

Oscillator JTS53HC(V) · (VC)TCXO

- temp. compensated crystal oscillator, 5.0 x 3.2 mm
- low jitter Stratum 3 compliant TCXO / VCTCXO
- temperature range -40°C ~ +105°C available
- frequency stability of ± 50 ppb available
- ask for customized options

REACH

GENERAL DATA				
TYPE		JTS53HC / JTS53HCV (HCMOS output)		
frequency range		9.60 ~ 50.0 MHz (see table 4 on next page)		
frequency tolerance / stability	at +25 °C (*1)	± 1.0 ppm max.		
	after 2x reflow (*2)	± 0.5 ppm max.		
Stability	temperature (*3)	see table 1		
	supply voltage (*4)	\pm 0.1 ppm max. (at V _{DC} \pm 5%)		
	load change (*5)	± 0.1 ppm max. (at nom load ± 5%)		
	aging first year (*6)	± 1.0 ppm max. (at +25 °C)		
	aging per day (*7)	± 20.0 ppb max.		
	short term (ADEV)	0.2 ppb max. / 0.1 ppb typ. with τ = 1 sec		
holdover st	ability (*8)	± 0.37 ppm max.		
free run fre	quency stability (*9)	± 4.6 ppm max.		
current con	sumption max.	10.0 mA max.		
supply volta	age V _{DC}	3.3V (all ± 5%)		
tempera-	operating	see table 1		
ture	operable	-40 °C ~ +105 °C		
	storage	-55 °C ~ +105 °C		
output	rise/fall time max.	8ns (10% <-> 90% of VDC)		
	load max.	15 pF		
	low level max.	0.4V		
	high level min.	V _{DC} - 0.4V		
start-up time max.		3.0 ms		
For (*1) ~ (*9) please refer to definitions shown on the 2nd page of this datasheet				

TABLE 1: FREQUENCY STABILITY CODE						
frequency stability temperature code		F ± 0.28 ppm	H ± 0.20 ppm	G ± 0.10 ppm	J ± 0.05 ppm	
-30 °C ~ +75 °C	G	0	0	0	0	
-40 °C ~ +85 °C	K	0	0	0	0	
-40 °C ~ +105 °C	Р	0	0	0	\triangleright	

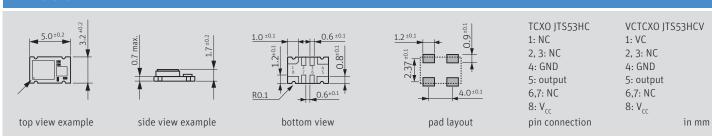
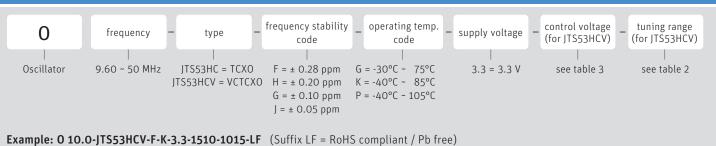

O available > ask if available

TABLE 2: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD						
V _c frequency tuning range	code minimal		maximal			
of JTS53HCV	05X0	± 5.0 ppm	undefined			
table shows examples,	08X0	± 8.0 ppm	undefined			
ask for more options	0510	± 5.0 ppm	± 10.0 ppm			
	1015	± 10.0 ppm	± 15.0 ppm			


TABLE 3: VC CODING METHOD (EXAMPLES)					
V _C center voltage and V _C range	code	center of V _c	range of V _c		
	1616	1.65 V	± 1.65 V	1.65 V ± 1.65 V at V _{DC} = 3.3 V	
	1610	1.65 V	± 1.00 V	$1.65 \text{ V} \pm 1.00 \text{ V} \text{ at V}_{DC} = 3.3 \text{ V}$	
	1515	1.50 V	± 1.50 V	1.50 V \pm 1.50 V at $V_{DC} = 3.3 V$	
	1510	1.50 V	± 1.00 V	1.50 V \pm 1.00 V at V _{DC} = 3.3 V	
V _c properties	input impedance of $V_{\rm c}$ min.			100 k0hm	
	$V_{\rm c}$ frequency tuning linearity max.			10 %	

For (*1) ~ (*9) please refer to definitions shown on the 2nd page of this datasheet

DIMENSIONS

ORDER INFORMATION

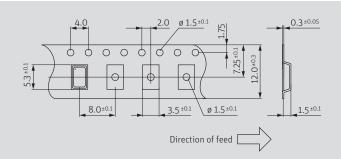
Oscillator JTS53HC(V) · Stratum 3 TCXO & VCTCXO

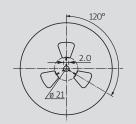
PHASE NOISE INFORMATION				
phase noise	at 10 Hz	-93 dBc/Hz typ.		
at f0 19.2 MHz,	at 100 Hz	-120 dBc/Hz typ.		
$V_{DC} = 3.3 \text{ V}$	at 1 KHz	-145 dBc/Hz typ.		
@ +25 °C	at 10 KHz	-157 dBc/Hz typ.		
	at 100 KHz	-159 dBc/Hz typ.		

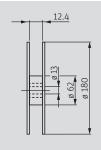
DEVELOPED FREQUENCIES					
all frequencies	10.0	12.80	13.0	16.320	16.3840
in MHz:	18.4320	19.20	19.440	20.0	25.0
	30.720	32.7680	38.880	40.0	50.0

NOTE

- for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of $10\mu F$ closely to the supply voltage pins
- a separate voltage supply rail ensures best phase noise
- keep digital or high frequency signals as far away from V_c pin as possible

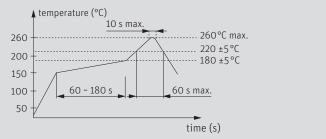

PACKAGING NOTE


- non-multiple packing units are only supplied taped / bulk
- moisture sensitivity: MSL 2


DEFINITIONS

- *1: Measured frequency observed with T_A =+25°C and C_L =15pF, at nominal V_{DC} and nominal center V_C (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with T_A=+25 °C and C_L=15pF, at nominal V_{DC} and nominal center V_C (if applicable). At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- *3: T_A varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal V_{DC} and nominal center V_C (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} is varied by \pm 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_{A} =+25 °C and nominal load.
- *5: Frequency variation if the load is varied by \pm 5% of nominal load, frequency variation is normalized to frequency observed at nominal V nominal center V (if applicable), T = +25 °C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), $T_A = +25$ °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A =+25 °C, at nominal V_{DC} , nominal center V_C (if applicable), nominal load and after 1h of continuous operation.
- *8: The maximum frequency deviation within 24 hours including temperature variation. The initial status acquired at T_A =+25°C, at nominal V_{DC} , nominal center V_c (if applicable), nominal load and after 1h of continuous operation.
- *9: The maximum frequency deviation including stability vs. temperature, tolerance ex. factory, aging over 20 years, supply and load variation.

TAPING SPECIFICATION



in mm

REFLOW SOLDERING PROFILE

note: parts are also suitable for soldering systems with lead (Pb) content

MARKING

frequency / internal code (optional) dot / D / date code (YWW) or dot / date code (YYWW)

date code: one digit for year and two digits for week

2: 2022 3: 2023 4: 2024 5: 2025 6: 2026 7: 2027 note: the date code on the metal lid does not show the datecode of the final assembly of the (VC)TCXO. The final assembly date is later than the datecode shown on the metal lid

