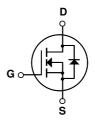


April 2000

FQPF3N60

600V N-Channel MOSFET

General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.

Features

- 2.0A, 600V, $R_{DS(on)} = 3.6\Omega$ @V_{GS} = 10 V Low gate charge (typical 10 nC)
- Low Crss (typical 5.5 pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability

Absolute Maximum Ratings $T_C = 25$ °C unless otherwise noted

Symbol	Parameter		FQPF3N60	Units	
V _{DSS}	Drain-Source Voltage		600	V	
I _D	Drain Current - Continuous (T _C = 25°	C)	2.0	Α	
	- Continuous (T _C = 100°C)		1.26	Α	
I _{DM}	Drain Current - Pulsed	(Note 1)	8.0	Α	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	200	mJ	
I _{AR}	Avalanche Current	(Note 1)	2.0	Α	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	3.4	mJ	
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns	
P _D	Power Dissipation (T _C = 25°C)		34	W	
	- Derate above 25°C		0.27	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		3.68	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink	0.5		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		62.5	°C/W

	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	600			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 25°C		0.6		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V			10	μΑ
		V _{DS} = 480 V, T _C = 125°C			100	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA
On Cha	aracteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 1.0 A		2.8	3.6	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 50 \text{ V}, I_D = 1.0 \text{ A}$ (Note 4)		2.2		S
C _{iss}	Input Capacitance Output Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		350 50	450 65	pF pF
033	a sulpant a sulpanament	1 - 1.0 WILIZ				
C _{rss}	Reverse Transfer Capacitance			5.5	7.5	pF
C _{rss}	,			5.5		
C _{rss} Switch	ing Characteristics	V 200 V 1 2 2 4		5.5		
Switch	,	V _{DD} = 300 V, I _D = 3.0 A,			7.5	pF
Switch	ing Characteristics Turn-On Delay Time	$V_{DD} = 300 \text{ V}, I_{D} = 3.0 \text{ A},$ $R_{G} = 25 \Omega$		10	7.5	pF
C_{rss} Switch $t_{d(on)}$ t_r $t_{d(off)}$	ing Characteristics Turn-On Delay Time Turn-On Rise Time			10	7.5 30 70	pF ns ns
Switch td(on) tr td(off)	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	R_G = 25 Ω (Note 4, 5		10 30 20	7.5 30 70 50	ns ns
C_{rss} Switch $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	$R_G = 25~\Omega$ (Note 4, 5 $$V_{DS} = 480~V, I_D = 3.0~A,$		10 30 20 30	7.5 30 70 50 70	ns ns ns
C_{rss} Switch $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs}	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	R_G = 25 Ω (Note 4, 5) 	10 30 20 30 10	7.5 30 70 50 70 13	ns ns ns ns nc
Switch td(on) tr td(off) tf Qg Qgs Qgd	Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_{G} = 25~\Omega \label{eq:Note 4, 5}$ $V_{DS} = 480~V,~I_{D} = 3.0~A,$ $V_{GS} = 10~V \label{eq:Note 4, 5}$ (Note 4, 5))	10 30 20 30 10 2.7	7.5 30 70 50 70 13	ns ns ns nc nC
$egin{array}{ll} \mathbf{C}_{rss} \\ \mathbf{Switch} \\ \mathbf{t}_{d(on)} \\ \mathbf{t}_{r} \\ \mathbf{t}_{d(off)} \\ \mathbf{t}_{f} \\ \mathbf{Q}_{g} \\ \mathbf{Q}_{gs} \\ \mathbf{Q}_{gd} \\ \mathbf{Drain-S} \\ \end{array}$	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$R_G = 25~\Omega \label{eq:Note 4, 5}$ $V_{DS} = 480~V, I_D = 3.0~A, \label{eq:VGS}$ $V_{GS} = 10~V \label{eq:VGS}$ (Note 4, 5)) 	10 30 20 30 10 2.7 4.9	7.5 30 70 50 70 13 	ns ns ns ns nC
Switch td(on) tr td(off) tg Qg Qgs Qgd Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Maximum Continuous Drain-Source Dice	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 480 \ V, I_{D} = 3.0 \ A,$ $V_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$		10 30 20 30 10 2.7 4.9	7.5 30 70 50 70 13 	ns ns ns nc nC
Switch Switch td(on) tr td(off) tf Qg Qgs Qgd Drain-S	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Maximum Continuous Drain-Source Diode Fallows Time Maximum Pulsed Drain-Source Diode Fallows Times Total Gate Charge Total Gate Charge	$R_G = 25 \Omega$ (Note 4, 5) $V_{DS} = 480 \text{ V}, I_D = 3.0 \text{ A}, V_{GS} = 10 \text{ V}$ (Note 4, 5) $V_{DS} = 480 \text{ V}$ (Note 4, 5) $V_{$		10 30 20 30 10 2.7 4.9	7.5 30 70 50 70 13 	ns ns ns nc nC nC
$\begin{array}{c} \textbf{Switch} \\ \textbf{Switch} \\ \textbf{t}_{d(\text{on})} \\ \textbf{t}_{r} \\ \textbf{t}_{d(\text{off})} \\ \textbf{t}_{f} \\ \textbf{Q}_{g} \\ \textbf{Q}_{gs} \\ \textbf{Q}_{gd} \end{array}$	ing Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Maximum Continuous Drain-Source Dice	$R_{G} = 25 \ \Omega$ (Note 4, 5) $V_{DS} = 480 \ V, I_{D} = 3.0 \ A,$ $V_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$ (Note 4, 5) $N_{GS} = 10 \ V$		10 30 20 30 10 2.7 4.9	7.5 30 70 50 70 13 	ns ns ns nc nC

- **Notes:**1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L = 92mH, I_{AS} = 2.0A, V_{DD} = 50V, R_G = 25 Ω, Starting T_J = 25°C 3. I_{SD} ≤ 3.0A, di/dt ≤ 200A/μs, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width ≤ 300μs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature

Typical Characteristics

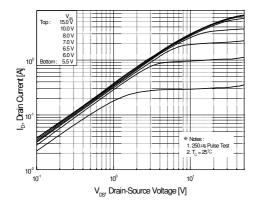


Figure 1. On-Region Characteristics

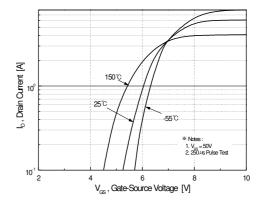


Figure 2. Transfer Characteristics

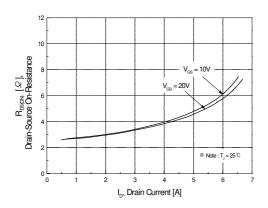


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

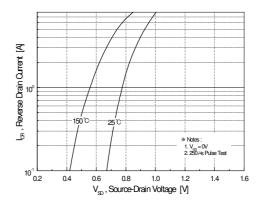


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

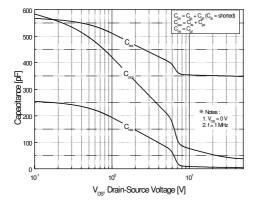


Figure 5. Capacitance Characteristics

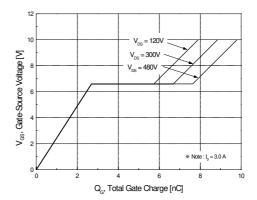
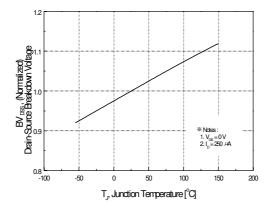



Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

25

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

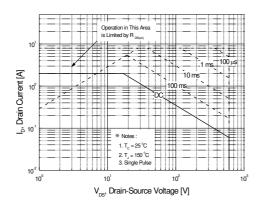
(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5

(00) 1.5


(00) 1.5

(00) 1.5

(0

Figure 7. Breakdown Voltage Variation vs. Temperature

Figure 8. On-Resistance Variation vs. Temperature

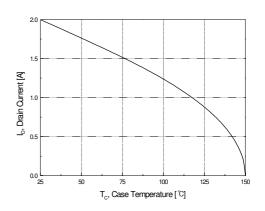
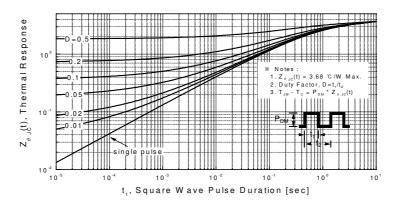
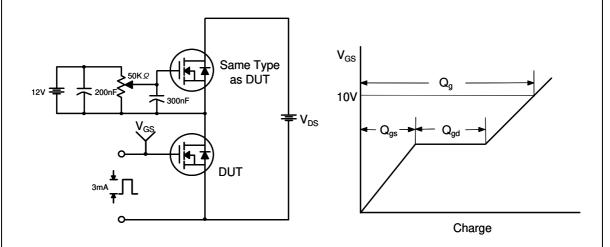
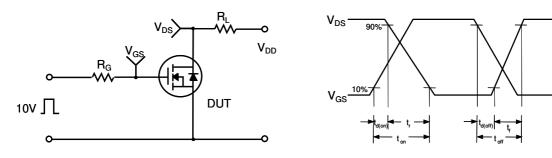


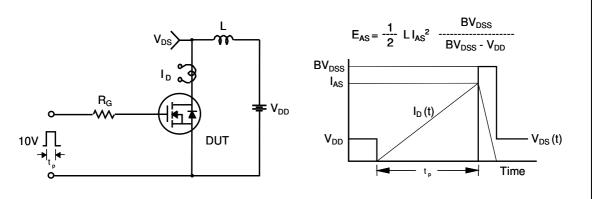
Figure 9. Maximum Safe Operating Area

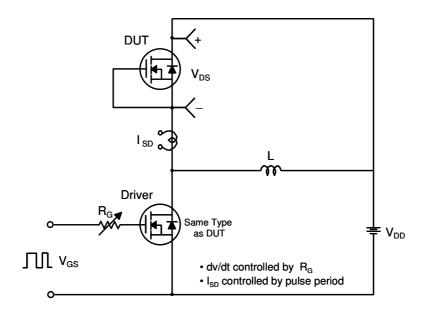
Figure 10. Maximum Drain Current vs. Case Temperature

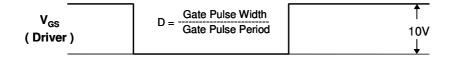



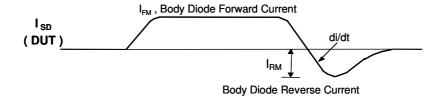

Figure 11. Transient Thermal Response Curve

©2000 Fairchild Semiconductor International Rev. A, April 2000


Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms

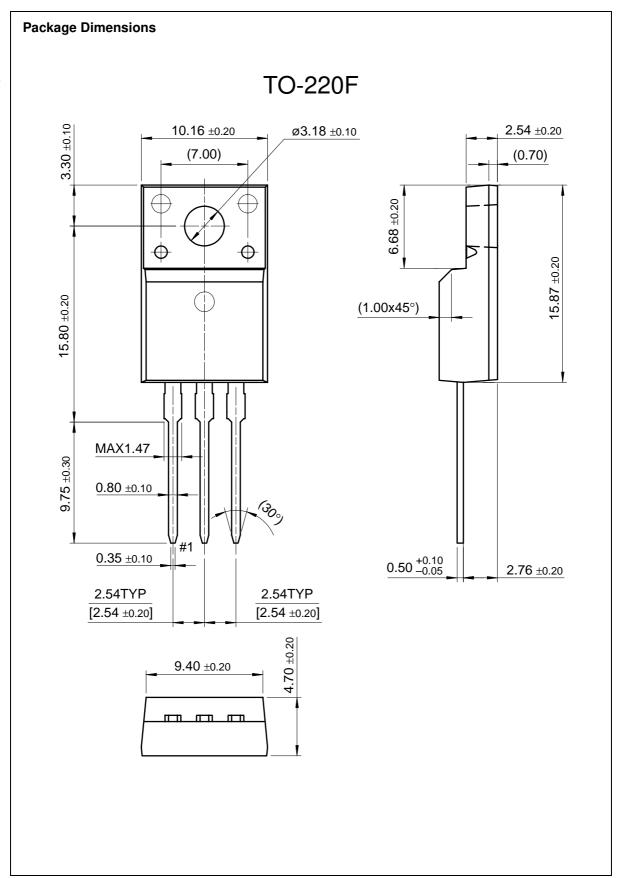



Unclamped Inductive Switching Test Circuit & Waveforms

Peak Diode Recovery dv/dt Test Circuit & Waveforms

(DUT)

Body Diode Recovery dv/dt


V_{SD}

V_{DD}

Body Diode

Forward Voltage Drop

©2000 Fairchild Semiconductor International

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{ccc} \mathsf{FACT^{\mathsf{TM}}} & \mathsf{QFET^{\mathsf{TM}}} \\ \mathsf{FACT} \ \mathsf{Quiet} \ \mathsf{Series^{\mathsf{TM}}} & \mathsf{QS^{\mathsf{TM}}} \end{array}$

FAST[®] Quiet SeriesTM FASTrTM SuperSOTTM-3 GTOTM SuperSOTTM-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to

result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. A, January 2000