

N-channel TrenchMOS logic level FET Rev. 3 — 8 February 2011

Product data sheet

Product profile 1.

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in automotive critical applications.

1.2 Features and benefits

- AEC Q101 compliant
- Low conduction losses due to low on-state resistance
- Suitable for logic level gate drive sources
- Suitable for thermally demanding environments due to 175 °C rating

1.3 Applications

- 12 V loads
- Automotive systems

- General purpose power switching
- Motors, lamps and solenoids

1.4 Quick reference data

Table 1.	1. Quick reference data						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	-	30	V
I _D	drain current	V _{GS} = 5 V; T _{mb} = 25 °C; see <u>Figure 3</u> ; see <u>Figure 1</u>	<u>[1]</u>	-	-	75	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	-	300	W
Static cha	aracteristics						
R_{DSon}	drain-source on-state	V _{GS} = 10 V; I _D = 25 A; T _j = 25 °C		-	2	2.4	mΩ
	resistance	$\label{eq:VGS} \begin{array}{l} V_{GS} = 5 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \\ T_{j} = 25 \text{ °C}; \text{ see } \overline{Figure \ 11}; \\ \text{see } \overline{Figure \ 12} \end{array}$		-	2.4	2.8	mΩ

N-channel TrenchMOS logic level FET

Table 1.	Quick reference da	tacontinued				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Avalanch	e ruggedness					
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	$ \begin{split} I_D &= 75 \text{ A}; \text{V}_{\text{sup}} \leq 30 \text{V}; \\ R_{\text{GS}} &= 50 \Omega; \text{V}_{\text{GS}} = 5 \text{V}; \\ T_{j(\text{init})} &= 25 ^\circ\text{C}; \text{ unclamped} \end{split} $	-	-	2.3	J
Dynamic	characteristics					
Q _{GD}	gate-drain charge	$V_{GS} = 5 V; I_D = 25 A;$ $V_{DS} = 24 V; T_j = 25 °C;$ see Figure 13	-	35	-	nC

[1] Continuous current is limited by package.

Pinning information 2.

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		
2	D	drain ^[1]	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT404 (D2PAK)	

[1] It is not possible to make a connection to pin 2.

Ordering information 3.

Table 3. **Ordering information**

Type number	Package		
	Name	Description	Version
BUK962R8-30B	D2PAK	plastic single-ended surface-mounted package (D2PAK); 3 leads (one lead cropped)	SOT404

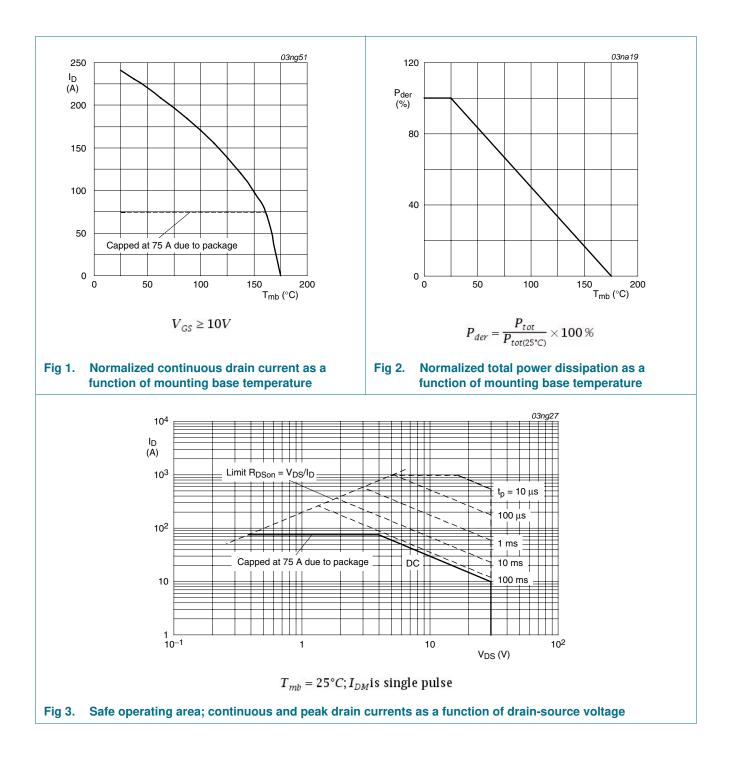
.

4. Limiting values

Table 4. Limiting values

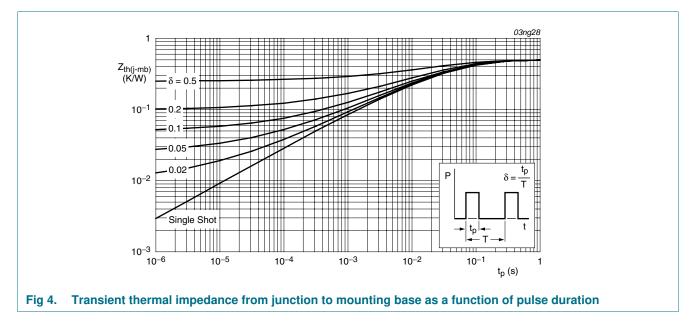
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	30	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$	-	30	V
V _{GS}	gate-source voltage		-15	15	V
I _D	drain current	T_{mb} = 25 °C; V_{GS} = 5 V; see <u>Figure 3</u> ;	<u>[1]</u> -	237	А
		see Figure 1	[2] _	75	А
		T_{mb} = 100 °C; V_{GS} = 5 V; see <u>Figure 1</u>	[2] _	75	А
I _{DM}	peak drain current	T _{mb} = 25 °C; pulsed; t _p ≤ 10 μs; see <u>Figure 3</u>	-	950	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	300	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-drain	diode				
Is	source current	T _{mb} = 25 °C	[3] _	75	А
			<u>[1]</u> -	237	А
I _{SM}	peak source current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$	-	950	А
Avalanche ru	ggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	I _D = 75 A; V _{sup} ≤ 30 V; R _{GS} = 50 Ω; V _{GS} = 5 V; T _{j(init)} = 25 °C; unclamped	-	2.3	J


[1] Current is limited by power dissipation chip rating.

[2] Continuous current is limited by package.

[3] Continuous current is limited by package.


BUK962R8-30B

N-channel TrenchMOS logic level FET

Thermal characteristics 5.

Table 5.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	-	0.5	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	mounted on a printed-circuit board; minimum footprint	-	50	-	K/W

BUK962R8-30B **Product data sheet**

6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static chara	octeristics					
V _{(BR)DSS}	drain-source	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	30	-	-	V
	breakdown voltage	$I_D = 0.25 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = -55 \text{ °C}$	27	-	-	V
G.G()	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see <u>Figure 10</u>	1.1	1.5	2	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$ see <u>Figure 10</u>	0.5	-	-	V
		I _D = 1 mA; V _{DS} = V _{GS} ; T _j = -55 °C; see <u>Figure 10</u>	-	-	2.3	V
I _{DSS}	drain leakage current	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.02	1	μA
		V _{DS} = 30 V; V _{GS} = 0 V; T _j = 175 °C	-	-	500	μA
I _{GSS} gate leakage current	V _{GS} = 15 V; V _{DS} = 0 V; T _j = 25 °C	-	2	100	nA	
		$V_{GS} = -15 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	2	100	nA
R _{DSon}	drain-source on-state resistance	$V_{GS} = 5 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \text{ T}_{j} = 175 \text{ °C};$ see Figure 11; see Figure 12	-	-	5.3	mΩ
		V_{GS} = 10 V; I_D = 25 A; T_j = 25 °C	-	2	2.4	mΩ
	V _{GS} = 4.5 V; I _D = 25 A; T _j = 25 °C	-	-	3	mΩ	
		$V_{GS} = 5 \text{ V}; I_D = 25 \text{ A}; T_j = 25 \text{ °C};$ see Figure 11; see Figure 12	-	2.4	2.8	mΩ
Dynamic ch	aracteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 24 \text{ V}; V_{GS} = 5 \text{ V};$	-	89	-	nC
Q _{GS}	gate-source charge	$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 13}{13}$	-	22	-	nC
Q _{GD}	gate-drain charge		-	35	-	nC
C _{iss}	input capacitance	$V_{GS} = 0 V; V_{DS} = 25 V; f = 1 MHz;$	-	7640	10185	pF
C _{oss}	output capacitance	$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 14}{\text{Figure } 14}$	-	1600	1920	pF
C _{rss}	reverse transfer capacitance		-	735	1006	pF
d(on)	turn-on delay time	$V_{DS} = 30 \ V; \ R_L = 1.2 \ \Omega; \ V_{GS} = 5 \ V;$	-	71	-	ns
t _r	rise time	$R_{G(ext)} = 10 \ \Omega; T_j = 25 \ ^{\circ}C$	-	222	-	ns
t _{d(off)}	turn-off delay time		-	260	-	ns
t _f	fall time		-	195	-	ns
L _D	internal drain inductance	from upper edge of drain mounting base to centre of die; $T_j = 25 \text{ °C}$	-	2.5	-	nH
		from drain lead 6 mm from package to centre of die; $T_j = 25 \text{ °C}$	-	4.5	-	nH
L _S	internal source inductance	from source lead to source bond pad; $T_j = 25 \text{ °C}$	-	7.5	-	nH

Symbol

BUK962R8-30B

Unit

Max

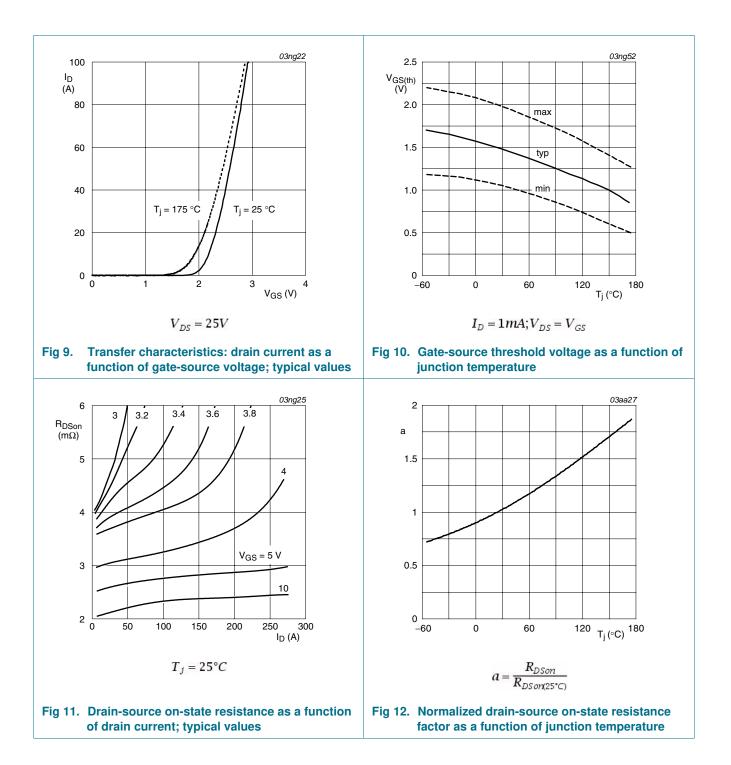
N-channel TrenchMOS logic level FET

Тур

Min

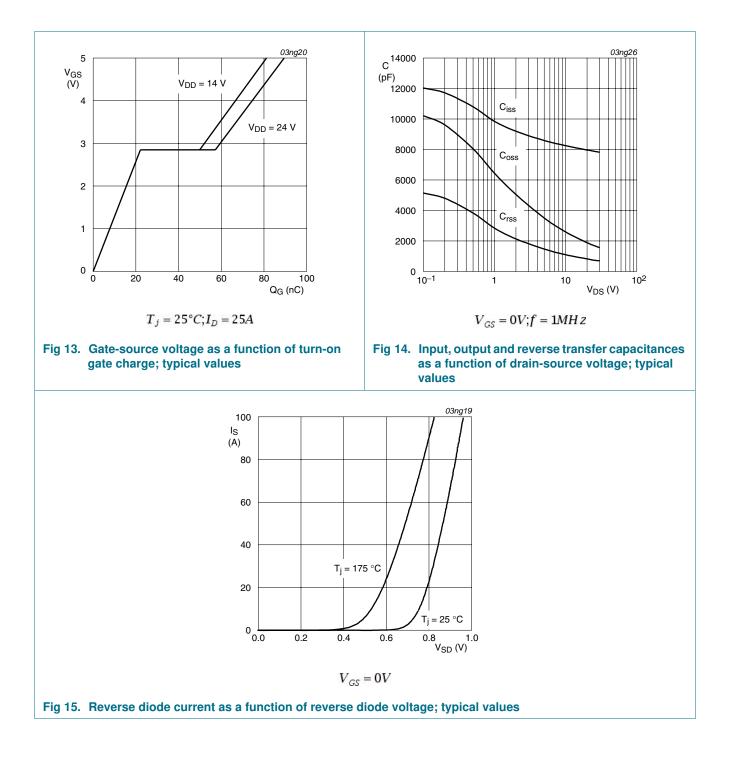
Source-dra	vin diada							
						0.05	1.0	
/ _{SD}	source-drain voltage	$I_S = 40 \text{ A}; V_{GS} = 0$ see <u>Figure 15</u>			-	0.85	1.2	V
rr	reverse recovery time	$I_{\rm S} = 20 \text{ A}; dI_{\rm S}/dt = -$			-	109	-	ns
λr	recovered charge	V _{GS} = -10 V; V _{DS} =	20 V; $I_j = 25 {}^{\circ}C$		-	171	-	nC
300	_	03ng24	5				03ng23	
I _D (A) 10			R _{DSon}					
250 —	V _{GS} = 3.8	3 V	(mΩ)					
		3.6						
200 -			4					
		3.4						
150 —		3.2						
100								
100 -		3	3					
50		2.8						
		2.6						
₀ ک		2.4	2					
0				_		10	15	
0	2 4 6	8 10 V _{DS} (V)	- 0	5		10 V _G	15 S (V)	
0		V _{DS} (V)	0			V _G	_S (V)	
0	2 4 6 $T_j = 25^{\circ}C; t_p = 300\mu$	V _{DS} (V)	0	5 T _j = 25	°C;I _D =	V _G	_S (V)	
	$T_j = 25^{\circ}C; t_p = 300\mu$	V _{DS} (V) <i>1S</i>	0	<i>T</i> _j = 25		V _G = 25A	_S (V)	
Fig 5. Ou		V _{DS} (V) <i>IS</i>	Fig 6. Drain-s		state re	v _G = 25A esistanc	_s (V) e as a f u	
Fig 5. Ou fui	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain	V _{DS} (V) <i>IS</i> a current as a age; typical values	Fig 6. Drain-s	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Or fur ^{10−1} ⊨	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain	V _{DS} (V) <i>IS</i> n current as a	Fig 6. Drain-s of gate	$T_j = 25$	state re	v _G = 25A esistanc	_s (V) e as a f u	
Fig 5. Ou fui	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain	V _{DS} (V) <i>IS</i> a current as a age; typical values	Fig 6. Drain-s of gate	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Or fur 10 ⁻¹	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain	V _{DS} (V) <i>IS</i> a current as a age; typical values	Fig 6. Drain-s of gate-	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Ou fun 10 ⁻¹	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> age; typical values 03ng53	Fig 6. Drain-s of gate	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Or fur 10 ⁻¹ ID (A) 10 ⁻²	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain	V _{DS} (V) <i>IS</i> age; typical values 03ng53	Fig 6. Drain-s of gate	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Ou fun 10 ⁻¹	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> age; typical values 03ng53	Fig 6. Drain-s of gate grs 0 125 100	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Or fur 10 ⁻¹ (A) 10 ⁻²	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> age; typical values 03ng53	Fig 6. Drain-s of gate	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Or fur 10 ⁻¹ ID (A) 10 ⁻²	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> age; typical values 03ng53	0 Fig 6. Drain-s of gate	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Or fur 10 ⁻¹ (A) 10 ⁻²	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> age; typical values 03ng53	Fig 6. Drain-s of gate grs 0 125 100	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Or fur 10 ⁻¹ (A) 10 ⁻² 10 ⁻³	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> age; typical values 03ng53	Fig 6. Drain-s of gate	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Or ful 10 ⁻¹ (A) 10 ⁻² 10 ⁻³	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> age; typical values 03ng53	0 Fig 6. Drain-s of gate	$T_j = 25$	state re	v _G = 25A esistanc	_{s (V)} e as a fu values	
Fig 5. Or ful 10 ⁻¹ (A) 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> accurrent as a age; typical values 03ng53 / / max	Fig 6. Drain-s of gate (S) 125 100 75 50 25 0	T _j = 25	state re ltage; t	v _G = 25A esistanc typical v	e as a fu ralues 03ng21	unction
Fig 5. Or ful 10 ⁻¹ (A) 10 ⁻² 10 ⁻³	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> age; typical values 03ng53	Fig 6. Drain-s of gate	$T_j = 25$	state re	V _G esistance typical v	_{s (V)} e as a fu values	unction
Fig 5. Or fur 10 ⁻¹ (A) 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V)	Fig 6. Drain-s of gate (S) 125 100 75 50 25 0	T _j = 25	40	v _G esistance e	e as a fu values 03ng21	unction
Fig 5. Or full 10^{-1} 10^{-1} (A) 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 0	$T_j = 25^{\circ}C; t_p = 300\mu$ utput characteristics: drain inction of drain-source volt	V _{DS} (V) <i>IS</i> age; typical values	Fig 6. Drain-s of gate	T _j = 25	40	v _G = 25A esistance typical v	e as a fu ralues 03ng21	unction

Table 6. Characteristics ...continued

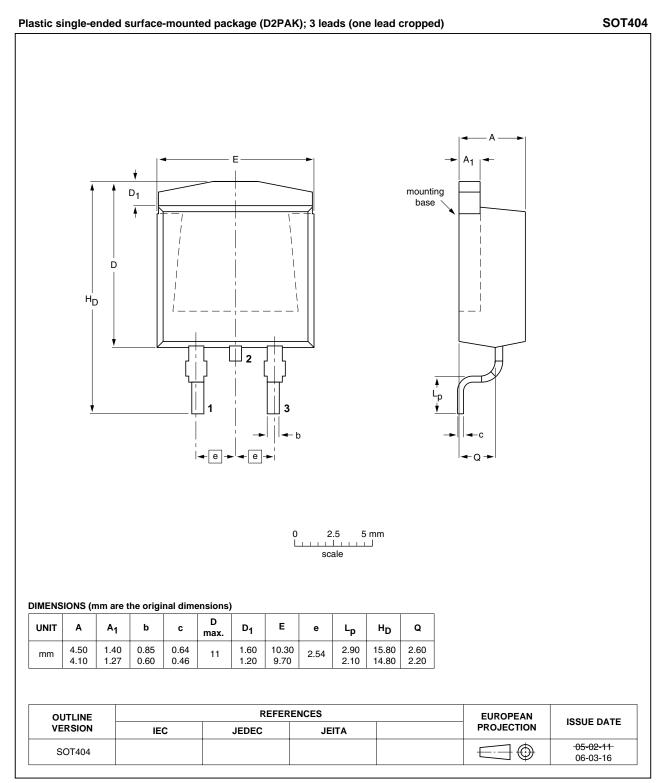

Parameter

Conditions

BUK962R8-30B Product data sheet


BUK962R8-30B

N-channel TrenchMOS logic level FET


BUK962R8-30B

N-channel TrenchMOS logic level FET

N-channel TrenchMOS logic level FET

7. Package outline

Fig 16. Package outline SOT404 (D2PAK)

All information provided in this document is subject to legal disclaimers.

BUK962R8-30B

8. Revision history

Release date	.		
	Data sheet status	Change notice	Supersedes
20110208	Product data sheet	-	BUK95_962R8_30B v.2
		n redesigned to co	omply with the new identity
 Legal texts have 	ave been adapted to the	new company na	me where appropriate.
 Type number 	r BUK962R8-30B separa	ted from data she	et BUK95_962R8_30B v.2.
20021014	Product data	-	BUK95_962R8_30B v.1
	 The format o guidelines of Legal texts h Type number 	 The format of this data sheet has been guidelines of NXP Semiconductors. Legal texts have been adapted to the Type number BUK962R8-30B separation 	 The format of this data sheet has been redesigned to conguidelines of NXP Semiconductors. Legal texts have been adapted to the new company nare Type number BUK962R8-30B separated from data sheet sheet

N-channel TrenchMOS logic level FET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nexperia</u>.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive

applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual

Product data sheet

N-channel TrenchMOS logic level FET

agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: <u>salesaddresses@nexperia.com</u>

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics5
6	Characteristics6
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks
10	Contact information13