

Features

- 5050 top view SMD LED
- High Brightness
- AllnGaP / InGaN Technology
- Small package
- High reliability
- Clear Lens

Applications

- Consumer Electronics
- Light pipe application
- Automobile After Market
- Industrial Equipment

Description

The IN-P55TATRGB is a popular low profile RGB 5050 package with versatile design capabilities. It is a PLCC type LED which can be used in various applications.

Recommended Solder Pattern

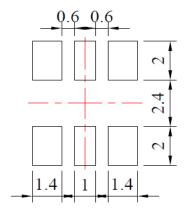


Figure 1. IN-P55TATRGB Solder Pattern

Package Dimensions in mm

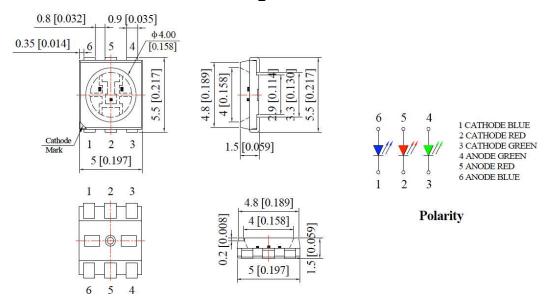


Figure 2. IN-P55TATRGB Package Dimensions

Absolute Maximum Rating at 25°C (Note 1)

Product	Emission Color	P _d (mW)	I _F (mA)	I _{FP} * (mA)	V _R (V)	T _{OP} (°C)	T _{ST} (°C)
IN-P55TATRGB	Red	60	25	100	5	-40°C~+80°C	-40°C~+85°C
IN-P55TATRGB	Green	95	25	100	5	-40°C~+80°C	-40°C~+85°C
IN-P55TATRGB	Blue	95	25	100	5	-40°C~+80°C	-40°C~+85°C

Notes

1. Condition for IFP is pulse of 1/10 duty and 0.1msec width

Electrical Characteristics T_A = 25℃ (Note 1)

	Emission		V _F (V)		λ(nm)			Viewing Angle	I* _V (mcd)
Product	Color	I _F (mA)	min	max	λD	λР	Δλ	2 θ 1/2	typ.
IN-P55TATRGB	Red	20	1.6	2.4	624	632	20	120	900
IN-P55TATRGB	Green	20	2.8	3.4	520	525	35	120	1800
IN-P55TATRGB	Blue	20	2.8	3.4	468	470	25	120	600

Notes

1. Performance guaranteed only under conditions listed in above tables.

ESD Precaution

ATTENTION: Electrostatic Discharge (ESD) protection

The symbol above denotes that ESD precaution is needed. ESD protection for GaP and AlGaAs based chips is necessary even though they are relatively safe in the presence of low static-electric discharge. Parts built with AllnGaP, GaN, or/and InGaN based chips are STATIC SENSITIVE devices. ESD precaution must be taken during design and assembly.

If manual work or processing is needed, please ensure the device is adequately protected from ESD during the process.

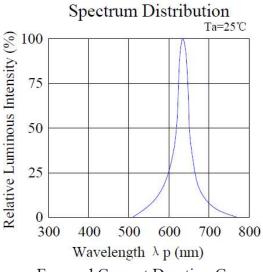
Please be advised that normal static precautions should be taken in the handling and assembly of this device to prevent damage or degradation which may be induced by electrostatic discharge (ESD).

Luminous Intensity (Iv) Bin:

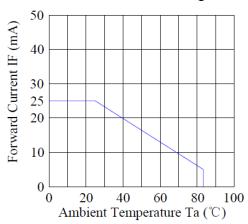
Lammou	3 111101131	ty (iv) Diii.		
Color	Bin Code	Spec. Range		
	B1	600-700 mcd		
	B2	700-800 mcd		
Red	В3	800-900 mcd		
Reu	B4	900-1000 mcd		
	B5	1000-1100 mcd		
	В6	1100-1200 mcd		
	E1	1500-1600 mcd		
	E2	1600-1700 mcd		
Green	E3	1700-1800 mcd		
Green	E4	1800-1900 mcd		
	E5	1900-2000 mcd		
	E6	2000-2100 mcd		
	H1	300-400 mcd		
	H2	400-500 mcd		
Blue	H3	500-600 mcd		
Blue	H4	600-700 mcd		
	H5	700-800 mcd		
	H6	800-900 mcd		

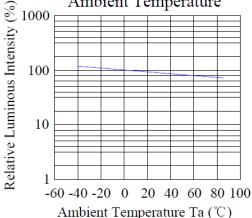
@20mA / Ta= 25° C, Tolerance: $\pm 10\%$

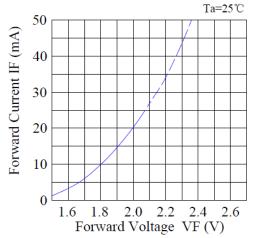
Dominant Wavelength (λD) Bin:

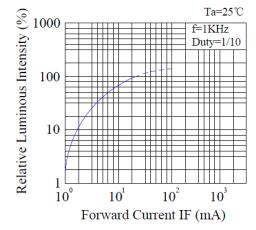

Color	Bin Code	Spec. Range					
	A1	620-625 nm					
Red	A2	625-630 nm					
	A3	630-635 nm					
	D1	520-525 nm					
Green	D2	525-530 nm					
	D3	530-535 nm					
	G1	460-465 nm					
Blue	G2	465-470 nm					
	G3	470-475 nm					

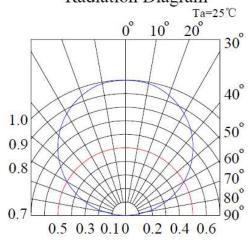
Forward Voltage (Vf) Bin:


Color	Bin Code	Spec. Range			
	C0	1.80-2.00 V			
Red	C1	2.00-2.20 V			
	C2	2.20-2.40 V			
	F1	2.80-3.00 V			
Green	F2	3.00-3.20 V			
	F3	3.20-3.40 V			
	V1	2.80-3.00 V			
Blue	V2	3.00-3.20 V			
	V3	3.20-3.40 V			

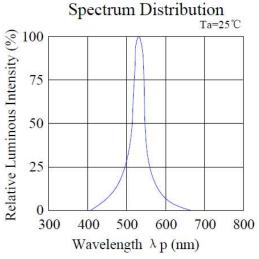

Typical Characteristic Curves-Red


Forward Current Derating Curve

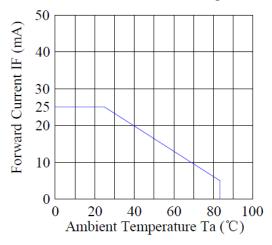

Luminous Intensity & Ambient Temperature 1000

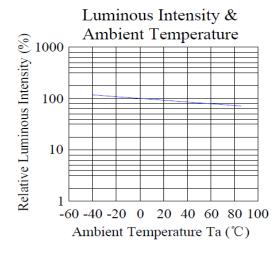

Forward Current & Forward Voltage

Luminous Intensity & Forward Current

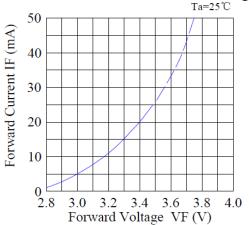


Radiation Diagram

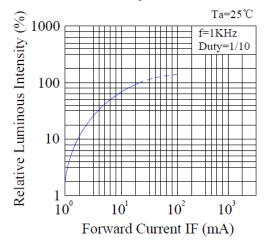


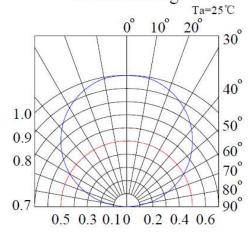


Typical Characteristic Curves-Green

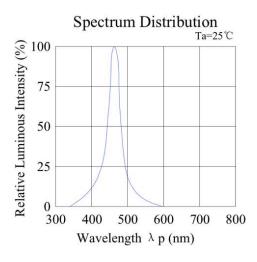


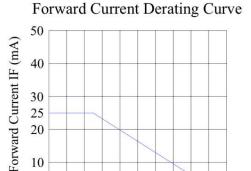
Forward Current Derating Curve




Forward Current & Forward Voltage

Luminous Intensity & Forward Current



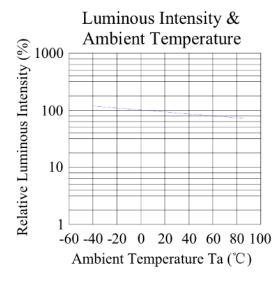

Radiation Diagram

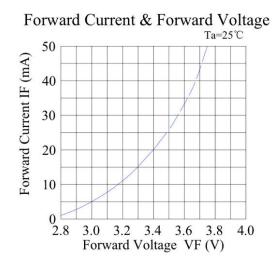
Typical Characteristic Curves-Blue

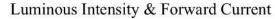
40

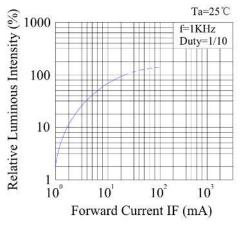
20

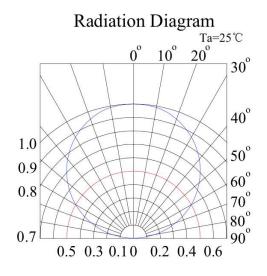
60

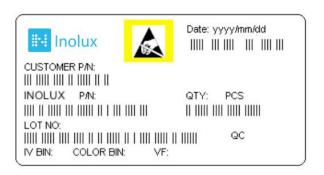

Ambient Temperature Ta (°C)


100


80


10


0 0


Ordering Information

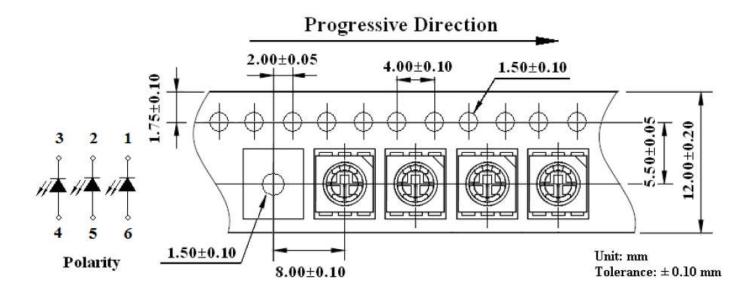
Product	Emission Color	Technology	Test Current I _F (mA)	Luminous Intensity I _V (mcd) (Typ.)	Forward Voltage V _F (V) (Typ.)	Orderable Part Number
	Red	AllnGaP	20	900	2.0	
IN-P55TATRGB	Green	InGaN	20	1800	3.2	IN-P55TATRGB
	Blue	InGaN	20	600	3.2	

Bin Range specified on page 3.

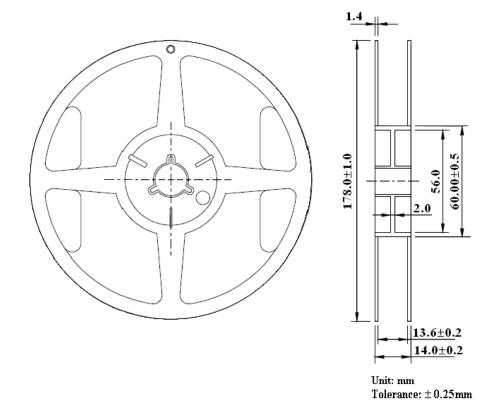
Label Specifications

Inolux P/N:

I	N	-	Р	5	5	TA	T			R	G	В	-	Х	Х	Х	Χ
			Material	Packa	age	Variation	Orientation	Current	Lens	Ó	Color				usto Stam		
	olux MD		P = PLCC Type	55TA =	: 5.0 x 5	5.5 x 1.5 mm	T = Top Mount	(Blank) = 20mA per Chip	(Blank) = Clear	G=	632n 520n 470n	m					

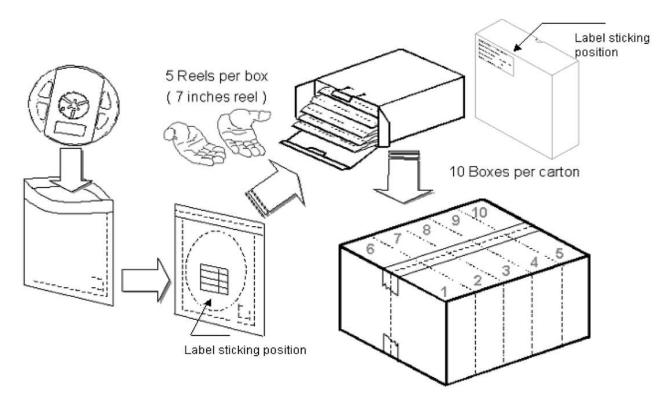

Lot No.:

	Z	2	0	1	7	01	24	001
Ī	Internal		Voor (2017	2019 \		Month	Data	Serial
	Tracker		rear (2017	, 2018,)		ivionth	Date	Sellal



Packaging Information: 1000pcs Per Reel

Tape Dimension



Reel Dimension

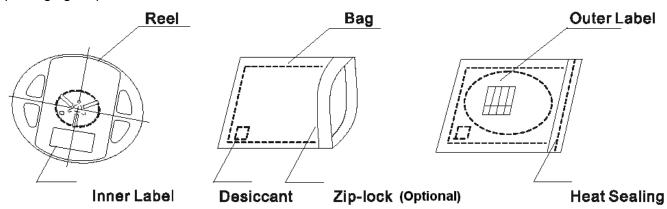
Packing Dimension

5 boxes per carton are available depending on shipment quantity.

	Specification	Material	Quantity
Carrier tape	Per EIA 481-1A specs	Conductive black tape	1000pcs per reel
Reel	Per EIA 481-1A specs	Conductive black	
Label	IN standard	Paper	
Packing bag	220x240mm	Aluminum laminated bag/ no-zipper	One reel per bag
Carton	IN standard	Paper	Non-specified

Others:

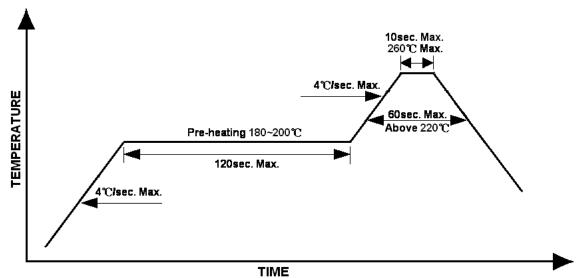
Each immediate box consists of 5 reels. The 5 reels may not necessarily have the same lot number or the same bin combinations of Iv, λ_D and Vf. Each reel has a label identifying its specification; the immediate box consists of a product label as well.



Dry Pack

All SMD optical devices are **MOISTURE SENSITIVE**. Avoid exposure to moisture at all times during transportation or storage. Every reel is packaged in a moisture protected anti-static bag. Each bag is properly sealed prior to shipment.

Upon request, a humidity indicator will be included in the moisture protected anti-static bag prior to shipment.


The packaging sequence is as follows:

Reflow Soldering

- Recommended tin glue specifications: melting temperature in the range of 178~192 °C
- The recommended reflow soldering profile is as follows (temperatures indicated are as measured on the surface of the LED resin):

Lead-free Solder Profile

Precautions

- Avoid exposure to moisture at all times during transportation or storage.
- Anti-Static precaution must be taken when handling GaN, InGaN, and AllnGaP products.
- It is suggested to connect the unit with a current limiting resistor of the proper size. Avoid applying a reverse voltage.
- Avoid operation beyond the limits as specified by the absolute maximum ratings.
- Avoid direct contact with the surface through which the LED emits light.
- If possible, assemble the unit in a clean room or dust-free environment.

Reworking

- Rework should be completed within 5 seconds under 260 °C.
- The iron tip must not come in contact with the copper foil.
- Twin-head type is preferred.

Cleaning

Following are cleaning procedures after soldering:

- An alcohol-based solvent such as isopropyl alcohol (IPA) is recommended.
- Temperature x Time should be 50°C x 30sec. or <30°C x 3min
- Ultra sonic cleaning: < 15W/ bath; bath volume ≤ 1liter
- Curing: 100 °C max, <3min

Cautions of Pick and Place

- Avoid stress on the resin at elevated temperature.
- · Avoid rubbing or scraping the resin by any object.
- Electro-static may cause damage to the component. Please ensure that the equipment is properly grounded. Use of an ionizer fan is recommended.

Reliability

enability 	Frequency/ lots/ samples/	Standards	Conditions
Item	failures	Reference	
Precondition	For all reliability monitoring tests according to JEDEC Level 2	J-STD-020	1.) Baking at 85°C for 24hrs 2.) Moisture storage at 85°C/ 60% R.H. for 168hrs
Solderability	1Q/ 1/ 22/ 0	JESD22-B102-B And CNS-5068	Accelerated aging 155°C/ 24hrs Tinning speed: 2.5+0.5cm/s Tinning: A: 215°C/ 3+1s or B: 260°C/ 10+1s
Resistance to soldering heat		CNS-5067	Dipping soldering terminal only Soldering bath temperature A: 260+/-5°C; 10+/-1s B: 350+/-10°C; 3+/-0.5s
Operating life test	1Q/ 1/ 40/ 0	CNS-11829	1.) Precondition: 85°C baking for 24hrs 85°C/ 60%R.H. for 168hrs 2.) Tamb25°C; IF=20mA; duration 1000hrs
High humidity, high temperature bias	1Q/ 1/ 45/ 0	JESD-A101-B	Tamb: 85°C Humidity: 85% R.H., IF=5mA Duration: 1000hrs
High temperature bias	1Q/ 1/ 20	IN specs.	Tamb: 55°C IF=20mA Duration: 1000hrs
Pulse life test	1Q/ 1/ 40/ 0		Tamb25°C, If=20mA,, Ip=100mA, Duty cycle=0.125 (tp=125 μ s,T=1sec) Duration 500hrs)
Temperature cycle	1Q/ 1/ 76/ 0	JESD-A104-A IEC 68-2-14, Nb	A cycle: -40 degree C 15min; +85 degree C 15min Thermal steady within 5 min 300 cycles 2 chamber/ Air-to-air type
High humidity storage test	1Q/ 1/ 40/ 0	CNS-6117	60+3°C 90+5/-10% R.H. for 500hrs
High temperature storage test	1Q/ 1/ 40/ 0	CNS-554	100+10°C for 500hrs
Low temperature storage test	1Q/ 1/ 40/ 0	CNS-6118	-40+5°C for 500hrs

Revision History

Changes since last revision	Page	Version No.	Revision Date
Initial Release		1.0	04-26-2017
		_	

DISCLAIMER

INOLUX reserves the right to make changes without further notice to any products herein to improve reliability, function or design. INOLUX does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

LIFE SUPPORT POLICY

INOLUX's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of INOLUX or INOLUX CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.