBASIC is a word (16 bits), the highest 16 bits of a 32-bit
multiplication result are normally lost. The ** (double-star) instruction
gives you these upper 16 bits. For example, suppose you multiply 65000
($FDES) by itself. The result is 4,225,000,000 or $FBD46240. The * (star, or
normal multiplication) instruction would return the lower 16 bits, $6240.
The ** instruction returns $FBD4.

WO
W1l

SYMBOL valuel
SYMBOL value2

valuel = SFDES
value2 = valuel ** valuel
DEBUG Svalue2

Multiply SFDE8 by itself
Return high 16 bits (SFBD4)

p—— Or p——
valuel VAR Word
value2 VAR Word

valuel = SFDES
value2 = valuel ** valuel
DEBUG HEX ? value2

Multiply SFDE8 by itself
Return high 16 bits (SFBD4)

An interesting application of the ** operator allows you no multiply a
number by a fractional value less than one. The fraction must be
expressed in units of 1/65536. To find the fractional ** argument,

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 111

BASIC Stamp Architecture — **, */

multiply the fraction part by 65536. For example, 0.72562 is represented by
47554, which is 0.72562 * 65536.

SYMBOL Frac = 47554 ' = 0.72562 x 65536

SYMBOL value = WO

value = 10000

value = value ** Frac ' Multiply 10000 by 0.72562
DEBUG value ' Show result (7256)

- 01‘ -—

Frac CON 47554 ' = 0.72562 x 65536

value VAR Word

value = 10000

value = value ** Frac ' Multiply 10000 by 0.72562

DEBUG ? value ' Show result (7256)

The Multiply Middle operator (*/) multiplies variables and/or constants,
returning the middle 16 bits of the 32-bit result. This has the effect of
multiplying a value by a whole number and a fraction. The whole number
is the upper byte of the multiplier (0 to 255 whole units) and the fraction is
the lower byte of the multiplier (0 to 255 units of 1/256 each). The */ (star-
slash) instruction gives you an excellent workaround for the BASIC
Stamp's integer-only math. Suppose you want to multiply a value by 1.5.
The whole number, and therefore the upper byte of the multiplier, would
be 1, and the lower byte (fractional part) would be 128, since 128/256 = 0.5.
It may be clearer to express the */ multiplier in hex—as $0180—since hex

keeps the contents of the upper and lower bytes separate. Here's an
example:

valuel VAR Word

valuel = 100

valuel = valuel*/ $0180 ' Multiply by 1.5 [1 + (128/256)]

DEBUG ? valuel ' Show result (150)

To calculate the constant for use with the */ operator, multiply the target
(mixed) value by 256 and convert to an integer. For instance, take Pi (x,
3.14159). The */ constant would be INT(3.14159 * 256) = 804 ($0324). So
the constant Pi for use with */ would be $0324. This isn’t a perfect match
for Pi, but the error is only about 0.1%. Note that the */ operator can be
used to multiply by mixed values up to about 255.996.

Page 112 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

MuLTIPLY MIDDLE: */

4: BASIC Stamp Architecture -/, //

DIVIDE: /

MobuLus: /

The Divide operator (/) divides variables and/or constants, returning a
16-bit result. Works exactly as you would expect with unsigned integers
from 0 to 65535. Use / only with positive values; signed values do not
provide correct results. Here’s an example of unsigned division:

SYMBOL valuel = WO

SYMBOL value2 = Wl

valuel = 1000

value2 = 5

valuel = valuel / value2 ' Divide the numbers
DEBUG valuel ' Show the result (200)
— Or —

valuel VAR Word

value2 VAR Word

valuel = 1000

value2 = 5

valuel = valuel / value2 ' Divide the numbers
DEBUG DEC ? valuel ' Show the result (200)

A workaround to the inability to divide signed numbers is to have your
program divide absolute values, then negate the result if one (and only
one) of the operands was negative. All values must lie within the range of
-32767 to +32767. Here is an example:

sign VAR Bit ' Bit to hold the result sign
valuel VAR Word

value2 VAR Word

valuel = 100

value2 = -3200

A

sign = valuel.BIT15 value2.BIT15 ' Determine sign of result
value2 = ABS value2 / ABS valuel ' Divide absolute values

IF (sign = 1) THEN value2 = -value2 ' Negate result if sign = 1
DEBUG SDEC ? value2 ' Show the result (-32)

The Modulus operator (//) returns the remainder left after dividing one
value by another. Some division problems don’t have a whole-number
result; they return a whole number and a fraction. For example, 1000/6 =
166.667. Integer math doesn’t allow the fractional portion of the result, so
1000/6 = 166. However, 166 is an approximate answer, because 166*6 =
996. The division operation left a remainder of 4. The // (double-slash)

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 113

BASIC Stamp Architecture - //, ATN

returns the remainder, 4 in this example. Naturally, numbers that divide
evenly, such as 1000/5, produce a remainder of 0.

Example:

SYMBOL valuel = WO
SYMBOL value2 =Wl

1000

6

valuel // value2 ' Get remainder of valuel / value2
Show the result (4)

valuel
value2
valuel
DEBUG valuel

— Or p—

valuel VAR Word

value2 VAR Word

valuel = 1000

value2 = 6

valuel = valuel // value2 ' Get remainder of valuel / value2
DEBUG ? valuel ' Show the result (4)

The Arctangent operator (ATN) returns the angle to the vector specified ARCTANGENT: ATN
by X and Y coordinate values. The syntax of ATN is:

xCoord ATN yCoord

where xCoord and yCoord are the coordinates of the target vector point.

In the BASIC Stamp, the angle is returned in binary radians (0 to 255)
instead of degrees (0 to 359). See the explanation of the SIN operator for
more information about binary radians. Coordinate input values are
limited to -127 to 127 (signed bytes) as shown in the diagram of the
PBASIC Unit Circle (Figure 4.2).

brads VAR Word ' angle in brads
degr VAR Word ' angle in degrees

brads = 4 ATN 4
degr = brads */ 360
DEBUG SDEC ? brads
DEBUG SDEC ? degr

get angle

convert to degrees
display brads (32)
display degrees (45)

Page 114 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture — ATN, HYP, MIN

Figure 4.2: ATN and HYP operators

in the PBASIC unit circle

HYPOTENUSE: HYP

Minivum: MIN

(Brads) (64)
Degrees® 90°

- +127

(128) 180° -0 SIN
(y-axis)
L -127
l< | |
™~ I |
-127 0 +127
cos
(x-axis)

The Hypotenuse operator (HYP) returns the length of the hypotenuse of a

right triangle with sides of length A and B. The syntax of HYP is:

SideA HYP SideB

where SideA and SideB are the side lengths of a right-triangle (the order
isn’t important). Another application of HYP is to calculate the distance
between the origin (0, 0) and a point (X, Y) in a Cartesian coordinate
system. Side length (vector) input values are limited to -127 to 127 (signed
bytes). See diagram with ATN operator, Figure 4.2.

DEBUG ? 3 HYP 4 ' hypotenuse of 3x4 triangle (5)

The Minimum operator (MIN) limits a value to a specified 16-bit positive
minimum. The syntax of MIN is:

value MIN 1limit

where value is a constant or variable value to perform the MIN function
upon and limit is the minimum value that value is allowed to be. Its logic
is, “if value is less than limit, then make result = limit; if value is greater than
or equal to limit, make result = value.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 115

BASIC Stamp Architecture — MIN, MAX

MIN works in positive math only; its comparisons are not valid when
used on two’s complement negative numbers, since the positive-integer
representation of a number like -1 ($FFFF or 65535 in unsigned decimal) is
larger than that of a number like 10 (3000A or 10 decimal). Use MIN only
with unsigned integers. Because of the way fixed-size integers work, you
should be careful when using an expression involving MIN 0. For
example, 0-1 MIN 0 will result in 65535 because of the way fixed-size
integers wrap around.

SYMBOL valuel = WO

SYMBOL value2 = Wl

FOR valuel = 100 TO 0 STEP -10 ' Walk valuel from 100 to O
value2 = valuel MIN 50 ' Use MIN to clamp at 50
DEBUG value2 ' Show "clamped" value

NEXT

p— or —

value VAR Word

FOR value = 100 TO 0 STEP 10 ' Walk value from 100 to O
DEBUG ? value MIN 50 ' Show valuel, use MIN to clamp at 50

NEXT

The Maximum operator (MAX) limits a value to a specified 16-bit positive
maximum. The syntax of MAX is:

value MAX Limit

Where value is a constant or variable value to perform the MAX function
upon and limit is the maximum value that value is allowed to be. Its logic
is, ‘if value is greater than limit, then make result = limit; if value is less than
or equal to limit, make result = value.” MAX works in positive math only;
its comparisons are not valid when used on two’s complement negative
numbers, since the positive-integer representation of a number like -1
(3FFFF or 65535 in unsigned decimal) is larger than that of a number like
10 ($000A or 10 decimal). Use MAX only with unsigned integers. Because
of the way fixed-size integers work, you should be careful when using an
expression involving MAX 65535. For example, 65535+1 MAX 65535 will
result in 0 because of the way fixed-size integers wrap around.

Page 116 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

=

Maximum: MAX

4: BASIC Stamp Architecture — MAX, DIG, <<, >>

DiGIT: DIG

SHIFT LEFT: <<

SHIFT RIGHT: >>

SYMBOL valuel
SYMBOL value2

WO
W1l

FOR valuel = 0 TO 100 STEP 10 Walk valuel from 0 to 100

value2 = valuel MAX 50 ' Use MAX to clamp at 50
DEBUG value2 ' Show "clamped" value
NEXT
- Or -
value VAR Word

FOR value = 0 TO 100 STEP 10
DEBUG ? value MAX 50
NEXT

Walk value from 0 to 100
Show value, use MAX clamp at 50

The Digit operator (DIG) returns the specified decimal digit of a 16-bit
positive value. Digits are numbered from 0 (the rightmost digit) to 4 (the
leftmost digit of a 16-bit number; 0 to 65535).

Example:
value VAR Word
idx VAR Byte

value = 9742

DEBUG ? value DIG 2 ' Show digit 2 (7)
FOR idx = 4 TO O

DEBUG ? value DIG idx ' Show digits 0 through 4 (09742)
NEXT

The Shift Left operator (<<) shifts the bits of a value to the left a specified
number of places. Bits shifted off the left end of a number are lost; bits
shifted into the right end of the number are Os. Shifting the bits of a value
left n number of times has the same effect as multiplying that number by 2
to the n" power. For instance 100 << 3 (shift the bits of the decimal number
100 left three places) is equivalent to 100 * 2°. Here's an example:

value VAR Word
idx VAR Byte

value = %1111111111111111

FOR idx = 1 TO 16 ' Repeat with idx = 1 to 16
DEBUG BIN16 ? value << idx ' Shift value left idx places
NEXT

The Shift Right operator (>>) shifts the bits of a value to the right a
specified number of places. Bits shifted off the right end of a number are

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 117

BASIC Stamp Architecture — >>, REV, &, |

lost; bits shifted into the left end of the number are Os. Shifting the bits of a
value right n number of times has the same effect as dividing that number
by 2 to the n" power. For instance 100 >> 3 (shift the bits of the decimal
number 100 right three places) is equivalent to 100 / 2°. Here's an example:

value VAR Word
idx VAR Byte

value = %$1111111111111111

FOR idx = 1 TO 16 ' Repeat with idx = 1 to 16
DEBUG BIN16 ? value >> idx ' Shift value right idx places
NEXT

The Reverse operator (REV) returns a reversed (mirrored) copy of a Reverse:REV
specified number of bits of a value, starting with the right-most bit (least
significant bit or “Isb”). For instance, %10101101 REV 4 would return

%1011, a mirror image of the right-most four bits of the value. Example:

DEBUG BIN4 ? %10101101 REV 4 ' Mirror 1st 4 bits (%1011)

The And operator (&) returns the bitwise AND of two values. Each bit of AnD:&

the values is subject to the following logic:
0ANDO=0
0AND1=0
1ANDO0=0
1AND1=1

The result returned by & will contain 1s in only those bit positions in
which both input values contain 1s. Example:

SYMBOL valuel
SYMBOL value2
SYMBOL result

B2
B3
B4

=

valuel %$00001111

value2 %$10101101

result = valuel & value2

DEBUG %result ' Show result of AND (%$00001101)

-- Or --

DEBUG BIN8 ? %00001111 & %10101101 ' Show result of AND (%00001101) Al 2

The OR operator (|) returns the bitwise OR of two values. Each bit of the OR|
values is subject to the following logic:

Page 118 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Architecture -|, *

XOR: /A

0OORO0=0
0OOR1=1
10R0=1
10R1=1

The result returned by | will contain 1s in any bit positions in which one
or the other (or both) input values contain 1s. Example:

SYMBOL valuel
SYMBOL value2
SYMBOL result

B2
B3
B4

valuel = %00001111

value2 = %$10101001

result = valuel | value2

DEBUG %result ' Show result of OR (%$10101111)

— Or ——
DEBUG BIN ? %00001111 | $10101001 ' Show result of OR (%10101111)

The Xor operator () returns the bitwise XOR of two values. Each bit of the
values is subject to the following logic:

0XOR0=0
0XOR1=1
1XOR0=1
1XOR1=0

The result returned by » will contain 1s in any bit positions in which one
or the other (but not both) input values contain 1s. Example:

SYMBOL valuel
SYMBOL value2
SYMBOL result

B2
B3
B4

%$00001111

value2 %$10101001

result = valuel * value2

DEBUG %result ' Show result or XOR (%$10100110)

valuel

-- Or --

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 119

BASIC Stamp Architecture — &/, |/

DEBUG BIN8 ? %00001111 * %10101001 ' Show result of XOR (%10100110) N

The And Not operator (&/) returns the bitwise AND NOT of two values. AnpNort: &/
Each bit of the values is subject to the following logic:

0ANDNOTO0=0
0ANDNOT1=0
1ANDNOTO0=1
1ANDNOT1=0

The result returned by &/ will contain 1s in any bit positions in which the
first value is 1 and the second value is 0. Example:

SYMBOL valuel = B2
SYMBOL value2 = B3

SYMBOL result = B4

valuel %$00001111

value2 = %10101001
result = valuel &/ value2
DEBUG %result ' Show result of AND NOT (%$00000110)

The Or Not operator (| /) returns the bitwise OR NOT of two values. Each OrNor:|/

bit of the values is subject to the following logic:
0ORNOTO=1
0ORNOT1=0
1ORNOTO0=1
1ORNOT1=1

The result returned by |/ will contain 1s in any bit positions in which the
first value is 1 or the second value is 0. Example:

=

B4

SYMBOL valuel
SYMBOL value2
SYMBOL result

valuel %$00001111

value2 %$10101001

result = valuel |/ value2

DEBUG %result ' Show result of OR NOT (%01011111)

Page 120 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

4: BASIC Stamp Command Reference — %/

XORNOT: Y

=

The Xor Not operator (*/) returns the bitwise XOR NOT of two values.
Each bit of the values is subject to the following logic:

0XORNOTO0=1
0XORNOT1=0
1 XORNOTO0=0
1XORNOT1=1

The result returned by ~/ will contain 1s in any bit positions in which the
first value and second values are equal.

Example:

SYMBOL valuel
SYMBOL value2
SYMBOL result

B2
B3
B4

%$00001111

value2 %$10101001

result = valuel %/ value2

DEBUG $%result ' Show result of OR NOT (%01011001)

valuel

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 121

BASIC Stamp Architecture

Page 122 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference

Introduction

This chapter provides details on all three versions of the PBASIC
Programming Language. A categorical listing of all available PBASIC
commands is followed by an alphabetized command reference with
syntax, functional descriptions, and example code for each command.

PBASIC LANGUAGE VERSIONS

There are three forms of the PBASIC language: PBASIC 1.0 (for the BS1),
PBASIC 2.0 (for all BS2 models) and PBASIC 2.5 (for all BS2 models). You
may use any version of the language that is appropriate for your BASIC
Stamp module; however, when using any BS2 model, we suggest you use
PBASIC 2.5 for any new programs you write because of the advanced
control and flexibility it allows. PBASIC 2.5 is backward compatible with
almost every existing PBASIC 2.0-based program, and code that is not
100% compatible can easily be modified to work in PBASIC 2.5.

This chapter gives details on every command for every BASIC Stamp
model. Be sure to pay attention to any notes in the margins and body text
regarding supported models and PBASIC language versions wherever

they apply.

The BASIC Stamp Editor for Windows defaults to using PBASIC 1.0 (for
the BS1) or PBASIC 2.0 (for all BS2 models). If you wish to use the default
language for your BASIC Stamp model you need not do anything special.
If you wish to use PBASIC 2.5, you must specify that fact, using the
$PBASIC directive in your source code, for example:

' {$PBASIC 2.5}

Review the Compiler Directives section of Chapter 3 for more details on
this directive. Note: you may also specify either 1.0 or 2.0 using the
$PBASIC directive if you wish to explicitly state those desired languages.

Please note that the reserved word set will vary with each version of
PBASIC, with additional reserved words for some BASIC Stamp models.
Please see the reserved words tables in Appendix B for the complete lists.
PBASIC 2.5 features many enhancements. Table 5.1 gives a brief summary
of these items, with references to more information given elsewhere.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 123

BASIC Stamp Gommand Reference

Feature Categories New ltems

Description

DEBUGIN,
DO...LOOP, EXIT,
ON. SELECT...CASE

Additional Commands

Allows easier user input and program
control. See individual command
descriptions.

IF..THEN, Improves program control, and SPRAM and
Enhanced Commands GET, PUT, EEPROM access. See individual command
READ, WRITE descriptions.
Additional Directive PIN Provides flexible, context-sensitive I/O pin

references; see page 99.

#DEFINE, #ERROR,

Conditional Compile |,\e “uTHEN 4ELSE,

Encourages development of source code
that is compatible with multiple BASIC

CRSRRT, CRSRUP,

Predefined Constants CRSRX, CRSRXY,

Directives #SELECT.. .CASE Stamp models and helpful user hints; see
page 70.
CLRDN, CLREOL,
Additional CRSRDN, CRSRLF, | Symbols for control characters supported by

the Debug Terminal. See Table 5.13 in the
DEBUG command description, page 168.

CRSRY, LF
Any line can be continued to the next line
after the comma (,) character wherever
Syntax Enhancements , and commas are normally used.

Colons are required on label declarations.

CATEGORICAL LISTING OF COMMANDS

This section lists all available PBASIC commands for all BASIC Stamp
Commands with PBASIC 2.5 enhanced
syntax options are marked with (*); commands that exist only in

models, grouped by category.

PBASIC 2.5 are indicated with (*°).

respectively.

If an item applies to all of the models in the BS2 family,

this icon is used.

BRANCHING / PROGRAM GONTROL
BRANCH
IF... THEN*
GOTO
GOSUB

i One or more of these icons indicates the item applies to
the BS1, BS2, BS2e, BS2sx, BS2p, BS2pe, or BS2px

Jump to address specified by offset.
Conditionally execute one or more blocks of code.
Jump to address.

Jump to subroutine at address.

Page 124 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

Table 5.1: PBASIC 2.5
Enhancements.

5: BASIC Stamp Command Reference

ON?*®
RETURN
PEBEZHEBERUN
{24{2H2F POLLRUN

SELECT
...CASE*®

STOP

LoOPING STRUCTURES
DO...LOOP?*

EXIT*®

FOR...NEXT

EEPROM AccEss
EEPROM
DATA
READ*
WRITE*
12}i2}{3% STORE

RAM AccEss
32 GET
2k {2H{2HZ 3% PUT*

2

Jump to address or subroutine specified by an offset.
Return from subroutine.
Switch execution to another program slot.

Switch execution to another program page upon the
occurrence of a polled interrupt.

Evaluate expression and conditionally execute a
block of code based on comparison to multiple
conditions.

Halt program execution until BASIC Stamp is reset.

Execute code block repetitively, with optional,
conditional exit.

Terminate execution of a looping code block
(DO...LOOP or FOR...NEXT).

Execute code block repetitively, a finite number of
times using a counter.

Store data in EEPROM during program download.
Store data in EEPROM during program download.
Read EEPROM value into variable.

Write value into EEPROM.

Switch READ/WRITE access to different program
slot.

Read Scratch Pad RAM value into variable.
Write value into Scratch Pad RAM.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 125

BASIC Stamp Gommand Reference

NUMERICS

LET
LOOKUP

LOOKDOWN

RANDOM

DiGITALI/0

1% CONFIGPIN
INPUT
OUTPUT
REVERSE
LOW
HIGH
TOGGLE
PULSIN
PULSOUT

BUTTON

COUNT

XOUT
2E2E2E AUXIO
{2}§2k2E MAINIO
{2122 IOTERM
{2}42k2E POLLIN
ZHZ & PoLLOUT

{2422l POLLMODE

Optional instruction to perform variable
assignments.

Look up data specified by offset and store in
variable. This instruction provides a means to make
a lookup table.

Find target’s matching value in table and store
match number (0-N) in variable.

Generate a pseudo-random number.

Configure pin properties.

Make pin an input.

Make pin an output.

Reverse direction of a pin.

Make pin output low.

Make pin output high.

Make pin an output and toggle state.
Measure width of an input pulse.

Output a pulse by inverting a pin for a given
amount of time.

Debounce button, perform auto-repeat, and branch
to address if button is in target state.

Count cycles on a pin for a given amount of time.
Generate X-10 power line control codes.

Switch control to auxiliary I/O pin group.
Switch control to main I/O pin group.

Switch control to specified I/O pin group.
Specify pin and state for a polled-interrupt.

Specify pin and state for output upon a polled-
interrupt.

Specify the polled-interrupt mode.

Page 126 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference

ASYNCHRONOUS SERIAL 1/0
SERIN Input data in an asynchronous serial stream.

SEROUT
BHZERIoWIN
2kiZ 2 owouT

Output data in an asynchronous serial stream.
Input data from a 1-wire device.

Output data to a 1-wire device.

SYNCHRONOUS SERIAL I/0
SHIFTIN Shift data in from synchronous serial device.

SHIFTOUT
{2EH2H2E 120N
2 2k iecouT

PARALLEL I/0
{212 {2 Lcoemb
{21213 LCDIN
{212 2 LcpouT

AnALOG I/0
PWM

POT
RCTIME
{2 COMPARE
TIME
PAUSE
{2122 POLLWAIT

SOUND
SOUND
FREQOUT

DTMFOUT

Shift data out to synchronous serial device.
Input data from I’C serial device.
Output data to I’C serial device.

Write a command to an LCD.
Read data from an LCD.
Write data to an LCD.

Output using pulse width modulation, then return
pin to input.

Read a 5 kQ - 50 kQ potentiometer and scale result.
Measure a variable resistance or capacitance.

Compare two 0-5 V analog voltages.

Pause execution for 0-65535 milliseconds.

Pause until a polled-interrupt occurs.

Generate tones or white noise.

Generate one or two sine waves of specified
frequencies.

Generate DTMF telephone tones.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 127

BASIC Stamp Gommand Reference

Power CoNTROL

NAP Nap for a short period. Power consumption is
reduced.

SLEEP Sleep for 1-65535 seconds. Power consumption is
reduced.

END Sleep until the power cycles or the PC connects.
Power consumption is reduced.

PROGRAM DEBUGGING

DEBUG Send information to the PC for viewing in the

Debug Terminal’s Receive windowpane.

DEBUGIN*® Retrieve information from the user via the PC,
entered into the Debug Terminal’s Transmit
windowpane.

SYNTAX CONVENTIONS

BOLD UPPER CASE — any word that appears bold with all capital letters must
be typed exactly as shown. These are all reserved words.

Italics - italicized words must be replaced with your content.

[1-square brackets must be typed, in the position shown around the
given syntax element. Only used with PBASIC 2.0 and 2.5.

() - parentheses must be typed in the position shown around the given
syntax element; only used this way with PBASIC 1.0.**

{ } - curly braces indicate optional syntax items. They are not typed as part
of any syntax other than compiler directives.

| — vertical line separates mutually exclusive syntax elements.

» \ # = —where they appear, commas, backslashes, pound signs, and
equal signs must be typed in the positions shown.

**NOTE: You may use parentheses to enclose expressions in PBASIC 2.0 and 2.5, but they
are not necessary. Used within an expression, parentheses will change the order of
evaluation. See page 103 for details and examples.

Page 128 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — AUXIO

Table 5.2: AUXIO Quick Facts.

AUXIO BS2p |BS2pe|BS2px
AUXIO

Function
Switch from control of main I/O pins to auxiliary I/O pins (on the BS2p40
only).

Quick Facts

BS2p, BS2pe, and BS2px
0 — 15 (just like main I/0, but after AUXIO command, all references affect
physical pins 21 — 36).
The BS2p, BS2pe, and BS2px 24-pin modules accept this command,
however, only the BS2p40 gives access to the auxiliary I/O pins.

MAINIO and IOTERM

1/0 pin IDs

Special Notes

Related
Commands

Explanation

The BS2p, BS2pe, and BS2px are available as 24-pin modules that are pin
compatible with the BS2, BS2e and BS2sx. Also available is a 40-pin
module called the BS2p40, with an additional 16 I/O pins (for a total of
32). The BS2p40's extra, or auxiliary, I/O pins can be accessed in the same
manner as the main I/O pins (by using the IDs 0 to 15) but only after
issuing an AUXIO or IOTERM command. The AUXIO command causes
the BASIC Stamp to affect the auxiliary 1/O pins instead of the main I/O
pins in all further code until the MAINIO or IOTERM command is
reached, or the BASIC Stamp is reset or power-cycled. AUXIO is also used
when setting the DIRS register for auxiliary I/O pins on the BS2p40.

When the BASIC Stamp module is reset, all RAM variables including DIRS
and OUTS are cleared to zero. This affects both main and auxiliary 1/0
pins. On the BS2p24, BS2pe, and BS2px, the auxiliary I/O pins from the
interpreter chip are not connected to physical I/O pins on the BASIC
Stamp module. While not connected to anything, these pins do have
internal pull-up resistors activated, effectively connecting them to Vdd.
After reset, reading the auxiliary I/O from a BS2p24, BS2pe24, or BS2px24
will return all 1s.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 129

AUXIO - BASIC Stamp Command Reference

Here is a simple AUXIO example: ASIMPLE AUXIO EXAMPLE.
HIGH 0 ' make PO high

AUXIO ' select auxiliary pins

LOW 0 ' make X0 low

The first line of the above example will set I/O pin 0 of the main I/O pins
(PO, physical pin 5) high. Afterward, the AUXIO command tells the
BASIC Stamp that all commands following it should affect the auxiliary
I/0 pins. The following LOW command will set I/O pin 0 of the auxiliary
I/0 pins (X0, physical pin 21) low.

Note that the main I/O and auxiliary I/O pins are independent of each MAINIOAND AUXILIARY /O PINS ARE
other; the states of the main I/O pins remain unchanged while the MNDEPENDENTANDUNAFFECTEDBY

s . . CHANGES IN THE OPPOSITE GROUP.
program affects the auxiliary I/O pins, and vice versa.

Other commands that affect I/O group access are MAINIO and IOTERM.

Demo Program (AUX_MAIN_TERM.hsp)

' AUX MAIN TERM.bsp NOTE: This example program will

' This program demonstrates the use of the AUXIO, MAINIO and IOTERM tokenize with the 24-pin BS2p , BS2pe

' commands to affect I/O pins in the auxiliary and main I/O groups. and BS2px, but its effects can only be
seen on the BS2p40. This program

' {$sTAaMP Bs2p} uses conditional compilation techniques;

' {$PBASIC 2.5} see Chapter 3 for more information.

#SELECT $STAMP
#CASE BS2, BS2E, BS2SX
#ERROR "Program requires BS2p40"
#CASE BS2P, BS2PE, BS2PX
DEBUG "Note: This program designed for the BS2p40.", CR

#ENDSELECT
port VAR Bit
Main:
DO
MAINIO ' Switch to main I/O pins
TOGGLE 0 ' Toggle state of I/O pin PO

PWM 1, 100, 40 Generate PWM on I/O pin P1
AUXIO

TOGGLE O
PULSOUT 1, 1000
PWM 2, 100, 40

Switch to auxiliary I/O pins
Toggle state of I/O pin X0
Generate a pulse on I/O pin X1
Generate PWM on I/O pin X2

Page 130 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — AUXIO

IOTERM port Switch to main or aux I/Os
-- depending on port
TOGGLE 3 Toggle state of I/O pin 3

-- on main and aux, alternately
Invert port
1 second delay

port = ~port
PAUSE 1000
LOOP
END

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 131

AUXIO - BASIC Stamp Command Reference

Page 132 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — BRANCH

BRANCH BS1 | BS2 | BS2e |BS2sx| BS2p [BS2pe|BS2px

BRANCH Offset, (Address0, Address1, ...AddressN)
BRANCH Offset, [Address0, Address1, ...AddressN]

Function
Go to the address specified by offset (if in range).
NOTE: Expressions are not allowed as e Offset is a variable/constant/expression (0 — 255) that specifies the
arguments on the BS1. index of the address, in the list, to branch to (0 - N).

* Addresses are labels that specify where to go. BRANCH will ignore
any list entries beyond offset 255.

Quick Facts

Table 5.3: BRANCH Quick Facts. BS1 All BS2 Models
Limit of I
Address Entries Limited only by memory 256
Related None ON...GOTO
Commands
Explanation
The BRANCH instruction is useful when you want to write something like
this:
IF value = 0 THEN Case 0 ' when value is 0, jump to Case 0
IF value = 1 THEN Case 1 ' when value is 1, jump to Case 1
IF value = 2 THEN Case 2 ' when value is 2, jump to Case 2
You can use BRANCH to organize this into a single statement:
BS1 syntax not shown here. BRANCH value, [Case 0, Case_1, Case 2]

This works exactly the same as the previous IF.. THEN example. If the
value isn’t in range (in this case if value is greater than 2), BRANCH does
nothing and the program continues with the next instruction after
BRANCH.

BRANCH can be teamed with the LOOKDOWN instruction to create a
simplified SELECT...CASE statement. See LOOKDOWN for an example.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 133

BRANCH - BASIC Stamp Command Reference

Demo Program (BRANCH.bs1)

' BRANCH.bsl
' This program shows how the value of idx controls the destination of the
' BRANCH instruction.

' {$sTAaMP BS1}
' {$PBASIC 1.0}

SYMBOL idx = B2
Main:
DEBUG "idx: ", #idx, " "

BRANCH idx, (Task 0, Task 1, Task 2) ' branch to task

DEBUG "BRANCH target error...", CR, CR 0 . unless out of range
Next Task:
idx = idx + 1 // 4 ' force idx to be 0..3
GOTO Main
Task 0:

DEBUG "BRANCHed to Task 0", CR
GOTO Next Task

Task 1:
DEBUG "BRANCHed to Task 1", CR
GOTO Next Task

Task 2:
DEBUG "BRANCHed to Task 2", CR
GOTO Next Task

Demo Program (BRANCH.bs2)

' BRANCH.bs2
' This program shows how the value of idx controls the destination of the
' BRANCH instruction.

' {ssTAMP BS2}
' {$PBASIC 2.5}

idx VAR Nib
Main:
DEBUG "idx: ", DEC1 idx, " "
BRANCH idx, [Task 0, Task 1, Task 2] ' branch to task

DEBUG "BRANCH target error...", CR, CR U . unless out of range
Next Task:
idx = idx + 1 // 4 ! force idx to be 0..3

Page 134 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

=

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference — BRANCH

PAUSE 250
GOTO Main

Task 0:
DEBUG "BRANCHed to Task 0", CR
GOTO Next Task

Task 1:
DEBUG "BRANCHed to Task 1", CR
GOTO Next Task

Task 2:

DEBUG "BRANCHed to Task 2", CR
GOTO Next Task

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 135

BRANCH - BASIC Stamp Command Reference

Page 136 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — BUTTON

BUTTON

BUTTON Pin, DownState, Delay, Rate, Workspace, TargetState, Address

Function

Monitor and process a pushbutton input, perform auto-repeat, and branch
to address if button is in target state. Button circuits may be active-low or
active-high.
NOTE: Expressions are not allowed as e Pin is a variable/constant/expression (0-15) that specifies the I/0O

BS1

BS2

BS2e

BS2sx

BS2p

BS2pe

BS2px

arguments on the BS1. The range of
the Pinargument on the BS1is 0—7.

pin to use. This pin will be set to input mode.

 DownState is a variable/constant/expression (0 or 1) that specifies

which logical state occurs when the button is pressed.

Delay is a variable/constant/expression (0 — 255) that specifies how
long the button must be pressed before auto-repeat starts. The delay
is measured in cycles of the BUTTON routine. Delay has two special
settings: 0 and 255. If Delay is 0, BUTTON performs no debounce or
auto-repeat. If Delay is 255, BUTTON performs debounce, but no
auto-repeat.

Rate is a variable/constant/expression (0 — 255) that specifies the
number of cycles between auto-repeats. The rate is expressed in
cycles of the BUTTON routine.

Workspace is a byte variable used by BUTTON for workspace. It
must be cleared to 0 before being used by BUTTON for the first time
and should not be adjusted outside of the BUTTON command.
NOTE: All RAM is cleared to 0 by default upon power-up or reset
of the BASIC Stamp module.

TargetState is a variable/constant/expression (0 or 1) that specifies
which state the button should be in for a branch to occur. (0=not
pressed, 1=pressed)

e Address is a label that specifies where to branch if the button is in the

target state.

Explanation

When you press a button or flip a switch, the contacts make or break a
connection. A brief (1 to 20-ms) burst of noise occurs as the contacts scrape
and bounce against each other. By scanning an input within a loop to

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 137

BUTTON - BASIC Stamp Command Reference

ensure that the contact remains in a specified state for a minimum
duration, spurious multiple inputs caused by contact noise can be
eliminated. The BUTTON instruction helps prevent this noise from being
interpreted as more than one switch action; this is the function of the Delay
parameter. For a demonstration of switch bounce, see the demo program
for the COUNT instruction. Delay, combined with the Rate argument,
allows the programmer to control the rate at which multiple inputs are
accepted by the BASIC Stamp.

BUTTON also lets PBASIC react to a button press the way your computer
keyboard does to a key press. When you press a key, a character
immediately appears on the screen. If you hold the key down, there’s a
delay, then a rapid-fire stream of characters appears on the screen.
BUTTON'’s auto-repeat function can be set up to work much the same
way.

BUTTON is designed for use inside a program loop. Each time through
the loop, BUTTON checks the state of the specified pin. When it first
matches DownState, BUTTON begins the Delay countdown for auto-repeat.
Then, in accordance with TargetState, it either branches to Address
(TargetState = 1) or doesn’t (TargetState = 0).

If the switch stays in DownState, BUTTON counts the number of program
loops that execute. When this count equals Delay, BUTTON once again
triggers the action specified by TargetState and Address. Hereafter, if the
switch remains in DownState, BUTTON waits Rate number of cycles
between actions. The Workspace variable is used by BUTTON to keep
track of how many cycles have occurred since the Pin switched to
TargetState or since the last auto-repeat.

BUTTON does not stop program execution. In order for its delay and

auto-repeat functions to work properly, BUTTON must be executed from
within a program loop.

Page 138 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — BUTTON

Figure 5.1: Sample BUTTON
circuits. Active-high (left) and
active-low (right).

Vdd Vvdd
active-high
(downstate = 1)
10 kQ
PB Switch
220 Q 220 Q
1/0 Pin 1/O Pin
PB Switch
10 kQ
active-low
L (downstate = 0) _L
V_ss Vgs

Demo Program (BUTTON.bs1)

' BUTTON.bsl

! Connect an active-low circuit to pin PO of the BS1. When you press the
' button, the DEBUG screen will display an asterisk (*). The program, as
' shown below, will print an asterisk at the first button press, then
delay approximately one second (200 x 5 ms PAUSE) before auto-repeating
at a rate of approximately 100 ms (5 x 20 ms). Feel free to modify the
program to see the effects of your changes on the way BUTTON responds.

{ssTamMP Bs1}
{spBASIC 1.0}

SYMBOL Btn =0

B2

SYMBOL btnWrk

Main:
' Try changing the Delay value (200) in BUTTON to see the effect of
' its modes: 0 = no delay; 1-254 = varying delays before auto-repeat;
' 255 = no auto-repeat (only one action per button press)
1
' The BUTTON instruction will cause the program to branch to
' No Press unless PO = 0

PAUSE 5
BUTTON Btn, 0, 200, 20, btnWrk, 0, No Press
DEBUG "#*"

No_ Press:
GOTO Main

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 139

BUTTON - BASIC Stamp Command Reference

Demo Program (BUTTON.bs2)

' BUTTON.bs2 NOTE: This example program can be
! Connect an active-low circuit to pin PO of the BS2. When you press the used with all BS2 models by changing
' button, the DEBUG screen will display an asterisk (*). The program, as the $STAMP directive accordingly.

' shown below, will print an asterisk at the first button press, then

' delay approximately one second (200 x 5 ms PAUSE) before auto-repeating
at a rate of approximately 100 ms (5 x 20 ms). Feel free to modify the
program to see the effects of your changes on the way BUTTON responds.

{ssTamP Bs2}
{$pBASIC 2.5}

Btn PIN 0
btnwWrk VAR Byte
Main:

' Try changing the Delay value (200) in BUTTON to see the effect of

' its modes: 0 = no delay; 1-254 = varying delays before auto-repeat;
' 255 = no auto-repeat (only one action per button press)

1

' The BUTTON instruction will cause the program to branch to

' No_ Press unless PO = 0

PAUSE 5
BUTTON Btn, 0, 200, 20, btnWrk, 0, No Press
DEBUG nin

No_ Press:
GOTO Main

Page 140 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — COMPARE

Table 5.4: COMPARE Quick
Facts.

COMPARE BS2px

COMPARE Mode, Variable

Function
Enable or disable comparator, compare voltages on P1 and P2 and retrieve
comparison result to store in Variable.

* Mode is a variable/constant/expression (0 — 2) that enables or
disables the comparator (input pins P1 and P2) and determines if the
optional comparator output pin (pin P0) is enabled or not. See Table
5.4 for an explanation of the Mode values.

e Variable is a variable (usually a bit) in which the comparison result is
stored.

Quick Facts

BS2px

0: Disables comparator

Mode Values |1: Enables comparator with PO as result output

2: Enables comparator without PO as result output

0: Voltage P1 > P2; PO optionally outputs 0

Variable Values

1: Voltage P1 < P2; PO optionally outputs 1

Explanation

The COMPARE command enables or disables the built-in comparator
hardware on the BS2px’s I/O pins P0, P1, and P2. 1/O pins P1 and P2 are
the comparator inputs and PO is optionally the comparator result output

pin.

By default, the comparator feature is disabled. Using the COMPARE
command with a Mode argument of 1 or 2 enables the comparator feature
(using input pins P1 and P2) and returns the result of the comparison in
Variable. 1f Mode is 1, the result of the comparison is also output on I/O
pin PO. The following is an example of the COMPARE command:

Result VAR Bit
COMPARE 1, Result

This example enables the comparator (setting PO to output the result, with
P1 and P2 as the comparator inputs) and writes the result of the
comparison into Result. Both Result and the output pin PO will be 0 if the

BASIC Stamp Syntax and Reference Manual 2.2 e« www.parallax.com ¢ Page 141

COMPARE - BASIC Stamp Command Reference

input voltage on P1 was greater than that of P2. Result and the output pin
PO will be 1 if the input voltage on P1 was less than that of P2.

Note that the comparator hardware operates independently of the
execution speed of the BS2px and will continue to run and update PO if
Mode =1, even during sleep mode (execution of END, NAP, POLLWAIT 8§,
or SLEEP commands). To avoid spurious current draw during sleep
mode, disable the comparator first.

Demo Program (COMPARE.bpx)

' COMPARE.bpx NOTE: This example program can be
' This example demonstrates the use of the COMPARE command. used only with the BS2px.

' Connect two variable voltage sources (0 to 5 volts) on I/O pins

' P1 and P2 (or a button on each pin connected to ground). Run the program

' and watch the Debug Terminal display as you adjust the variable voltage
' or press the buttons.

' {$sTAMP BS2px}
' {$pBASIC 2.5}

Result VAR Bit

#IF SSTAMP <> BS2PX #THEN
#ERROR "This program requires a BS2px."

H#ENDIF
Setup:
CONFIGPIN DIRECTION, %0000000000000001 'PO0 = output, all others = input
CONFIGPIN PULLUP, %0000000000000110 'Enable pull-ups on Pl and P2
DEBUG "BS2px COMPARATOR DEMONSTRATION", CR,
n n , CR’
"Input Voltage: P1 > P2", CR,
"Output State: PO = 0"
Main:
DO 'Display P1/P2 comparison

COMPARE 1, Result
IF Result = 0 THEN
DEBUG CRSRXY,18,2,">"

ELSE
DEBUG CRSRXY,18,2,"<"
ENDIF
DEBUG CRSRXY,20,3,BIN1 Result
LOOP

Page 142 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — GONFIGPIN

Table 5.5: CONFIGPIN Quick
Facts.

OUTPUT DIRECTION.

CONFIGPIN BS2px

CONFIGPIN Mode, PinMask

Function
Configure special properties of I/O pins.

* Mode is a variable/constant/expression (0 — 3), or one of four
predefined symbols, that specifies the I/O pin property to configure:
Schmitt Trigger, Logic Threshold, Pull-up Resistor or Output
Direction. See Table 5.5 for an explanation of Mode values.

* PinMask is a variable/constant/expression (1 — 65535) that indicates
how Mode is applied to I/O pins. Each bit of PinMask corresponds
to an individual I/O pin. A high bit (1) enables the Mode and a low
bit (0) disables the Mode on the corresponding I/O pin.

Quick Facts

BS2px

or SCHMITT): Schmitt Trigger

0(
1 (or THRESHOLD): Logic Threshold
2 (

LEROVETED or PULLUP): Pull-up Resistor

3 (or DIRECTION): Output Direction

Related Commands

(For DIRECTION Mode) INPUT and OUTPUT, and the DIRx = # assignment statement

Explanation

The CONFIGPIN command enables or disables special I/O pin properties
on all 16 I/O pins at once. There are four properties, or modes, available:
Schmitt Trigger, Logic Threshold, Pull-up Resistor, and Output Direction.
Each I/0 pin on the BS2px contains special hardware dedicated to each of
these properties.

By default, all BASIC Stamp I/O pins are set to inputs. Enabling the
Output Direction mode sets an I/O pin’s direction to output. Disabling
the Output Direction mode sets an I/O pin’s direction to input. This has
the same effect as using the OUTPUT or INPUT commands, or the
DIRx = # assignment statement to configure I/O pin directions. The
following is an example of the CONFIGPIN command using the Output
Direction mode:

CONFIGPIN DIRECTION, %0000000100010011

BASIC Stamp Syntax and Reference Manual 2.2 e« www.parallax.com « Page 143

CONFIGPIN — BASIC Stamp Command Reference

Every high bit (1) in the PinMask argument enables the output direction
for the corresponding I/O pin while every low bit (0) disables the output
direction. In the above example, I/O pins 8, 4, 1, and 0 are set to the
output direction and all other I/O pins are set to the input direction. This
is similar to the following statement:

DIRS = %0000000100010011

Pull-up resistors are commonly used in circuitry where a component, such
as a button, provides an open/drain signal; the signal is either floating
(open) or is driven to ground (drain). Since the BASIC Stamp input pins
must always be connected to either 5 volts or ground (0 volts) in order to
read a reliable logic state with them, a pull-up resistor is required on
circuitry, such as the button circuit mentioned above, so that the signal is
never left floating (electrically disconnected).

The following example enables internal pull-up resistors on I/O pins 15,
12, 6, and 3, and disables internal pull-up resistors on all other I/O pins:

CONFIGPIN PULLUP, %1001000001001000

Note that the internal pull-up resistors are intentionally weak, about 20
kQ. Additionally, the internal pull-up resistors can be activated for all
pins, regardless of pin direction, but really matter only when the
associated pin is set to input mode.

An input pin’s logic threshold determines the voltage levels that are
interpreted as logic high (1) and logic low (0). Most microcontrollers, and
other integrated circuits use one of two types of logic threshold: TTL Level
or CMOS Level. The BASIC Stamp 1/0O pins are, by default, configured
for TTL level logic thresholds. Figure 5.2 is an illustration of the difference
between TTL and CMOS logic levels.

5V (vdd) 5V (vdd)
Logic 1
Logic 1 g
50% Vdd pussseaaE
1.4V pmmmm = R Logic 0

Logic 0

0V (vss) 0V (vss)
TTL Logic Level CMOS Logic Level

Page 144 « BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

PULL-UP RESISTORS.

LOGIC THRESHOLD.

Figure 5.2: TTL and CMOS Logic
Level Threshold Voltages

5: BASIC Stamp Command Reference — GONFIGPIN

The logic threshold for TTL is 1.4 volts; a voltage below 1.4 is considered
to be a logic 0 while a voltage above 1.4 is considered to be a logic 1. The
logic threshold for CMOS is 50% of Vdd; a voltage below % Vdd is
considered a logic 0 while a voltage above % Vdd is considered a logic 1.

For the CONFIGPIN command’s THRESHOLD mode, a high bit (1) in the
PinMask argument sets the corresponding I/O pin to CMOS threshold
level, and a low bit sets it to a TTL threshold level. The following example
sets CMOS threshold level on 1I/0O pins 3, 2, 1, and 0, and TTL threshold
level on all other I/O pins.

CONFIGPIN THRESHOLD, %0000000000001111

The threshold level can be set for all pins, regardless of pin direction, but
really matters only when the associated pin is set to input mode.

SCHMITT TRIGGER Normally, if a signal on an input pin is somewhat noisy (the voltage level
randomly rises and falls beyond the logic threshold boundary) then
reading that pin’s input value will result in spurious highs and lows (1s
and 0s). Schmitt Triggers are circuits that make inputs more steady and
reliable by adding a region of hysteresis around the logic threshold that
the signal must completely traverse before the logic level is interpreted as
being changed. By default BASIC Stamp I/O pins are set to normal input
mode, but the BS2px can be configured for Schmitt Trigger mode as well.
Figure 5.3 illustrates Schmitt Trigger characteristics.

Figure 5.3: Schmitt Trigger 5V (vdd) _
Characteristics =85%\Vdd ——— ——Logicl _____
No Transition
=15% Vdd ===——mms ———————
0V (vss) Logic 0

In Schmitt Trigger mode, the threshold for a logic 0 is approximately 15%
of Vdd and the threshold for a logic 1 is approximately 85% of Vdd. The
input pin defaults to an unknown state until the initial voltage crosses a
logic 0 or logic 1 boundary. Thereafter, the voltage must cross above 85%
of Vdd to be interpreted as a logic 1 and must cross below 15% of Vdd to
be interpreted as a logic 0. If the voltage transitions somewhere between
the two thresholds, the interpreted logic state remains the same as the
previous state.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 145

CONFIGPIN — BASIC Stamp Command Reference

For the CONFIGPIN command’s SCHMITT mode, a high bit (1) in the
PinMask argument enables the Schmitt Trigger on the corresponding 1/O
pin and a low bit (0) disables the Schmitt Trigger. The following example
sets Schmitt Triggers on I/O pins 7, 6, 5, and 4, and sets all other I/O pins
to normal mode.

CONFIGPIN SCHMITT, %0000000011110000

Schmitt Trigger mode can be activated for all pins, regardless of pin
direction, but really matters only when the associated pin is set to input

mode.

Demo Program (CONFIGPIN.bpx) &

! CONFIGPIN.BPX NOTE: This example program can be
' This example demonstrates the use of the CONFIGPIN command. used only with the BS2px.

' All I/0 pins are set to inputs with various combinations of

' Pull-Up Resistor, Logic Threshold and Schmitt-Trigger properties.

' While running, this program will constantly display the state of all

' input pins along with an indication of the configuration for each group

' of pins. Try connecting different input signals to the I/O pins (such as
' buttons, a function generator with a slowing sweeping signal (0 to 5

' VDC)) or simply running your fingers across the I/O pins and note how

' they react based upon their configured property.

' {$STAMP BS2px}
' {$pPBASIC 2.5}

#IF SSTAMP <> BS2PX #THEN
#ERROR "This program requires a BS2px."

HENDIF

Setup:
CONFIGPIN DIRECTION, %0000000000000000 'Set all I/O pins to inputs
CONFIGPIN PULLUP, %$1111111111110000 'Enable pull-ups on pins 4 - 15

CONFIGPIN THRESHOLD, %$0000111100000000 'Set P8-P11 to CMOS, others TTL
CONFIGPIN SCHMITT, %$1111000000000000 'Enable Schmitt-Triggers P12-P15

DEBUG CLS
DEBUG " BS2px INPUT PIN CONFIGURATION TEST", CR,
n o CR,
o P15-P12: Pull-Up Resistors, TTL & Schmitt-Triggers", CR,
n /"/ CR,
u / P11-P8: Pull-Up Resistors & CMOS", CR,
n / /n' CR,
o / P7-P4: Pull-Up Resistors & TTL", CR,
n | | /n, CR,
mo | | P3-P0: Normal", CR,
" | | | /u' CR,

Page 146 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — GONFIGPIN

Main:
DO

'Display input pin states

DEBUG CRSRXY, 0,12, BIN4 IND, " ", BIN4 INC, " ", BIN4 INB, " ", BIN4 INA
LOOP

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 147

CONFIGPIN — BASIC Stamp Command Reference

Page 148 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — GOUNT

COUNT BS2 | BS2e |BS2sx| BS2p |BS2pe BS2px
COUNT Pin, Duration, Variable

Function
Count the number of cycles (0-1-0 or 1-0-1) on the specified pin during the
Duration time frame and store that number in Variable.
e Pin is a variable/constant/expression (0 — 15) that specifies the I/O
pin to use. This pin will be set to input mode.

e Duration is a variable/constant/expression (1 — 65535) specifying the
time during which to count. The unit of time for Duration is
described in Table 5.6.

e Variable is a variable (usually a word) in which the count will be
stored.

Quick Facts

Table 5.6: COUNT Quick Facts. BS2, BS2e BS2sx BS2p BS2pe BS2px
Units in Duration 1ms 400 ps 287 ps 720 us 287 us
NOTE: All timing values are . 1 ms to 400 ps to 287 s to 720 ps to 287 s to
approximate. Durationrange | o5 o5 ¢ 26.214 s 18.809 s 47.18s 18.809 s
M'"'“:v‘i’;‘:hp”'se 4.16 ps 1.66 s 1.20 s 3.0 s 1.20 s
Maximum

frequency 120,000 Hz | 300,000 Hz | 416,700 Hz | 166,667 Hz | 416,700 Hz
(square wave)
Related
Command

PULSIN

Explanation

The COUNT instruction makes the Pin an input, then for the specified
Duration of time, counts cycles on that pin and stores the total in Variable.
A cycle is a change in state from 1to 0 to 1, or from 0 to 1 to 0.

According to Table 5.6, COUNT on the BS2 can respond to transitions
(pulse widths) as small as 4.16 microseconds (ps). A cycle consists of two
transitions (e.g., 0 to 1, then 1 to 0), so COUNT (on the BS2) can respond to
square waves with periods as short as 8.32 us; up to 120 kilohertz (kHz) in
frequency. For non-square waves (those whose high time and low time are
unequal), the shorter of the high and low times must be at least 4.16 ps in

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 149

COUNT - BASIC Stamp Command Reference

width (on the BS2). Refer to Table 5.6 for data on other BASIC Stamp
models.

If you use COUNT on slowly changing analog waveforms like sine waves,
you may find that the value returned is higher than expected. This is
because the waveform may pass through the BASIC Stamp module’s logic
threshold slowly enough that noise causes false counts. You can fix this by
passing the signal through a Schmitt Trigger, like one of the inverters of a
74HCT14. Or, you may use the BS2px’s built-in Schmitt-Trigger pin
property; see the CONFIGPIN section beginning on page 143 for details.

Demo Program (COUNT.hs2)

' COUNT.bs2

' Connect an active-low button circuit shown in the BUTTON command

' description to pin PO of the BS2. The DEBUG screen will prompt you to

' press the button as quickly as possible for a 1l-second count. When the
' count is done, the screen will display your "score," the total number of
' cycles registered by COUNT. Note that this score will almost always

' be greater than the actual number of presses because of switch contact

' bounce.

' {$sTAMP BS2}

' {$pPBASIC 2.5}

PushBtn PIN 0 pushbutton on PO

#SELECT S$STAMP
#CASE BS2, BS2E

Duradj CON $100 /1
#CASE BS2SX
DurAdj CON $280 '/ 0.400
#CASE BS2P, BS2PX
DurAdj CON $37B '/ 0.287
#CASE BS2PE
DurAdj CON $163 '/ 0.720
H#ENDSELECT
Capture CON 1000 ' 1 second
cycles VAR Word ' counted cycles
Main:
DO
DEBUG CLS,
"How many times can you press the button in 1 second?", CR
PAUSE 1000

DEBUG "Ready, set... "
Page 150 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

NOTE: This example program can be
used with all BS2 models. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

5: BASIC Stamp Command Reference — GOUNT

PAUSE 500
DEBUG "GO!", CR
COUNT PushBtn, (Capture */ DurAdj), cycles

DEBUG CR, "Your score: ", DEC cycles, CR

PAUSE 3000

DEBUG "Press button to go again."

DO : LOOP UNTIL (PushBtn = 0) ' wait for button press
LOOP
END

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 151

COUNT - BASIC Stamp Command Reference

Page 152 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Gommand Reference — DATA

Table 5.7: DATA Quick Facts.

WRITING SIMPLE, SEQUENTIAL DATA.

All 2

DATA BS2 |BS2e |BS2sx| BS2p |BS2pe|BS2px

(See EEPROM)
{ Symhol } DATA Dataltem { , Dataltem... }

Function
Write data to the EEPROM during program download.
e Symbol is an optional, unique symbol name that will be
automatically defined as a constant equal to the location number of
the first data item.

e Dataltem is a constant/expression (0 — 65535) indicating a value, and
optionally how to store the value.

Quick Facts

All BS2 Models

Writes values to EEPROM during download in blocks of 16 bytes. Writes

szl [EEs byte or word-sized values. Can be used to decrease program size.

Related

READ and WRITE
Commands

Explanation

When you download a program into the BASIC Stamp, it is stored in the
EEPROM starting at the highest address (2047) and working towards the
lowest address. Most programs don’t use the entire EEPROM, so the
lower portion is available for other uses. The DATA directive allows you
to define a set of data to store in the available EEPROM locations. It is
called a “directive” rather than a “command” because it performs an
activity at compile-time rather than at run-time (i.e.: the DATA directive is
not downloaded to the BASIC Stamp, but the data it contains is
downloaded).

The simplest form of the DATA directive is something like the following:

DATA 100, 200, 52, 45

This example, when downloaded, will cause the values 100, 200, 52 and 45
to be written to EEPROM locations 0, 1, 2 and 3, respectively. You can
then use the READ and WRITE commands in your code to access these
locations and the data you've stored there.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 153

DATA - BASIC Stamp Command Reference

DATA uses a counter, called a pointer, to keep track of available EEPROM THE DATA POINTER (COUNTER).
addresses. The value of the pointer is initially 0. When a program is
downloaded, the DATA directive stores the first byte value at the current
pointer address, then increments (adds 1 to) the pointer. If the program
contains more than one DATA directive, subsequent DATAs start with the
pointer value left by the previous DATA. For example, if the program

contains:
DATA 72, 69, 76, 76, 79
DATA 104, 101, 108, 108, 111

The first DATA directive will start at location 0 and increment the pointer
for each data value it stores (1, 2, 3, 4 and 5). The second DATA directive
will start with the pointer value of 5 and work upward from there. As a
result, the first 10 bytes of EEPROM will look like the following:

EEPROM Location (address) Table 5.8: Example EEPROM
0 1 2 3 4 5 6 7 8 9 | Storage.
Contents 72 69 76 76 79 104 101 108 108 | 111

What if you don’t want to store values starting at location 0? Fortunately, WRITING DATATO OTHER LOCATIONS.
the DATA directive has an option to specify the next location to use. You

can specify the next location number (to set the pointer to) by inserting a

Dataltem in the form @x ;where x is the location number. The following

code writes the same data in Table 5.8 to locations 100 through 109:

DATA @l00, 72, 69, 76, 76, 79, 104, 101, 108, 108, 111

In this example, the first Dataltem is @100. This tells the DATA directive to
store the following Dataltem(s) starting at location 100. All the Dataltems to
the right of the @100 are stored in their respective locations (100, 101,
102... 109).

In addition, the DATA directive allows you to specify new starting
locations at any time within the Dataltem list. If, for example, you wanted
to store 56 at location 100 and 47 at location 150 (while leaving every other
location intact), you could type the following:

DATA @100, 56, @150, 47

If you have multiple DATA directives in your program, it may be difficult AUTOMATIC CONSTANTS FOR DEFINED
to remember exactly what locations contain the desired data. For this PA™*
reason, the DATA directive can optionally be prefixed with a unique

Page 154 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Gommand Reference — DATA

RESERVING EEPROM LOCATIONS.

IMPORTANT CONCEPT: HOW DATA AND
PROGRAMS ARE DOWNLOADED INTO
EEPROM.

WRITING A BLOCK OF THE SAME VALUE.

symbol name. This symbol becomes a constant that is set equal to the
location number of the first byte of data within the directive. For example,

MyNumbers DATA @100, 72, 73

This would store the values 72 and 73 starting with location 100 and will
create a constant, called MyNumbers, which is set equal to 100. Your
program can then use the MyNumbers constant as a reference to the start of
the data within a READ or WRITE command. Each DATA directive can
have a unique symbol preceding it, allowing you to reference the data
defined at different locations.

There may be a time when you wish to reserve a section of EEPROM for
use by your BASIC code, but not necessarily store data there to begin with.
To do this, simply specify a Dataltern within parentheses, as in:

DATA @100, (20)

The above DATA directive will reserve 20 bytes of EEPROM, starting with
location 100. It doesn’t store any values there, rather it simply leaves the
data as it is and increments DATA’s location pointer by 20. A good reason
to do this is when you have a program already downloaded into the
BASIC Stamp that has created or manipulated some data in EEPROM. To
protect that section of EEPROM from being overwritten by your next
program (perhaps a new version of the same program) you can reserve the
space as shown above. The EEPROM’s contents from locations 100 to 119
will remain intact. NOTE: This only "reserves" the space for the program
you are currently downloading; the BASIC Stamp does not know to
"reserve" the space for future programs. In other words, make sure use
this feature of the DATA directive in every program you download if you
don't want to risk overwriting valuable EEPROM data.

It is important to realize that EEPROM is not overwritten during
programming unless it is needed for program storage, or is filled by a
DATA directive specifying data to be written. During downloading,
EEPROM is always written in 16-byte sections if, and only if, any
location within that section needs writing.

DATA can also store the same number in a block of consecutive locations.
This is similar to reserving a block of EEPROM, above, but with a value
added before the first parenthesis.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 155

DATA - BASIC Stamp Command Reference

For example,

DATA @100, 0 (20)

This statement writes the value 0 in all the EEPROM locations from 100 to
119.

A common use for DATA is to store strings; sequences of bytes
representing text. PBASIC converts quoted text like "A" into the
corresponding ASCII character code (65 in this case). To make data entry
easier, you can place quotes around a whole chunk of text used in a DATA
directive, and PBASIC will understand it to mean a series of bytes (see the
last line of code below). The following three DATA directives are
equivalent:

DATA 72, 69, 76, 76, 79
DATA "ygn, wEM, wpmw,owpm,onQn
DATA "HELLO"

All three lines of code, above, will result in the numbers 72, 69, 76, 76, and
79 being stored into EEPROM upon downloading. These numbers are
simply the ASCII character codes for "H", "E", "L", "L", and "O",
respectively. See the Demo program, below, for an example of storing and
reading multiple text strings.

The EEPROM is organized as a sequential set of byte-sized memory
locations. By default, the DATA directive stores bytes into EEPROM. If
you try to store a word-sized value (ex: DATA 1125) only the lower byte
of the value will be stored. This does not mean that you can't store word-
sized values, however. A word consists of two bytes, called a low-byte
and a high-byte. If you wanted to store the value 1125 using the DATA
directive, simply insert the prefix "word" before the number, as in:

DATA Word 1125

The directive above will automatically break the word-sized value into
two bytes and store them into two sequential EEPROM locations (the low-
byte first, followed by the high-byte). In this case, the low-byte is 101 and
the high byte is 4 and they will be stored in locations 0 and 1, respectively.
If you have multiple word-sized values, you must prefix each value with
"word", as in:

DATA Word 1125, Word 2000

Page 156 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

WRITING TEXT STRINGS.

WRITING WORD VALUES VS. BYTE VALUES.

5: BASIC Stamp Gommand Reference — DATA

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

To retrieve a word-sized value, you'll need to use the WORD modifier in
the READ command and a word-sized variable.

Finally, a Dataltem may be defined using a simple expression with the
binary operators shown in Table 4.5. For example,

MinLvl CON 10

myLvl VAR Byte

Levell DATA MinLvl + 10

Level2 DATA MinLvl * 5 + 21

READ Level2, myLvl ' read EE location Level2
DEBUG DEC myLvl ' show value of myLwvl (71)

Demo Program (DATA.bhs2)

' DATA.bs2

' This program stores a number of large text strings into EEPROM with the

' DATA directive and then sends them, one character at a time via the DEBRUG
' command. This is a good demonstration of how to save program space by

' storing large amounts of data in EEPROM directly, rather than embedding

' the data into DEBUG commands.

' {$sTAaMP BS2}
' {$PBASIC 2.5}

idx VAR Word ' current location number
phrase VAR Nib ' current phrase number
char VAR Byte ' character to print

U Define all text phrases (out of order, just for fun!) -----

Textl DATA "Here is the first part of a large chunk of textual "
DATA "data ", CR, "that needs to be transmitted. There's "
DATA "a 5 second delay", CR, "between text paragraphs. ", CR

DATA CR, O

Text3 DATA "The alternative (having multiple DEBUGs or SEROUTs, "
DATA "each ", CR, "with their own line of text) consumes "
DATA "MUCH more EEPROM ", CR, " (program) space. ", CR

DATA CR, O

Text6 DATA "The 0 is used by this program to indicate we've "
DATA "reached the ", CR, "End of Text. The Main routine "
DATA "pauses in between each block of", CR, "text,and then "
DATA "uses a LOOKUP command to retrieve the location ", CR
DATA "of the next desired block of text to print. ", 0

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 157

DATA - BASIC Stamp Command Reference

Text4 DATA CLS, "This program also demonstrates retrieving data "
DATA "out of order ", CR, "in relation to the way it is "
DATA "stored in EEPROM. Additionally,", CR, "control codes "
DATA " (like carriage-returns, clear-screens, etc) can ", CR
DATA "be embedded right in the data, as it is here. ", CR
DATA CR, O
Text2 DATA "This is an example of a good way to save space in "
DATA "your ", CR, "BASIC Stamp's program by storing data "
DATA "into EEPROM and ", CR, "retrieving it, one byte at a "
DATA "time, and transmitting it ", CR, "with just a single "
DATA "DEBUG (or SEROUT) command.", CR, CR, O
Text5 DATA "The Print It routine simply takes the idx variable, "
DATA "retrieves", CR, "the character at the EEPROM location "
DATA "pointed to by it, and ", CR, "prints it to the screen "
DATA "until it finds a byte with a value of 0.", CR, CR, O
Main:
DEBUG CLS ! Clear DEBUG window
FOR phrase = 1 TO 6 ' Print blocks one by one

LOOKUP (phrase

= 1),

[Textl, Text2, Text3, Text4, Text5, Text6], idx

GOSUB Print It
PAUSE 5000
NEXT
END

Print It:

DO
READ idx, char
idx = idx + 1
IF (char = 0)
DEBUG char

LOOP

RETURN

' Pause for 5 seconds

Get next character
Point to next location

THEN EXIT ' If 0, we're done with block

' Otherwise, transmit it

Return to the main routine

Page 158 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — DEBUG

NOTE: Expressions are not allowed as
arguments on the BS1. The only
constant allowed for the BS1 DEBUG
command is a text string.

Table 5.9: DEBUG Quick Facts.

DEBUG BS1 | BS2 | BS2e |BS2sx| BS2p |BS2pe|BS2px
DEBUG OutputData { , OutputDatia }

Function

Display information on the PC screen within the BASIC Stamp Editor’s

Debug Terminal. This command can be used to display text or numbers in

various formats on the PC screen in order to follow program flow (called

debugging) or as part of the functionality of the BASIC Stamp application.

e QutputData is a variable/constant/expression (0 — 65535) that

specifies the information to output. Valid data can be ASCII
characters (text strings and control characters), decimal numbers (0 -
65535), hexadecimal numbers ($0000 - $FFFF) or binary numbers (up
to %I1111111111111111). Data can be modified with special
formatters as explained below.

Quick Facts

BS2, BS2e, BS2sx
BS1 BS2p, BS2pe BS2px
Asynchronous Asynchronous Asynchronous
Serial 4800, N, 8, 1 9600, N, 8, 1 19200, N, 8, 1
Protocol True polarity Inverted polarity Inverted polarity
Custom packetized format| Raw data Raw data
G None SEROUT and DEBUGIN
Commands
Explanation

DEBUG provides a convenient way for your BASIC Stamp to send
messages to the PC screen while running. The name “debug” suggests its
most popular use; debugging programs by showing you the value of a
variable or expression, or by indicating what portion of a program is
currently executing. DEBUG is also a great way to rehearse programming
techniques. Throughout this manual, we use DEBUG to give you
immediate feedback on the effects of instructions. The following example
demonstrates using the DEBUG command to send the text string message
“Hello World!”.

DEBUG "Hello, World!"

After you download this one-line program, the BASIC Stamp Editor will
open a Debug Terminal on your PC screen and wait for a response from

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 159

DEBUG - BASIC Stamp Command Reference

the BASIC Stamp. A moment later, the phrase "Hello World!" will appear.
Note that if you close the Debug Terminal, your program keeps executing,
but you can’t see the DEBUG data anymore.

Multiple pieces of data can be sent with one DEBUG command by
separating the data with commas (,). The following example produces
exactly the same results as the example above.

DEBUG "Hello ", "World!"

DEBUG can also print and format numbers (values) from both constants
and variables. The formatting methods for DEBUG are very different for
the BS1, than for any other BASIC Stamp. Please read the appropriate
sections, below, carefully.

BASIC Stamp 1 Formatting

On the BS1, the DEBUG command, by default, displays numbers in the
format "symbol = value" (followed by a carriage return), using the decimal
number system. For example,

SYMBOL X = B2

x =175
DEBUG x

displays "x = 75" on the screen. To display the value, in decimal, without
the "x =" text, use the value formatter (#) before the variable name. For
example, the following code displays "75" on the screen.

SYMBOL x = B2

x =175
DEBUG #x

To display numbers in hexadecimal or binary form, use the $ or %
formatter, respectively. The code below displays the same number in its
hexadecimal and binary forms.

SYMBOL x = B2

x =175
DEBUG $x, %x

Page 160 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

DISPLAYING DECIMAL NUMBERS (BS1).

DISPLAYING HEXADECIMAL OR BINARY
NUMBERS (BS1).

5: BASIC Stamp Command Reference — DEBUG

DISPLAYING ASCIl CHARACTERS (BS1).

Table 5.10: DEBUG Formatters for
the BASIC Stamp 1.

UsING CR AND CLS (BS1).

After running the above code, "x = $4B" and "x = %01001011" should
appear on the screen. To display hexadecimal or binary values without
the "symbol = " preface, use the value formatter (#) before the $ and %, as
shown below:

SYMBOL x = B2

x =175
DEBUG #x, "as HEX is ", #3x ' displays "75 as HEX is S$4B"
DEBUG #x, "as BINARY is ", Erd ' displays "75 as BINARY is %01001011"

To display a number as its ASCII character equivalent, use the ASCII
formatter (@).

SYMBOL x = B2

x =175
DEBUG @x
Formatter Description
Suppresses the "symbol = x" format and displays only the 'x' value.
The default format is decimal but may be combined with any of the
formatters below (ex: #x to display: x value)
@ Displays "symbol = 'x" + carriage return; where x is an ASCII
character.
$ Hexadecimal text.
Y% Binary text.

Two pre-defined symbols, CR and CLS, can be used to send a carriage-
return or clear-screen command to the Debug Terminal. The CR symbol
will cause the Debug Terminal to start a new line and the CLS symbol will
cause the Debug Terminal to clear itself and place the cursor at the top-left
corner of the screen. The following code demonstrates this.

DEBUG "You can not see this.", CLS, "Here is line 1", CR, "Here is line 2"

When the above is run, the final result is "Here is line 1" on the first line of
the screen and "Here is line 2" on the second line. You may or may not
have seen "You can not see this." appear first. This is because it was
immediately followed by a clear-screen symbol, CLS, which caused the
display to clear the screen before displaying the rest of the information.

NOTE: The rest of this discussion does not apply to the BASIC Stamp 1.

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com ¢ Page 161

DEBUG - BASIC Stamp Command Reference

BASIC Stamp 2, 2e, 2sx, 2p, 2pe, and 2px Formatting

On the all BASIC Stamp models except the BS1, the DEBUG command, by DISPLAYING ASCI GARAGTERS
default, displays everything as ASCII characters. What if you want to

display a number? You might think the following example would do this:

X VAR Byte
X = 65
DEBUG x ' Try to show decimal value of x

Since we set x equal to 65 (in line 2), you might expect the DEBUG line to DISPLAYING DECIMAL NUMBERS.
display “65” on the screen. Instead of “65”, however, you'll see the letter

“A” if you run this example. The problem is that we never told the BASIC

Stamp how to output x, and it defaults to ASCII (the ASCII character at

position 65 is “A”). Instead, we need to tell it to display the “decimal

form” of the number in x. We can do this by using the decimal formatter

(DEC) before the variable. The example below will display “65” on the

screen.

X VAR Byte
X = 65
DEBUG DEC x ' Show decimal value of x

In addition to decimal (DEC), DEBUG can display numbers in DISPLAYING HEXADECIMAL AND
hexadecimal (HEX) and binary (BIN). See Table 5.11 and Table 5.12 for a 2NARY NUMBERS.
complete list of formatters.

Expressions are allowed within the DEBUG command arguments as well. EXPRESSIONS IN DEBUG

In the above code, DEBUG DEC x+25 would yield "90" and DEBUG COMWANDS:
DEC x*10/2-3 would yield "322".

Page 162 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

5: BASIC Stamp Command Reference — DEBUG

Table 5.11: DEBUG Special
Formatters for all BS2 models.

Table 5.12: DEBUG Conversion
Formatters for all BS2 models.

DISPLAYING "INDICATED" NUMBERS.

Special Formatter Action

Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with

?
’ conversion formatters (ex: BIN ? x to display "x =
binary_number").
ASC ? Displays "symbol = 'x" + carriage return; where x is an

ASCII character.

Send character string from an array. The optional \L
argument can be used to limit the output to L characters,
otherwise, characters will be sent up to the first byte equal to
0 or the end of RAM space is reached.

STR ByteArray {\L}

Send a string consisting of Byte repeated L times

REP Byte\L (ex: REP_"X"\10 sends "XXXXXXXXXX").

Conversion Type of Number Notes
Formatter

DEC{1..5} Decimal, optionally fixed to 1 — 5 digits 1
SDEC({1..5} | Signed decimal, optionally fixed to 1 — 5 digits 1,2
HEX{1..4} Hexadecimal, optionally fixed to 1 — 4 digits 1,3
SHEX{1..4} | Signed hexadecimal, optionally fixed to 1 — 4 digits 1,2
IHEX{1..4} Indicated hexadecimal, optionally fixed to 1 — 4 digits ($ prefix) 1
ISHEX{1..4} Signeq, indicated hexadecimal, optionally fixed to 1 — 4 digits 12

($ prefix)

BIN{1..16} Binary, optionally fixed to 1 — 16 digits 1
SBIN{1..16} | Signed binary, optionally fixed to 1 — 16 digits 1,2
IBIN{1..16} Indicated binary, optionally fixed to 1 — 16 digits (% prefix) 1
ISBIN{1..16} [Signed, indicated binary, optionally fixed to 1 — 16 digits (% prefix) | 1,2

1 Fixed-digit formatters like DEC4 will pad the number with leading Os if necessary; ex:
DEC4 65 sends 0065. If a number is larger than the specified number of digits, the
leading digits will be dropped; ex: DEC4 56422 sends 6422.

2 Signed modifiers work under two's complement rules.

3 The HEX modifier can be used for BCD to Decimal Conversion. See “Hex to BCD
Conversion” on page 97.

As seen in Table 5.12, special versions of the DEC, HEX and BIN
formatters allow for the display of indicated, signed and fixed-width
numbers. The term "indicated" simply means that a special symbol is
displayed, before the number, indicating what number system it belongs
to. For example,

X VAR Byte
X = 65
DEBUG HEX x ' Show hexadecimal value of x

displays "41" (65, in decimal, is 41, in hexadecimal). You might see a
problem here... unless you knew the number was supposed to be

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 163

DEBUG - BASIC Stamp Command Reference

hexadecimal, you might think it was 41, in decimal... a totally different
number. To help avoid this, use the IHEX formatter (the "I" stands for
indicated). Changing the DEBUG line to read: DEBUG IHEX x would
print "$41" on the screen. A similar formatter for binary also exists, IBIN,
which prints a "%" before the number.

Signed numbers are preceded with a space () or a minus sign (-) to
indicate a positive or negative number, respectively. Normally, any
number displayed by the BASIC Stamp is shown in its unsigned (positive)
form without any indicator. The signed formatters allow you to display
the number as a signed (rather than unsigned) value. NOTE: Only Word-
sized variables can be used for signed number display. The code below
demonstrates the difference in all three numbering schemes.

X VAR Word

X = -65

DEBUG "Signed: ", SDEC x, " ", ISHEX x, " ", ISBIN x, CR
DEBUG "Unsigned: ", DEC x, " ", IHEX x, " ", IBIN x

This code will generate the display shown below:

Signed: -65 -$41 -%1000001
Unsigned: 65471 SFFBF %$1111111110111111

The signed form of the number —65 is shown in decimal, hexadecimal and
then in binary on the top line. The unsigned form, in all three number
systems, is shown on the bottom line. If the unsigned form looks strange
to you, it's because negative numbers are stored in twos complement
format within the BASIC Stamp.

Suppose that your program contained several DEBUG instructions
showing the contents of different variables. You would want some way to
tell them apart. One possible way is to do the following:

x VAR Byte

Y VAR Byte

x = 100

y = 250

DEBUG "X = ", DEC x, CR ' Show decimal value of x
DEBUG "Y = ", DEC y, CR ' Show decimal value of y

Page 164 ¢ BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com

DISPLAYING SIGNED VS. UNSIGNED
NUMBERS.

AUTOMATIC NAMES IN THE DISPLAY.

5: BASIC Stamp Command Reference — DEBUG

DISPLAYING FIXED-WIDTH NUMBERS.

but typing the name of the variables in quotes (for the display) can get a
little tedious. A special formatter, the question mark (?), can save you a lot
of time. The code below does exactly the same thing (with less typing):

X VAR Byte

y VAR Byte

x = 100

vy = 250

DEBUG DEC ? x ' Show decimal value of x
DEBUG DEC ? y ' Show decimal value of y

The display would look something like this:

100
250

b d
Y

The ? formatter always displays data in the form "symbol = value"
(followed by a carriage return). In addition, it defaults to displaying in
decimal, so we really only needed to type: DEBUG ? x for the above
code. You can, of course, use any of the three number systems. For
example: DEBUG HEX ? x or DEBUG BIN ? y.

It's important to note that the "symbol" it displays is taken directly from
what appears to the right of the ?. If you were to use an expression, for
example: DEBUG ? x*10/2+3 in the above code, the display would
show: "x*10/2+3 = 503".

A special formatter, ASC, is also available for use only with the ? formatter
to display ASCII characters, as in: DEBUG ASC ? x.

What if you need to display a table of data; multiple rows and columns?
The Signed /Unsigned code (above) approaches this but, if you notice, the
columns don't line up. The number formatters (DEC, HEX and BIN) have
some useful variations to make the display fixed-width (see Table 5.12).
Up to 5 digits can be displayed for decimal numbers. To fix the value to a
specific number of decimal digits, you can use DEC1, DEC2, DEC3, DEC4
or DEC5. For example:

X VAR Byte
x = 165
DEBUG DEC5 x ' Show decimal value of x in 5 digits

BASIC Stamp Syntax and Reference Manual 2.2 e www.parallax.com « Page 165

DEBUG - BASIC Stamp Command Reference

displays "00165". Notice that leading zeros? The display is "fixed" to 5
digits, no more and no less. Any unused digits will be filled with zeros.

Using DEC4 in the same code would display "0165". DEC3 would display
"165". What would happen if we used DEC2? Regardless of the number,
the BASIC Stamp will ensure that it is always the exact number of digits
you specified. In this case, it would truncate the "1" and only display "65".

Using the fixed-width version of the formatters in the Signed/Unsigned
code above, may result in the following code:

X VAR Word

X = -65

DEBUG "Signed: ", SDEC5 x, " ", ISHEX4 x, " ", ISBIN16 x, CR
DEBUG "Unsigned: ", DEC5 x, " ", IHEX4 x, " ", IB