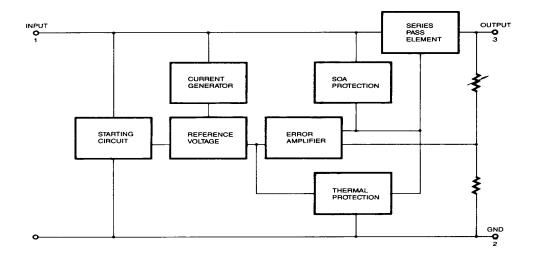

KA78XX/KA78XXA 3-Terminal 1A Positive Voltage Regulator

Features


- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

Description

The KA78XX/KA78XXA series of three-terminal positive regulator are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for $V_O = 5V$ to $18V$) (for $V_O = 24V$)	VI VI	35 40	V V
Thermal Resistance Junction-Cases (TO-220)	R _θ JC	5	°C/W
Thermal Resistance Junction-Air (TO-220)	RθJA	65	°C/W
Operating Temperature Range (KA78XX/A/R)	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics (KA7805/KA7805R)

(Refer to test circuit ,0 $^{\circ}C < T_J < 125 ^{\circ}C$, IO = 500mA, VI =10V, CI= 0.33 μ F, CO=0.1 μ F, unless otherwise specified)

Parameter	Symbol	0.	onditions	ł	KA780	5	Unit
Parameter	Symbol		Diamons	Min.	Тур.	Max.	Unit
		TJ =+25 °C		4.8	5.0	5.2	
Output Voltage	Vo	$\begin{array}{l} \text{5.0mA} \leq \text{Io} \leq 1\\ \text{VI} = 7\text{V to } 20\text{V} \end{array}$	1.0A, $P_O \le 15W$	4.75	5.0	5.25	V
Line Degulation (Note1)	Dealine	TJ=+25 ⁰C	Vo = 7V to 25V	-	4.0	100	mV
Line Regulation (Note1)	Regline	1J=+25°C	VI = 8V to 12V	-	1.6	50	ΠV
Lood Dogulation (Nota1)	Doglaad	T	IO = 5.0mA to1.5A	-	9	100	mV
Load Regulation (Note1)	Regload		IO =250mA to 750mA	-	4	50	ΠV
Quiescent Current	lq	TJ =+25 °C		-	5.0	8.0	mA
Quiescent Current Change	410	$I_{O} = 5 \text{mA to } 1.0 \text{A}$		-	0.03	0.5	m۸
Quiescent Current Change	ΔlQ	V _I = 7V to 25V		-	0.3	1.3	mA
Output Voltage Drift	$\Delta V_{O}/\Delta T$	IO= 5mA		-	-0.8	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100k	≺Hz, Тд=+25 °С	-	42	-	μV/VO
Ripple Rejection	RR	f = 120Hz V _O = 8V to 18V			73	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+2	5 °C	-	2	-	V
Output Resistance	rO	f = 1KHz		-	15	-	mΩ
Short Circuit Current	ISC	VI = 35V, TA =+	25 °C	-	230	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	А

Note:

Electrical Characteristics (KA7806/KA7806R)

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =11V, CI = 0.33µF, CO=0.1µF, unless otherwise specified)

Parameter	Symbol	6	onditions		KA780	6	Unit
Falailletei	Symbol		manions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		5.75	6.0	6.25	
Output Voltage	Vo	$\begin{array}{l} \text{5.0mA} \leq \text{IO} \leq \\ \text{VI} = 8.0 \text{V to 21} \end{array}$	1.0A, P _O ≤ 15W /	5.7	6.0	6.3	V
Line Regulation (Note1)	Regline	TJ =+25 °C	VI = 8V to 25V	-	5	120	mV
	negime	1J=+25 C	VI = 9V to 13V	-	1.5	60	111V
Load Regulation (Note1)	Regload	TJ =+25 ⁰C	IO =5mA to 1.5A	-	9	120	mV
Load Regulation (Note I)	negioau	1J=+25 C	IO =250mA to750mA	-	3	60	111V
Quiescent Current	lQ	TJ =+25 °C		-	5.0	8.0	mA
Quiescent Current Change	ΔlQ	$I_{O} = 5mA$ to $1A$	$I_{O} = 5mA$ to 1A		-	0.5	mA
Quiescent Guirent Ghange	ΔIQ	$V_I = 8V$ to $25V$		-	-	1.3	
Output Voltage Drift	$\Delta V_O / \Delta T$	I _O = 5mA		-	-0.8	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100K	Hz, TA =+25 °C	-	45	-	μ V/Vo
Ripple Rejection	RR	f = 120Hz VI = 9V to 19V	-		75	-	dB
Dropout Voltage	VDrop	I _O = 1A, T _J =+2	IO = 1A, TJ =+25 °C		2	-	V
Output Resistance	rO	f = 1KHz		-	19	-	mΩ
Short Circuit Current	ISC	VI= 35V, TA=+2	5 °C	-	250	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

Note:

Electrical Characteristics (KA7808/KA7808R)

(Refer to test circuit ,0 $^{\circ}$ C < TJ < 125 $^{\circ}$ C, IO = 500mA, VI =14V, CI= 0.33 μ F, CO=0.1 μ F, unless otherwise specified)

Devementer	Symbol				KA7808	3	Unit
Parameter	Symbol		onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		7.7	8.0	8.3	
Output Voltage	Vo	$\begin{array}{c} \text{5.0mA} \leq \text{IO} \leq \\ \text{VI} = 10.5 \text{V to } 2 \end{array}$	5 1.0A, P _O ≤ 15W 23V	7.6	8.0	8.4	v
Line Degulation (Note1)	Dealine	TJ =+25 °C	VI = 10.5V to 25V	-	5.0	160	mV
Line Regulation (Note1)	Regline	1J =+25 C	VI = 11.5V to 17V	-	2.0	80	mv
			IO = 5.0mA to 1.5A	-	10	160	
Load Regulation (Note1)	Regload TJ =+25 °C IO 75	IO= 250mA to 750mA	-	5.0	80	mV	
Quiescent Current	lQ	TJ =+25 °C		-	5.0	8.0	mA
Quiassant Current Change	410	IO = 5mA to 1.0A		-	0.05	0.5	mA
Quiescent Current Change	ΔlQ	VI = 10.5A to 2	25V	-	0.5	1.0	ША
Output Voltage Drift	$\Delta V_O / \Delta T$	$I_{O} = 5mA$		-	-0.8	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100	KHz, T _A =+25 °C	-	52	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, VI=	11.5V to 21.5V	56	73	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ=+2	I _O = 1A, T _J =+25 °C		2	-	V
Output Resistance	rO	f = 1KHz	f = 1KHz		17	-	mΩ
Short Circuit Current	ISC	VI= 35V, TA =	+25 °C	-	230	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	A

Note:

Electrical Characteristics (KA7809/KA7809R)

(Refer to test circuit ,0 $^{\circ}$ C < TJ < 125 $^{\circ}$ C, IO = 500mA, VI =15V, CI= 0.33 μ F, CO=0.1 μ F, unless otherwise specified)

Parameter	Symbol	C	onditions		KA780	9	Unit
Parameter	Symbol		onations	Min.	Тур.	Max.	Unit
		TJ =+25 °C		8.65	9	9.35	
Output Voltage	Vo	5.0mA≤ I _O ≤1.0A VI= 11.5V to 24V	, P _O ≤15W	8.6	9	9.4	v
Line Regulation (Note1)	Regline	TJ=+25 ^o C	VI = 11.5V to 25V	-	6	180	mV
	negime	1J=+25 C	VI = 12V to 17V	-	2	90	111V
Lood Degulation (Nata1)	Declard	TJ=+25 ^o C	$I_{O} = 5mA$ to 1.5A	-	12	180	mV
Load Regulation (Note1)	Regload	1J=+25 C	IO = 250mA to 750mA	-	4	90	mv
Quiescent Current	lq	TJ=+25 °C	·	-	5.0	8.0	mA
Quipagent Current Change	Alo	IO = 5mA to 1.0A		-	-	0.5	mA
Quiescent Current Change	ΔlQ	VI = 11.5V to 26V	1	-	-	1.3	ША
Output Voltage Drift	$\Delta V_O / \Delta T$	IO = 5mA		-	-1	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, TA =+25 °C	-	58	-	μV/Vo
Ripple Rejection	RR	f = 120Hz VI = 13V to 23V		56	71	-	dB
Dropout Voltage	V _{Drop}	IO = 1A, TJ=+25	IO = 1A, TJ=+25 °C		2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =+25	5°C	-	250	-	mA
Peak Current	lрк	TJ= +25 °C		-	2.2	-	А

Note:

Electrical Characteristics (KA7810)

(Refer to test circuit $,0^{\circ}C < T_J < 125^{\circ}C$, IO = 500mA, VI =16V, CI= 0.33μ F, CO= 0.1μ F, unless otherwise specified)

Parameter	Cumhal	0.	onditions	ł	(A781)	Unit
Parameter	Symbol		maillons	Min.	Тур.	Max.	Unit
		TJ =+25 °C		9.6	10	10.4	
Output Voltage	Vo	$5.0 \text{mA} \le \text{I}_{O} \le 1.0$ VI = 12.5V to 25V		9.5	10	10.5	V
Line Regulation (Note1)	Regline	TJ =+25 °C	VI = 12.5V to 25V	-	10	200	mV
	negime	1)=+25 C	VI = 13V to 25V	-	3	100	111 V
Lood Degulation (Nata1)	Declard	TJ =+25 °C	IO = 5mA to 1.5A	-	12	200	mV
Load Regulation (Note1)	Regload	1J=+25 C	IO = 250mA to 750mA	-	4	400	ШV
Quiescent Current	lq	TJ =+25 °C		-	5.1	8.0	mA
Quiescent Current Change		IO = 5mA to 1.0A	A	-	-	0.5	m 4
Quiescent Current Change	ΔlQ	VI = 12.5V to 29	V	-	-	1.0	mA
Output Voltage Drift	$\Delta V_{O} / \Delta T$	IO = 5mA		-	-1	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KH	łz, TA =+25 ⁰C	-	58	-	μV/Vo
Ripple Rejection	RR	f = 120Hz VI = 13V to 23V		56	71	-	dB
Dropout Voltage	VDrop	I _O = 1A, T _J =+25	I _O = 1A, T _J =+25 °C		2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	VI = 35V, TA=+2	5 °C	-	250	-	mA
Peak Current	lрк	TJ =+25 °C		-	2.2	-	А

Note:

Electrical Characteristics (KA7812/KA7812R)

(Refer to test circuit $,0^{\circ}C < T_J < 125^{\circ}C$, IO = 500mA, VI =19V, CI= 0.33μ F, CO= 0.1μ F, unless otherwise specified)

Devenenter	Question	0	dition -	KA78	812/KA	7812R	Unit
Parameter	Symbol		onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		11.5	12	12.5	
Output Voltage	Vo	5.0mA ≤ IO≤1.0A VI = 14.5V to 27V		11.4	12	12.6	V
Line Degulation (Nate1)	Dealine	TJ =+25 °C	VI = 14.5V to 30V	-	10	240	mV
Line Regulation (Note1)	Regline	1J =+25 C	VI = 16V to 22V	-	3.0	120	ΠV
Load Dogulation (Nato1)	Declard	TJ =+25 °C	$I_{O} = 5mA$ to 1.5A	-	11	240	mV
Load Regulation (Note1)	Regload	1J =+25 C	IO = 250mA to 750mA	-	5.0	120	ΠIV
Quiescent Current	lq	TJ =+25 °C	·	-	5.1	8.0	mA
Quieseent Current Change		IO = 5mA to 1.0A		-	0.1	0.5	mA
Quiescent Current Change	ΔlQ	VI = 14.5V to 30V	1	-	0.5	1.0	ШA
Output Voltage Drift	$\Delta V_O / \Delta T$	IO = 5mA		-	-1	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, TA =+25 °C	-	76	-	μV/Vo
Ripple Rejection	RR	f = 120Hz VI = 15V to 25V		55	71	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ=+25	IO = 1A, TJ=+25 °C		2	-	V
Output Resistance	rO	f = 1KHz		-	18	-	mΩ
Short Circuit Current	Isc	VI = 35V, TA=+25	5°C	-	230	-	mA
Peak Current	IPK	TJ = +25 °C		-	2.2	-	А

Note:

Electrical Characteristics (KA7815)

(Refer to test circuit ,0 $^{\circ}$ C < TJ < 125 $^{\circ}$ C, IO = 500mA, VI =23V, CI= 0.33 μ F, CO=0.1 μ F, unless otherwise specified)

Parameter	Symbol	6	onditions	k	(A781	5	Unit
Parameter	Symbol		Diamons	Min.	Тур.	Max.	Unit
		TJ =+25 °C		14.4	15	15.6	
Output Voltage	Vo	5.0mA ≤ IO≤1.0A VI = 17.5V to 30V		14.25	15	15.75	v
Line Regulation (Note1)	Regline	TJ =+25 ^o C	VI = 17.5V to 30V	-	11	300	mV
Line Regulation (Note1)	negime	15=+25 0	VI = 20V to 26V	-	3	150	
Load Pogulation (Noto1)	Regload	TJ =+25 ^o C	IO = 5mA to 1.5A	-	12	300	mV
Load Regulation (Note1)	negioau	1J=+25 C	IO = 250mA to 750mA	-	4	150	mv
Quiescent Current	lq	TJ =+25 °C		-	5.2	8.0	mA
Quiagaant Qurrant Change		IO = 5mA to 1.0A	١	-	-	0.5	mA
Quiescent Current Change	ΔlQ	VI = 17.5V to 30\	/	-	-	1.0	ШA
Output Voltage Drift	$\Delta V_O / \Delta T$	IO = 5mA		-	-1	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KH	lz, TA =+25 °C	-	90	-	μV/Vo
Ripple Rejection	RR	f = 120Hz VI = 18.5V to 28.	5V	54	70	-	dB
Dropout Voltage	V _{Drop}	IO = 1A, TJ=+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	VI = 35V, TA=+2	5°C	-	250	-	mA
Peak Current	lрк	TJ =+25 °C		-	2.2	-	А

Note:

Electrical Characteristics (KA7818)

(Refer to test circuit $,0^{\circ}C < T_J < 125^{\circ}C$, IO = 500mA, VI =27V, CI= 0.33μ F, CO= 0.1μ F, unless otherwise specified)

Parameter	Symbol	6	onditions	ł	(A781)	8	Unit
Parameter	Symbol		bhailions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		17.3	18	18.7	
Output Voltage	Vo	$5.0\text{mA} \le \text{IO} \le 1.0\text{A}$ VI = 21V to 33V	a, P _O ≤15W	17.1	18	18.9	V
Line Regulation (Note1)	Poglino	TJ =+25 °C	VI = 21V to 33V	-	15	360	mV
	Regline	1J =+25 C	VI = 24V to 30V	-	5	180	111V
Load Regulation (Note1)	Regload	TJ =+25 ^o C	$I_{O} = 5mA$ to 1.5A	-	15	360	mV
Load Regulation (Noter)	negioau	1J =+25 C	IO = 250mA to 750mA	-	5.0	180	111V
Quiescent Current	lq	TJ =+25 °C	·	-	5.2	8.0	mA
Quiescent Current Change	Ale	IO = 5mA to 1.0A		-	-	0.5	mA
Quiescent Current Change	ΔlQ	VI = 21V to 33V		-	-	1	IIIA
Output Voltage Drift	$\Delta V_{O} / \Delta T$	I _O = 5mA		-	-1	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KHz	z, TA =+25 °C	-	110	-	μV/Vo
Ripple Rejection	RR	f = 120Hz VI = 22V to 32V			69	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ=+25 °	IO = 1A, TJ=+25 °C		2	-	V
Output Resistance	rO	f = 1KHz		-	22	-	mΩ
Short Circuit Current	Isc	VI = 35V, TA=+25	5°C	-	250	-	mA
Peak Current	lрк	TJ =+25 ^o C		-	2.2	-	А

Note:

Electrical Characteristics (KA7824)

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =33V, CI= 0.33µF, CO=0.1µF, unless otherwise specified)

Parameter	Cumbal	0	onditions	I	KA782 4	1	Unit
Parameter	Symbol		onutions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		23	24	25	
Output Voltage	Vo	$5.0\text{mA} \le \text{I}_{O} \le 1.0\text{A}$ VI = 27V to 38V	A, P _O ≤ 15W	22.8	24	25.25	V
Line Regulation (Note1)	Regline	TJ =+25 °C	VI = 27V to 38V	-	17	480	mV
	negime	IJ =+25 C	VI = 30V to 36V	-	6	240	111V
Load Regulation (Note1)	Regload	TJ =+25 °C	$I_{O} = 5mA$ to 1.5A	-	15	480	mV
	negioau	IJ =+25 C	IO = 250mA to 750mA	-	5.0	240	111V
Quiescent Current	lq	TJ =+25 °C		-	5.2	8.0	mA
Quiescent Current Change	ΔlQ	IO = 5mA to 1.0A		-	0.1	0.5	mA
Quiescent Current Change	ΔiQ	VI = 27V to 38V		-	0.5	1	
Output Voltage Drift	$\Delta V_O / \Delta T$	IO = 5mA		-	-1.5	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KHz	z, TA =+25 °C	-	60	-	μ V/Vo
Ripple Rejection	RR	f = 120Hz VI = 28V to 38V		50	67	-	dB
Dropout Voltage	VDrop	Io = 1A, Tj=+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	28	-	mΩ
Short Circuit Current	ISC	VI = 35V, TA=+25	°C Solution	-	230	-	mA
Peak Current	Iрк	TJ =+25 °C		-	2.2	-	Α

Note:

Electrical Characteristics (KA7805A)

(Refer to the test circuits. $0^{\circ}C < T_J < +125 \ ^{\circ}C$, $I_0 = 1A$, V I = 10V, C I= 0.33μ F, C O= 0.1μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		4.9	5	5.1	
Output Voltage	Vo	IO = 5mA to 1 VI = 7.5V to 2	, -	4.8	5	5.2	V
		VI = 7.5V to 25V IO = 500mA		-	5	50	
Line Regulation (Note1)	Regline	VI = 8V to 12\	/	-	3	50	mV
	_	TJ =+25 °C	VI= 7.3V to 20V	-	5	50	
		1J = +25 °C	VI= 8V to 12V	-	1.5	25	
Load Regulation (Note1)		TJ =+25 ^o C IO = 5mA to 1	.5A	-	9	100	
	Regload	IO = 5mA to 1	A	-	9	100	mV
		I _O = 250mA to	o 750mA	-	4	50	
Quiescent Current	lQ	TJ =+25 °C		-	5.0	6.0	mA
		I _O = 5mA to 1	A	-	-	0.5	
Quiescent Current Change	ΔlQ	VI = 8 V to 25	V, IO = 500mA	-	-	0.8	mA
onange		VI = 7.5V to 2	0V, TJ =+25 °C	-	-	0.8	
Output Voltage Drift	$\Delta V / \Delta T$	lo = 5mA		-	-0.8	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 10 TA =+25 °C	0KHz	-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, IO VI = 8V to 18V		-	68	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =-	+25 °C	-	2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	:+25 °C	-	250	-	mA
Peak Current	IPK	TJ= +25 °C		-	2.2	-	A

Note:

Electrical Characteristics (KA7806A)

(Refer to the test circuits. $0^{\circ}C < T_J < +125 \ ^{\circ}C$, $I_0 = 1A$, V I = 11V, C I= 0.33μ F, C O= 0.1μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		5.58	6	6.12	
Output Voltage	Vo	IO = 5mA to 1 VI = 8.6V to 2	, -	5.76	6	6.24	V
		V _I = 8.6V to 25 IO = 500mA	5V	-	5	60	
Line Regulation (Note1)	Regline	VI= 9V to 13V	1	-	3	60	mV
	-	TJ =+25 °C	VI= 8.3V to 21V	-	5	60	
		$1J = +25 ^{\circ}C$	V _I = 9V to 13V	-	1.5	30	
Load Regulation (Note1)		TJ =+25 ^o C IO = 5mA to 1	TJ =+25 °C IO = 5mA to 1.5A		9	100	
	Regload	IO = 5mA to 1	A	-	4	100	mV
		I _O = 250mA to	o 750mA	-	5.0	50	
Quiescent Current	lQ	TJ =+25 °C		-	4.3	6.0	mA
		I _O = 5mA to 1	A	-	-	0.5	
Quiescent Current Change	ΔlQ	VI = 9V to 25V	V, IO = 500mA	-	-	0.8	mA
		VI= 8.5V to 21	1V, TJ =+25 °C	-	-	0.8	
Output Voltage Drift	$\Delta V / \Delta T$	IO = 5mA		-	-0.8	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 10 TA =+25 °C	00KHz	-	10	-	μV/Vo
Ripple Rejection	RR		f = 120Hz, I _O = 500mA VI = 9V to 19V		65	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	ISC	VI= 35V, TA =	=+25 °C	-	250	-	mA
Peak Current	IPK	TJ=+25 °C		-	2.2	-	A

Note:

Electrical Characteristics (KA7808A)

(Refer to the test circuits. $0^{\circ}C < T_J < +125 \ ^{\circ}C$, $I_0 = 1A$, $V_I = 14V$, $C_I = 0.33\mu$ F, $C_O = 0.1\mu$ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		7.84	8	8.16	
Output Voltage	Vo	IO = 5mA to 1 VI = 10.6V to	, -	7.7	8	8.3	V
		V _I = 10.6V to 2 IO = 500mA	25V	-	6	80	
Line Regulation (Note1)	Regline	VI= 11V to 17	νV	-	3	80	mV
		TJ =+25 °C	VI= 10.4V to 23V	-	6	80	
		1J =+25 °C	V _I = 11V to 17V	-	2	40	
Load Regulation (Note1)	TJ =+25 °C IO = 5mA to 1.5A		-	12	100		
	Regload	IO = 5mA to 1A		-	12	100	mV
		I _O = 250mA to 750mA		-	5	50	
Quiescent Current	lQ	TJ =+25 °C		-	5.0	6.0	mA
		I _O = 5mA to 1	A	-	-	0.5	
Quiescent Current Change	ΔlQ	ΔI_Q VI = 11V to 25V, IO = 500mA	-	-	0.8	mA	
		VI= 10.6V to 2	23V, TJ =+25 °C	-	-	0.8	
Output Voltage Drift	$\Delta V / \Delta T$	IO = 5mA		-	-0.8	-	mV/ °C
Output Noise Voltage	V _N	f = 10Hz to 100KHz TA =+25 °C		-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA VI = 11.5V to 21.5V		-	62	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	18	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	=+25 ⁰C	-	250	-	mA
Peak Current	IPK	TJ=+25 °C		-	2.2	-	A

Note:

Electrical Characteristics (KA7809A)

(Refer to the test circuits. $0^{\circ}C < T_J < +125 \ ^{\circ}C$, $I_0 = 1A$, V I = 15V, C I= 0.33μ F, C O= 0.1μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25°C		8.82	9.0	9.18	
Output Voltage	Vo	IO = 5mA to 1 VI = 11.2V to 2	, -	8.65	9.0	9.35	V
		V _I = 11.7V to 2 IO = 500mA	25V	-	6	90	
Line Regulation (Note1)	Regline	VI= 12.5V to 1	19V	-	4	45	mV
		T.J =+25°C	VI= 11.5V to 24V	-	6	90	
		1J =+25 C	V _I = 12.5V to 19V	-	2	45	
Load Regulation (Note1)		TJ =+25 [°] C IO = 5mA to 1	.0A	-	12	100	
	Regload	IO = 5mA to 1.0A		-	12	100	mV
		IO = 250mA to 750mA		-	5	50	
Quiescent Current	lQ	TJ =+25 °C		-	5.0	6.0	mA
		VI = 11.7V to	25V, TJ=+25 [°] C	-	-	0.8	
Quiescent Current Change	ΔlQ	VI = 12V to 25	5V, IO = 500mA	-	-	0.8	mA
		I _O = 5mA to 1	.0A	-	-	0.5	
Output Voltage Drift	$\Delta V / \Delta T$	IO = 5mA		-	-1.0	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KHz TA =+25 °C		-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA VI = 12V to 22V		-	62	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25 °C		-	2.0	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	ISC	VI= 35V, TA =	⊧+25 [°] C	-	250	-	mA
Peak Current	IPK	TJ=+25°C		-	2.2	-	A

Note:

Electrical Characteristics (KA7810A)

(Refer to the test circuits. $0^{\circ}C < T_J < +125 \ ^{\circ}C$, $I_0 = 1A$, V I = 16V, C I= 0.33μ F, C O= 0.1μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit	
		TJ =+25 [°] C	TJ =+25 [°] C		10	10.2		
Output Voltage	Vo	$I_O = 5mA$ to $V_I = 12.8V$ to	1A, P _O ≤ 15W 25V	9.6	10	10.4	V	
		V _I = 12.8V to IO = 500mA	26V	-	8	100		
Line Regulation (Note1)	Regline	VI= 13V to 20)V	-	4	50	mV	
		TJ =+25 °C	VI= 12.5V to 25V	-	8	100		
		1J =+25 C	VI= 13V to 20V	-	3	50		
Load Regulation (Note1)	TJ =+25 $^{\circ}$ C IO = 5mA to 1.5A		1.5A	-	12	100		
	Regload	IO = 5mA to	1.0A	-	12	100	mV	
		I _O = 250mA t	o 750mA	-	5	50	50	
Quiescent Current	lq	TJ =+25 °C		-	5.0	6.0	mA	
		VI = 13V to 2	6V, TJ=+25 [°] C	-	-	0.5		
Quiescent Current Change	ΔlQ	ΔI_Q VI = 12.8V to	25V, IO = 500mA	-	- 0.	0.8	mA	
		$I_{O} = 5mA$ to	1.0A	-	-	0.5		
Output Voltage Drift	$\Delta V / \Delta T$	IO = 5mA		-	-1.0	-	mV/ °C	
Output Noise Voltage	V _N	f = 10Hz to 1 TA =+25 °C	f = 10Hz to 100KHz TA =+25 °C		10	-	μV/Vo	
Ripple Rejection	RR	f = 120Hz, I _O = 500mA VI = 14V to 24V		-	62	-	dB	
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 [°] C		-	2.0	-	V	
Output Resistance	rO	f = 1KHz		-	17	-	mΩ	
Short Circuit Current	ISC	VI= 35V, TA =	=+25 °C	-	250	-	mA	
Peak Current	IPK	TJ=+25 °C		-	2.2	-	A	

Note:

Electrical Characteristics (KA7812A)

(Refer to the test circuits. $0^{\circ}C < T_J < +125 \ ^{\circ}C$, $I_0 = 1A$, V I = 19V, C I= 0.33μ F, C O= 0.1μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit			
		TJ =+25 °C		11.75	12	12.25				
Output Voltage	Vo	$I_O = 5mA$ to VI = 14.8V to	1A, P _O ≤15W 27V	11.5	12	12.5	V			
		V _I = 14.8V to IO = 500mA	30V	-	10	120				
Line Regulation (Note1)	Regline	VI= 16V to 22	2V	-	4	120	mV			
		TJ =+25 °C	VI= 14.5V to 27V	-	10	120				
		1J =+25 C	VI= 16V to 22V	-	3	60				
Load Regulation (Note1)		TJ =+25 °C IO = 5mA to 1.5A		-	12	100				
	Regload	IO = 5mA to	1.0A	-	12	100	mV			
		I _O = 250mA to 750mA		-	5	50				
Quiescent Current	lQ	TJ =+25 [°] C		-	5.1	6.0	mA			
		VI = 15V to 3	0V, TJ=+25 [°] C	-		0.8				
Quiescent Current Change	ΔlQ	ΔlQ	ΔlQ	ΔlQ	$\Delta IQ \qquad VI = 14V \text{ to } 27V, IO = 500m$	7V, IO = 500mA	-		0.8	mA
		$I_{O} = 5mA$ to	1.0A	-		0.5				
Output Voltage Drift	$\Delta V / \Delta T$	IO = 5mA		-	-1.0	-	mV/°C			
Output Noise Voltage	VN	f = 10Hz to 100KHz TA =+25 [°] C		-	10	-	μV/Vo			
Ripple Rejection	RR	f = 120Hz, I _O = 500mA VI = 14V to 24V		-	60	-	dB			
Dropout Voltage	VDrop	I _O = 1A, T _J =+25 [°] C		-	2.0	-	V			
Output Resistance	rO	f = 1KHz		-	18	-	mΩ			
Short Circuit Current	ISC	VI= 35V, TA =	=+25 °C	-	250	-	mA			
Peak Current	IPK	TJ=+25 [°] C		-	2.2	-	А			

Note:

Electrical Characteristics (KA7815A)

(Refer to the test circuits. $0^{\circ}C < T_J < +125 \ ^{\circ}C$, $I_0 = 1A$, V I =23V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

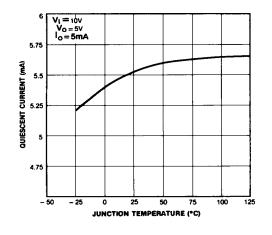
Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit	
		TJ =+25 °C		14.7	15	15.3		
Output Voltage	Vo	IO = 5mA to 7 VI = 17.7V to		14.4	15	15.6	V	
		V _I = 17.9V to IO = 500mA	30V	-	10	150		
Line Regulation (Note1)	Regline	V _I = 20V to 26	SV	-	5	150	mV	
		TJ =+25°℃	VI= 17.5V to 30V	-	11	150		
		1J =+25 C	VI= 20V to 26V	-	3	75		
Load Regulation (Note1)	6	TJ =+25 °C IO = 5mA to 1	TJ =+25 °C IO = 5mA to 1.5A		12	100		
	Regload Ic	IO = 5mA to 1.0A		-	12	100	mV	
		I _O = 250mA t	o 750mA	-	5	50	50	
Quiescent Current	lq	TJ =+25 °C		-	5.2	6.0	mA	
	ΔlQ	VI = 17.5V to	30V, TJ =+25 °C	-	-	0.8		
Quiescent Current Change		VI = 17.5V to	30V, IO = 500mA	-	-	0.8	mA	
		IO = 5mA to 1.0A		-	-	0.5		
Output Voltage Drift	$\Delta V / \Delta T$	IO = 5mA		-	-1.0	-	mV/°C	
Output Noise Voltage	VN	f = 10Hz to 100KHz TA =+25 °C		-	10	-	μV/Vo	
Ripple Rejection	RR	f = 120Hz, I _O = 500mA VI = 18.5V to 28.5V		-	58	-	dB	
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2.0	-	V	
Output Resistance	rO	f = 1KHz		-	19	-	mΩ	
Short Circuit Current	ISC	VI= 35V, TA =	=+25 °C	-	250	-	mA	
Peak Current	lрк	TJ=+25 [°] C		-	2.2	-	А	

Note:

Electrical Characteristics (KA7818A)

(Refer to the test circuits. $0^{\circ}C < T_J < +125 \ ^{\circ}C$, $I_0 = 1A$, V I = 27V, C I= 0.33μ F, C O= 0.1μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit	
		TJ =+25 °C		17.64	18	18.36		
Output Voltage	Vo	-	I _O = 5mA to 1A, P _O ≤15W V _I = 21V to 33V		18	18.7	V	
		V _I = 21V to 33 IO = 500mA	3V	-	15	180		
Line Regulation (Note1)	Regline	VI= 21V to 33	3V	-	5	180	mV	
		TJ =+25 °C	VI= 20.6V to 33V	-	15	180		
		1J =+25 C	VI= 24V to 30V	-	5	90		
Load Regulation (Note1)	(Note1) $T_J = +25^{\circ}C$ IO = 5mA to 1.5A		-	15	100			
	Regload	IO = 5mA to 1.0A		-	15	100	mV	
		I _O = 250mA t	IO = 250mA to 750mA -		7	50		
Quiescent Current	lq	TJ =+25 °C		-	5.2	6.0	mA	
		VI = 21V to 3	3V, TJ=+25 [°] C	-	-	0.8		
Quiescent Current Change	ΔlQ	ΔlQ	VI = 21V to 3	21V to 33V, IO = 500mA	-	-	0.8	mA
		$I_{O} = 5mA$ to	1.0A	-	-	0.5		
Output Voltage Drift	$\Delta V / \Delta T$	IO = 5mA		-	-1.0	-	mV/ °C	
Output Noise Voltage	V _N	f = 10Hz to 100KHz TA =+25°C		-	10	-	μV/Vo	
Ripple Rejection	RR	f = 120Hz, I _O = 500mA VI = 22V to 32V		-	57	-	dB	
Dropout Voltage	VDrop	I _O = 1A, T _J =+25 [°] C		-	2.0	-	V	
Output Resistance	rO	f = 1KHz		-	19	-	mΩ	
Short Circuit Current	Isc	VI= 35V, TA =	=+25 [°] C	-	250	-	mA	
Peak Current	lрк	TJ=+25 °C		-	2.2	-	A	


Note:

Electrical Characteristics (KA7824A)

(Refer to the test circuits. $0^{\circ}C < T_J < +125 \ ^{\circ}C$, $I_0 = 1A$, V I = 33V, C I= 0.33μ F, C O= 0.1μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		23.5	24	24.5	
Output Voltage	Vo	$I_{O} = 5mA \text{ to}^{-1}$ VI = 27.3V to	, -	23	24	25	V
		V _I = 27V to 38 IO = 500mA	3V	-	18	240	
Line Regulation (Note1)	Regline	VI= 21V to 33	3V	-	6	240	mV
		TJ =+25 °C	VI= 26.7V to 38V	-	18	240	
		1J = +25 C	VI= 30V to 36V	-	6	120	-
Load Regulation (Note1)		TJ =+25 °C IQ = 5mA to 1.5A		-	15	100	
	Regload	IO = 5mA to 7	1.0A	-	15	100	mV
		IO = 250mA to 750mA		-	7	50	
Quiescent Current	lq	TJ =+25 °C		-	5.2	6.0	mA
		VI = 27.3V to	38V, TJ =+25 °C	-	-	0.8	
Quiescent Current Change	ΔlQ	ΔI_Q VI = 27.3V to 38V, IO = 500mA	38V, IO = 500mA	-	-	0.8	mA
		$I_O = 5mA$ to 1.0A		-	-	0.5	
Output Voltage Drift	$\Delta V / \Delta T$	IO = 5mA		-	-1.5	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KHz TA = 25 °C		-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA VI = 28V to 38V		-	54	-	dB
Dropout Voltage	VDrop	I _O = 1A, T _J =+25 °C		-	2.0	-	V
Output Resistance	rO	f = 1KHz		-	20	-	mΩ
Short Circuit Current	ISC	VI= 35V, TA =	=+25 [°] C	-	250	-	mA
Peak Current	lрк	TJ=+25 °C		-	2.2	-	А

Note:

Typical Perfomance Characteristics

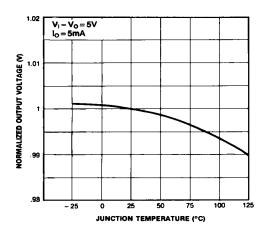


Figure 3. Output Voltage

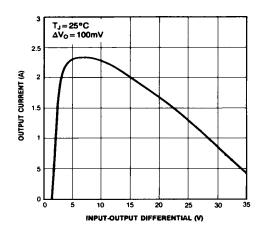


Figure 2. Peak Output Current

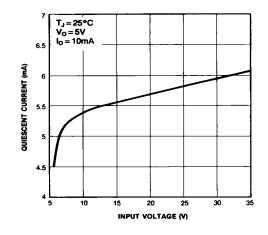
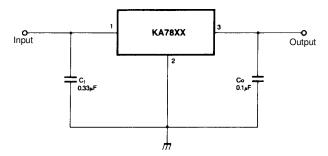
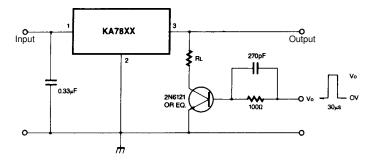
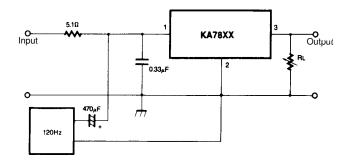
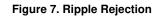




Figure 4. Quiescent Current


Typical Applications



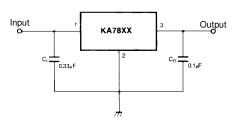


Figure 8. Fixed Output Regulator

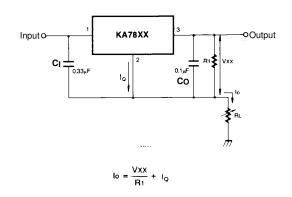
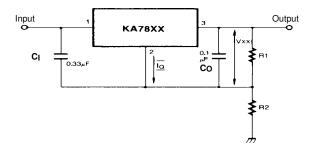
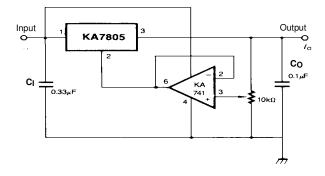



Figure 9. Constant Current Regulator


Notes:

- (1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) CI is required if regulator is located an appreciable distance from power Supply filter.
- (3) CO improves stability and transient response.

I_{RI}≥5IQ

 $V_O = V_{XX}(1 + R_2/R_1) + I_QR_2 \label{eq:VO}$ Figure 10. Circuit for Increasing Output Voltage

$$\label{eq:VO} \begin{split} I_{RI} \geq 5 \ I_Q \\ V_O = V_{XX}(1+R_2/R_1) + I_QR_2 \\ \mbox{Figure 11. Adjustable Output Regulator (7 to 30V)} \end{split}$$

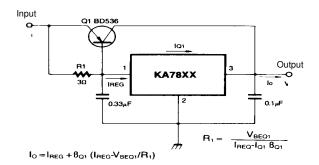


Figure 12. High Current Voltage Regulator

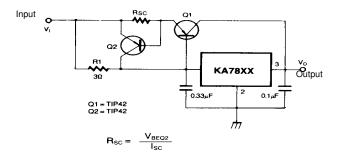


Figure 13. High Output Current with Short Circuit Protection

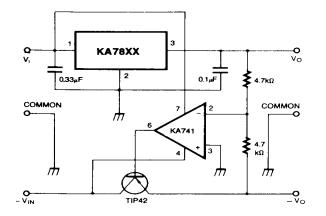


Figure 14. Tracking Voltage Regulator

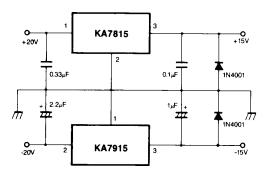


Figure 15. Split Power Supply (±15V-1A)

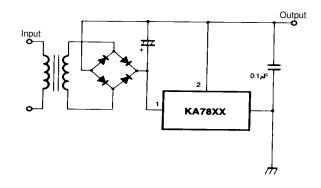


Figure 16. Negative Output Voltage Circuit

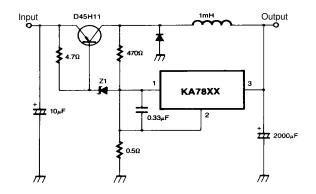
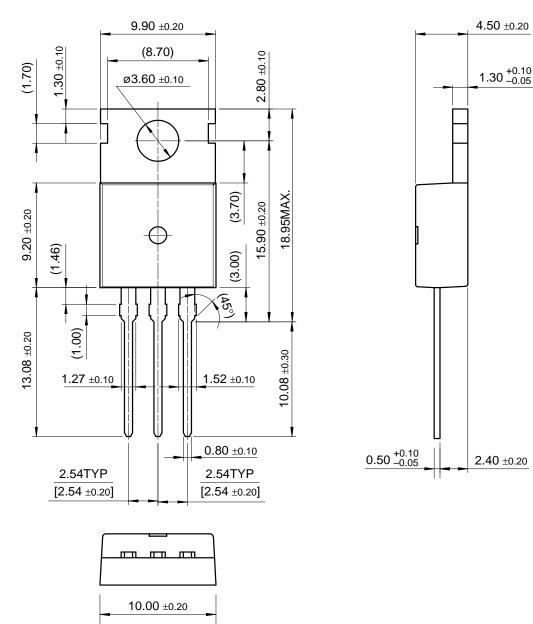
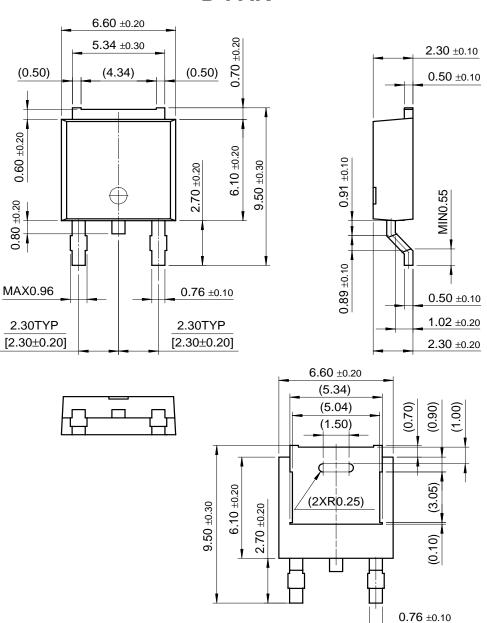



Figure 17. Switching Regulator

Mechanical Dimensions


Package

TO-220

Mechancal Dimensions (Continued)

Package

D-PAK

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
KA7805 / KA7806			
KA7808 / KA7809			
KA7810	±4%		
KA7812 / KA7815			
KA7818 / KA7824		TO-220	
KA7805A / KA7806A		10-220	
KA7808A / KA7809A			0 ~ + 125°C
KA7810A / KA7812A	±2%		
KA7815A / KA7818A			
KA7824A			
KA7805R / KA7806R			
KA7808R / KA7809R	±4%	D-PAK	
KA7812R			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Fairchild Semiconductor		sSEARCH <u>Parametr</u>	ric <u>Cross Reference</u> 3C t Folders and Applica
find productsProducts groupsAnalog and MixedSignalDiscreteInterfaceLogicMicrocontrollersNon-VolatileMemoryOptoelectronicsMarkets andapplicationsNew productsProduct selection andparametric searchCross-referencesearchtechnical informationbuy productstechnical support	Home >> Find products >> KA7809 3-Terminal 1A Positive Voltage Regulator Contents General description Features Product. status/pricing/packaging General description The KA78XX/KA78XXA series of three-terminal positive regulator are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut-down and safe operating area protection, making it essentially in destructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.	cnace Product Datasheet Download this datasheet PDF e-mail this datasheet [E-] This pagePrint version	Feolders and Annlica Related Links Request samples Dotted line How to order products Dotted line Product Change Notices (PCNs) Dotted line Dotted line Distributor and field sales representatives Dotted line Quality and reliability Design tools
my Fairchild company	back to top		

Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating area Protection

back to top

Product status/pricing/packaging

Product	Product status	Package type	Leads	Packing method
KA7809TSTU	Full Production	TO-220	3	RAIL

Product Folder - Fairchild P/N KA7809 - 3-Terminal 1A Positive Voltage Regulator

KA7809TU	Full Production	TO-220	3	RAIL
KA7809RTF	Full Production	TO-252(DPAK)	2	TAPE REEL
KA7809	Full Production	TO-220	3	BULK
KA7809RTM	Full Production	TO-252(DPAK)	2	TAPE REEL

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor